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Abstract—Nowadays, the interest in low-cost and increasingly
accurate Phasor Measurement Units (PMUs) for active distribu-
tion systems is steadily growing. In this paper, an algorithm for
synchrophasor, fundamental frequency and ROCOF estimation
tailored for processing platforms with limited computational
resources is described and characterized extensively in terms
of both accuracy and processing time. The proposed solution
harnesses the main advantages of two state-of-the-art algorithms,
i.e. the Interpolated Discrete Fourier Transform (IpDFT) and the
Taylor-Fourier Transform (TFT). Such algorithms are combined
and implemented in a computationally-efficient manner to reduce
processing time as much as possible, while ensuring good accu-
racy in the main testing conditions specified in the IEEE Standard
C37.118.1-2011 and its Amendment C37.118.1a-2014. Estimation
accuracy has been evaluated not only through simulations, but
also experimentally. The good consistency between simulation-
based and experimental results provides clear evidence that the
uncertainty contributions due to transducers, acquisition and
synchronization systems can be reasonably kept under control.
The processing times of the algorithm, implemented on an
embedded platform suitable for PMU prototyping, are compliant
with the mandatory reporting rates of Class M PMUs.
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I. INTRODUCTION

Phasor Measurement Units (PMUs) are instruments able to
measure amplitude, phase, frequency and rate of change of
frequency (ROCOF) of voltage or current waveforms at times
synchronized to the Coordinated Universal Time (UTC) [1].
Generally speaking, PMUs are used to improve grid ob-
servability. At the transmission level, the measurement data
acquired by multiple PMUs and collected through Wide Area
Monitoring (WAM) systems are finally aligned in time by the
so-called Phasor Data Concentrators (PDCs) to estimate the
state of the grid at a given time [2]. In this way, Transmission
Systems Operators (TSOs) can constantly monitor grid stabil-
ity, detect and analyze faults, monitor dynamic load or line
conditions and support power system restoration [3].
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With the advent of active distribution grids and the pro-
gressive shift from unidirectional to bidirectional power flow
schemes, measurement instruments such as the PMUs have
become increasingly interesting also for Distribution Systems
Operators (DSOs) [4], [5]. In particular, the penetration of
generators based on distributed energy resources (DERs) (e.g.
photovoltaic systems, wind farms or storage systems) as
well as the diffusion of strongly non-linear and time-varying
loads (e.g. plug-in electric vehicles) requires a widespread
deployment of measurement and monitoring systems able to
guarantee reliable and safe grid operation, even when the
amount of power exchanged between “prosumers” becomes
substantial. In addition, critical power quality (PQ) events in
distribution systems have to be promptly detected [6]—[8].

Unfortunately, cost and infrastructural constraints limit the
deployment of PMUs in distribution grids. This problem can
be partially tackled with optimal placement strategies [9]-
[11]. However, crucial performance issues still exist due to
the intrinsic differences between transmission and distribu-
tion systems. The latter are indeed affected by significant
imbalances, larger harmonic distortion, and uncertain line
parameters [12]-[14]. Moreover, shorter line length and lower
power flows make the angle differences between voltage bus or
line current phasors very small (i.e. in the order of a few mrad
or less), which requires higher phase measurement accuracy
than in transmission systems [15], [16]. One of the most
known examples of PMU for distribution grids is probably
the micro-PMU by PSL [17]. However, the implementation
details of this instrument are not disclosed. The PMU prototype
described in [15] is based on a Field Programmable Gate Array
(FPGA) to maximize the execution speed when the sampling
rate is very high (up to 50 kSa/s). Despite this, the chosen
hardware platform (i.e. a NI CRIO) is still quite expensive.
Therefore, cheaper and, despite this, more accurate PMUs are
needed in the future. Unfortunately, low cost and high accuracy
are usually contrasting goals. The accuracy problem can be
mitigated by using increasingly sophisticated estimation algo-
rithms, although voltage and current measurement transducers



still have a crucial impact on metrological performance [18]-
[20]. On the other hand, a higher computational complexity
requires more powerful and expensive processing platforms
able to sustain real-time reporting rates in the order of tens
of frames per second [21], [22]. Of course, this issue impacts
on hardware costs and it is further exacerbated by a comple-
mentary aspect, i.e. the need to keep the sampling frequency
reasonably low (i.e. between a few kHz and a few tens of
kHz), while maximizing the effective resolution of the data
acquisition stage. In fact, the sensitivity to wideband noise
increases as the number of parameters to be estimated grows,
as confirmed by the fact that the Cramer-Rao Lower Bounds
(CRLB) of such quantities tend to increase accordingly [23].

In this involved scenario, this paper presents a solution
able to achieve a good trade-off between estimation accuracy
and computational burden. The proposed technique relies on
the combination of two state-of-the-art algorithms, i.e. the
Interpolated Discrete Fourier Transform (IpDFT) and the real-
valued Taylor-Fourier Transform (TFT), which are combined
and implemented in a computationally-efficient way to ensure
real-time operation in low-cost processing platforms.

The rest of the paper is structured as follows. First, in
Section II the state-of-the-art about synchrophasor estimation
algorithms is briefly recalled. Then, in Section III the proposed
estimation technique is explained in detail. Section IV reports
both simulation and experimental results in the main steady-
state and dynamic testing conditions reported in the IEEE
Standards C37.118.1-2011 and C37.118.1a-2014 [21], [24].
Finally, Section V describes the implementation of the pro-
posed estimation algorithm using a BeagleBone Black board
and shows the reduction in processing time with respect to the
solution presented in [25].

II. RELATED WORK

Many techniques for synchrophasor estimation have been
developed over the last few years. The estimators based on
a static synchrophasor model rely on the assumption that
a phasor referred to a given UTC time is constant over
the whole data record used to estimate the quantities of
interest. Three classic approaches that stem from this general
assumption are: the classic windowed DFT [26], the IpDFT
algorithm [27], and the technique described in Annex C of the
IEEE Standard C37.118.1-2011 [21], which is also adopted by
most of instrument manufacturers. In particular, this technique
is based on the direct down-conversion of a 50-Hz or 60-
Hz digitized waveform followed by the low-pass filtering of
the resulting in-phase and quadrature waveform components.
The accuracy of this measurement technique strongly depends
on the features of the chosen filters [28]. In this respect,
excellent performance can be achieved by using adaptive filters
for harmonics cancellation based on fundamental frequency
tracking [29], [30]. While the static synchrophasor model
is definitely suitable for PMUs designed for transmission
systems, the case of distribution systems is still unclear, as
the performance requirements at the distribution level are still
undefined. At the moment, it is just widely accepted in the
scientific community that the PMUs for distribution systems

should be able to better track variations of amplitude, phase
and frequency. Also, phase measurement accuracy should
be particularly high. For this reason, the so-called dynamic
synchrophasor model has been recently adopted. According to
this model, a synchrophasor is no longer assumed, nor required
to be in a steady-state over a given observation interval. On the
contrary, amplitude, phase and frequency of the fundamental
are regarded as generic functions of time. Since no univocal
models exist to describe the evolution of a synchrophasor over
time, an effective approach is to approximate the synchropha-
sor function with its Taylor’s series centered at the chosen
reference time and truncated to order K. In this way, the
synchrophasor behavior can be reconstructed by estimating
the coefficients of the Taylor’s series, i.e. the derivatives of
the synchrophasor function from order 0 to K. Such coeffi-
cients can be estimated through weighted least squares (WLS)
fitting [31], [32], finite difference equations [33] or in the
frequency domain using different samples of the DFT around
the fundamental [34].

The same approach can be also extended to estimate
the most significant harmonics through the so-called Taylor-
Fourier Transform (TFT) [35]. The TFT has been implemented
in a variety of ways, e.g. through least squares fitting in
the time domain or using a bank of multiple resonators in
the frequency domain [36]. More recently, the Taylor-Fourier
analysis has been used to define various discrete-time dynamic
models. As a result, different Taylor-Kalman filters (TKF)
have been implemented [37]-[39]. Unfortunately, both the TFT
and the TKF can be strongly affected by inter-harmonics.
In addition, the TKF is more sensitive than the TFT to
possible disturbances which are not included in the waveform
model [40].

To address the out-of-band inter-harmonic problem, an al-
gorithm based on the combination of TFT and Compressed
Sensing (CS) is described in [41]. This algorithms detects the
most harmful inter-harmonic contributions and estimates their
frequencies prior to applying the TFT. The main drawback of
this solution is its computational complexity, which grows with
the number of harmonics and inter-harmonics terms included
in the model.

The estimation technique described in this paper still relies
on a TFT, but it blends the results of other research works
to propose a solution characterized by an optimal trade-
off between accuracy, robustness to unmodelled disturbances
and processing time. First of all, unlike the classic TFT,
the coefficients of the system matrix are tuned at run-time
through a preliminary estimation of the the static off-nominal
frequency deviation of the fundamental, which results from
a preliminary IpDFT. The idea of tuning the coefficients of
the TFT system matrix is not totally new, as it was used
also in [32]. However, the IpDFT is computationally light,
it is not iterative and it returns a very accurate estimate of
the frequency bin corresponding to the spectral peak of a
sinewave once other disturbances are filtered. Moreover, since
one of the inherent IpDFT uncertainty sources is the spectral
leakage from the image component of the fundamental, a
Maximum Image Rejection (MIR) window is used [26]. In
addition, the number of unknowns to be estimated by the



TFT is minimized as a function of the observation interval
length, since just the most critical harmonics are retained in
the waveform model. Compared with the algorithm presented
in [25], the TFT has been completely reformulated using real-
valued instead of complex-valued quantities, thus drastically
reducing the computational burden, as it will be shown in
Section V. For this reason, in this paper the overall algorithm
will be shortly referred to as Tuned Lightweight Taylor Fourier
Transform (TLTFT).

III. WAVEFORM MODEL AND ESTIMATION ALGORITHM

Given a voltage or current waveform sampled at a rate
fs = M- fy (where fj is the nominal fundamental frequency
and M € N), the data record collected in an observation
interval centered at reference time ¢, = -+ and consisting
of N = C - M samples (with C' being an 1ﬁteger number of
waveform cycles at frequency fy) can be modeled as

x(n)=X(n) cosp(n)+ep(n)+n(n) (1)
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are the waveform amplitude and phase, respectively, at the
nth sampling time in the observation interval considered, X
is the nominal waveform amplitude, f = fo - (1 4 J) is the
fundamental frequency (which can be affected by a fractional
off-nominal deviation ¢), ¢ is the initial phase at time ¢,., £,(n)
and £, (n) represent possible amplitude and phase fluctuations,
€p(n) includes harmonic and inter-harmonic disturbances, and
finally n(n) models the total additive wideband noise (e.g.
due to both acquisition and synchronization circuitry) [42].
As known, a PMU is supposed to measure synchrophasor,
frequency and ROCOF of the fundamental of (1) at time ¢,
ie.
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According to the IEEE Standard C37.118.1-2011 and its
Amendment C37.118.1a-2014 [21], [24], PMU accuracy is
expressed in terms of Total Vector Error (TVE), i.e.
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Frequency Error (FE), i.e.
FE(t;)=f(t;) = f(t.)]; )
and Rate of Change of Frequency Error (RFE), i.e.
RFE(t,) = |ROCOF(t,) — ROCOF(t,)|.  (6)

Observe that, here and in the rest of the paper, symbol * denotes
the corresponding estimated quantity.
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Fig. 1. Flow chart of the TLTFT estimation algorithm.

As shortly explained in Section II, the TLTFT algorithm
(whose flow chart is shown in Fig. 1) consists of two main
steps, which are described in detail in the following subsec-
tions.

A. Estimation of the Static Frequency Deviation

The purpose of the first step of the TLTFT algorithm is to
estimate and compensate for the effect of the off-nominal static
frequency deviation 4. In this way, the matrix coefficients of the
following TFT step can be tuned as a function of the estimated
fundamental frequency, as explained in Section III-B. Such
a frequency is estimated by a windowed IpDFT algorithm.
Before the IpDFT, a filter with the following specifications is
used:

o Lower/upper passband frequencies: 45 Hz and 55 Hz;

e Lower/upper stopband frequencies: 10 Hz and 90 Hz;

e Minimum frequency response magnitude in the pass-

band: -0.009 dB;

e Maximum attenuation in the stopband: 34 dB;



in order to mitigate the effect of disturbances e, (n) and n(n)
on § estimation. Observe that the filter passband is purposely
set equal to the off-nominal frequency range of M Class
PMUs [21], whereas the stopband edge frequencies are chosen
so as to relax the transition bandwidth, while ensuring high
harmonics rejection. In this way, the fundamental component
of the collected waveform is basically unaltered. To keep the
filter order as low as possible, an Infinite Input Response
(ITIR) elliptic filter is used. The rationale for this choice is
that, for given filter specifications, this kind of digital filters
exhibits a lower order (6 in the case at hand) than other IIR
or Finite Impulse Response (FIR) filters. Moreover, the order
of standard IIR filters as well as their computational burden
are independent of the sampling frequency. Therefore, their
coefficients can be easily adapted to different values of f,,
without redesigning the filter. The proposed elliptic filter can
be effectively implemented with a canonical (i.e. direct form
I) structure which requires just a few multiply-accumulate
(MAC) operations for each new collected sample. Consider
that, due to its low order, no numerical stability problems arise.

A major drawback of IIR and, particularly, elliptic filters is
their severe in-band phase distortion. However, this problem
does not affect the accuracy of the TLTFT algorithm. Indeed,
the filter is used just to clean up the signal before applying
the IpDFT for § estimation, but it is not used directly for
synchrophasor estimation. On the contrary, the TFT (namely
the core of the algorithm described in Section III-B) is applied
directly to the unfiltered z(n) signal, as highlighted by the
bypass edge connecting z(n) with the WLS block in Fig. 1.
Moreover, as explained below, the estimation of § through the
IpDFT depends just on the magnitude spectrum of the filtered
signal. Thus, the filter phase response has no effect on results.
The group delay and the initial transient of the filter are not a
problem as well, because § is assumed to be static, i.e. almost
constant over multiple cycles.

Let us assume that, without loss of generahty, N is an odd
number. If y(n) for r — X2 < n < r + N1 denotes the
waveform resulting from the filtering of (1) and if
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is the MIR window sequence over C' cycles [26], the windowed
DFT of y(n) over N samples is given by
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2
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2T p=0,..,N—1. (8)
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Let P be the frequency bin corresponding to the magnitude
spectrum peak associated with the fundamental component of
y(n). In principle, waveform sampling should be coherent,
but this is not actually possible in the presence of some off-
nominal frequency deviation. If |[C§] < 1, then P = C.
Otherwise, if |C'§| > 1, then P is set equal to C'+1 or C'— 1,
respectively, depending on whether the fractional frequency
deviation is positive or negative. If the disturbances in (1) are
properly filtered and if the spectral leakage due to the image

component has a negligible impact on the spectral peak of the
fundamental, then it can be shown that [27]

Y (P —1414) |W(-1+1i— P))|
where W (-) is the Discrete-Time Fourier Transform (DTFT)
of (7) and
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Note that if P = 1, then ¢ is always set equal to 1 to avoid
using |Y,,(0)|, which can be strongly affected by spectral
leakage. Observe that the rightmost term of (9) is a non-linear
function of d. Therefore, the value of § can be estimated by
solving equation (9). In the case of MIR windows, the static
off-nominal fractional frequency offset can be computed using
the following approximate expression, i.e. [43]
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can be eventually used to tune the coefficients of the TFT, as
it will be explained in the next subsection.

B. Estimation of Synchrophasor, Frequency and ROCOF

In the classic TFT, the synchophasor Taylor’s series of both
the fundamental tone and its harmonics till a specified order H
are used to model the waveform evolution over time within a
given observation intervals centered at the reference instant. In
the following, the TFT has been enhanced in two ways. First of
all, the TFT estimator is reformulated by splitting the real and
imaginary parts of the corresponding synchrophasors, in order
to process just real-valued rather than complex-valued quan-
tities. Secondly, the number H of harmonic terms included
in the waveform model is chosen adaptively as a function of
the observation interval length, in view of reducing processing
time as much as possible. Assuming that inter-harmonics and
wideband noise contributions in (1) are negligible and that
only H harmonics are considered in e (n), then (1) can be
rewritten as follows, i.e.

ZXR cos (27711 / n) X}h) sin (27rhfn> (12)
— s fs

where, again, r — &2 < r 4+ n < 821 (for N odd),

f=fo-1+4),X h% and X; (") are the real and imaginary
parts of the phasor of the hth harmonic at reference time ..,
respectively, i.e. X" = X}(%h) +5x"™ . Of course, X1 = X
is the synchrophasor of the fundamental, as defined in (3). Let
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be the Taylor’s series of X (") and X§ ), respectively.
If the Taylor’s series coefﬁ01ents are orderly rearranged
in the vector X = [XM .. XU where X" =
[X(h), X(h) X(h) X(h) |7 for h = 1,...,H,
by suﬁstltutlng (13) 1nt0 (12), after some algebraic steps [35],
the sequence of values 2:(n) can be expressed in a matrix form

as follows, i.e.
x = M(0)X, (14)

where x is a 1 X N vector comprising the samples collected
in the observation interval considered and
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isaNx2- - (Ky+..+ Ky + H) real-valued matrix whose

elements for h = 1,..., H are functions of § and are defined
as follows, i.e.
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Therefore if the coefficients of ./\/1(5) are tuned using the
value 4 returned by (11), and if (12) is windowed by a suitable
function v(-) (which in general can be different from (7))
to smooth the Taylor’s series approximation errors at the
boundaries of the observation interval considered, the elements
of the unknown vector can be estimated by using a Weighted
Least Squares (WLS) approach, i.e.

-1

X = [M(S)TVTVM(S) METVTVx,  (18)

where V' = diag{v(0),...,v(N — 1)} is the N x N diagonal

matrix built using the coefficients of window v(-). Notice that

the computation of (18) relies only on real numbers, while in

the classic TFT the elements of M (-) are complex-valued [25],

[35]. As a result, in the former case the total number of arith-

metic operations is much lower, with a consequent reduction
in computation time, as it will be shown in Section V.

As far as the number of model terms is concerned, in the
classic TFT, H is assumed to be arbitrarily large and the
order of the Taylor’s series is the same for all harmonics.
In principle, setting H as large as possible is motivated by
the fact that numerous harmonics (up to the 50th in the IEEE
Standards) may affect power system waveforms. However, in
practice their impact on the estimation of the fundamental

tone parameters tends to decrease as the harmonic order
grows [44]. This behavior is not clearly visible when v(+) is a
rectangular window due to its relevant spectral leakage, but it
becomes more noticeable when two-term cosine-class windows
are used. In general, the actual impact of harmonics on
synchrophasor estimation accuracy depends not only on their
order and magnitude, but also on observation interval length.
This affects the width of the spectral main-lobes and side-lobes
associated with the various waveform harmonic components,
regardless of the number of terms estimated through (18).
When shorter intervals are considered, a larger number of
terms has to be included in (14) to ensure that harmonics have a
negligible impact on fundamental tone parameters estimation.
In particular, it was heuristically verified through simulations
that estimation results in the presence of harmonics do not
change significantly if

o H>4for C=2;

e H >3 for C={3,4};

e H>2forC={506,T7}
Therefore, in the TLTFT H is set as little as possible for
a given observation interval duration, as shown in Fig. 1.
Moreover, since harmonic distortion is often dominated by
steady-state contributions (as it is implicitly supposed in the
IEEE Standards as well), tracking harmonics over time is
usually unnecessary. Hence, to further limit the computational
burden, the Taylor’s series of the harmonic terms can be
truncated to order 0, i.e. K, = 0, for A > 1. On the contrary, at
least the first- and second-order coefficients of the the Taylor’s
series of X (1) are needed (i.e. K; = 2) to estimate not only
amplitude and phase, but also frequency and ROCOF of the
fundamental tone. In particular, the fundamental synchrophasor
magnitude, phase, frequency and ROCOF at time ¢, are given
respectively by [45]:
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IV. ACCURACY TESTS AND RESULTS

The accuracy of the TLTFT algorithm has been analyzed in
different Class P and Class M testing conditions reported in the
IEEE Standards C37.118.1-2011 and C37.118.1a-2014 [21],
[24], i.e.

e When the fundamental has either amplitude between

80% and 120% of the nominal value and frequency
f =50+2 Hz (for Class P) or amplitude between 10%
and 120% of the nominal value and frequency f = 5045
Hz (for Class M) (case a);

e Under the effect of a chirp waveform with frequency

changing linearly from about 48 Hz to 52 Hz (for Class



P) or from about 45 Hz to 55 Hz (for Class M) and vice
versa at a rate of 1 Hz/s (case b);

e When the waveform is affected by both off-nominal fre-
quency deviations within +2 Hz or 5 Hz (as specified
above) and steady-state harmonics, taken one at a time,
of amplitude equal to 1% (Class P) or 10% (Class M)
of the reference value (cases c, d and e, for second, third
and fourth harmonic, respectively);

e Under the influence of a sinusoidal amplitude modula-
tion (AM) of magnitude equal to 10% of the fundamental
and frequency equal to 2 Hz (for Class P) or 5 Hz (for
Class M) (case f);

e Under the influence of a sinusoidal phase modulation
(PM) of amplitude equal to 0.1 rad and frequency equal
to 2 Hz (for Class P) or 5 Hz (for Class M) (case g);

e Under the influence of a single out-of-band inter-
harmonic of amplitude equal to 10% of the fundamental
in the frequency intervals [10, 25] Hz and [75, 100] Hz,
assuming that the PMU reporting rate is 50 frame/s (case
h for Class M PMUs only).

This section reports both simulation and experimental results
in each one of the testing conditions specified above. The
rationale for comparing simulation and experimental results
is twofold. On one hand, it provides a confirmation of the
correct behavior of the estimation algorithm even in the
presence of additional uncertainty contributions (mainly due
to transducers as well as signal conditioning, data acquisition
and synchronization circuitry), which can be hardly modeled
and included in simulations. On the other hand, it helps to
evaluate to what extent such contributions, in the best case,
can affect the overall measurement accuracy.

In both simulations and experiments, the MIR window has
been used not only within the IpDFT, but also in the subsequent
real-valued TFT (i.e. w(-) = wv(:)). This choice is due to
the fact, that, after trying different window functions, this
solution provides the best trade-off between accuracy and
responsiveness.

The Monte Carlo simulations have been performed in Mat-
lab assuming a sampling rate f; = 8 kHz and a Signal-to-noise
Ratio (SNR) equal to 80 dB. Multiple values of TVE, FE and
RFE at different reference times have been computed by using
noisy waveforms of different duration in the cases a—h listed
above. Every kind of test has been repeated about 200 times
changing randomly the initial phases of both the fundamental
component and the various disturbances considered (i.e. har-
monics, inter-harmonics or modulating tones) in [0, 27). As
known, for Class P PMUs responsiveness is more important
than accuracy. Therefore, shorter observation intervals (i.e.
consisting of C' = {2,3,4} nominal waveform cycles) have
been chosen for Class P testing. On the contrary, intervals
including C' = {5, 6, 7} cycles have been considered for Class
M testing, since in this case measurement accuracy has a higher
relevance.

The experiments in the same testing conditions a—h listed
at the beginning of this Section, have been performed in the
laboratories of the University “L. Vanvitelli” in Aversa, Italy,
using

e A calibrator Fluke 6135A/PMUCAL [46];

e A resistive voltage transducer with a rated ratio of 65
V/V;

e A PXI system equipped with a 16-bit multi-functional
NI PXIe-6124 data acquisition (DAQ) module and a time
synchronization module NI PXI 6683H.

The Fluke 6135A/PMUCAL is able to generate three-phase
voltages up to 1000 V and three-phase currents up to 21 A.
However, for the purpose of this paper, only a single-phase
voltage waveform has been used for testing. The adopted
voltage transducer is a resistive divider made up of two
precision decade resistors. The total resistance of the divider
is 65 k(2. The voltage transducer has been properly calibrated,
as described in [47], [48], to compensate systematic ratio and
phase deviations. Moreover, an output parallel capacitor is used
to realize a first-order lowpass filter with a cut-off frequency
at about 5 kHz to improve the Signal-To-Noise-and-Distortion
(SINAD) at the input of the DAQ module. In this way, the
SINAD of the collected waveform in nominal conditions (i.e.
without including other disturbances) is about 70 dB. The
sampling frequency fs of the DAQ module is set to 8 kHz, like
in simulations. The NI PXI 6683H module synchronizes both
the clock sampling signal and the data acquisition module.
In the case at hand, the UTC time reference is an IRIG-B
signal generated by the calibrator. The software for instrument
control, data acquisition and data post-processing is written
in LabVIEW. In this case, the TLTFT algorithm has been
implemented in C++ using the Eigen' open source library
for optimized linear algebra operations. The TLTFT routines
(compiled with Visual Studio 2017 as a dynamic link library
— DLL) is called directly in the LabVIEW Virtual Instrument
(VD) through code library function nodes.

Tabs. I and II report the maximum values of TVE, FE and
RFE computed over hundreds of repeated simulations (a) and
experiments (b) in the Class P and Class M testing conditions
labeled as a—h. The results with harmonics of order higher
than the fourth are generally very close to those of case e.
Therefore, they are not reported for the sake of brevity. First of
all, it is interesting to highlight that simulation and experimen-
tal results are generally quite consistent. This is a remarkable
result, as it confirms that the uncertainty contributions due to
transducers, acquisition and synchronization circuitry can be
reasonably kept under control. Therefore, in the best case,
the theoretical accuracy of the TLTFT algorithm is within
reach. Despite this, the impact of measurement transducers
on experimental results could be critical. Indeed, it has been
observed that the nuisances caused by transducers made by
different manufacturers may drastically affect measurement
results even if the systematic deviations are estimated and
compensated, thus blurring the accuracy analysis.

The results in Tab. I(a)-(b) show that the maximum values
of TVE, FE and RFE are usually well below the Class P
standard limits. In Tab. I(b), apparently just in cases a—e
the experimental RFE values obtained with C = 2 exceed
the limits. However, this is probably due to the residual
uncertainty contributions introduced by the testbed and not to
the estimation algorithm per se.

Thttps://www.openhub.net/p/eigen



TABLE I

MAXIMUM TVE, FE AND RFE VALUES OBTAINED THROUGH SIMULATIONS (A) AND EXPERIMENTS (B) IN VARIOUS CLASS P TESTING

CONDITIONS REPORTED IN THE IEEE STANDARDS FOR OBSERVATION INTERVALS OF C' = {2, 3,4} CYCLES AND f; = 8 KHZ. THE LIMITS OF THE IEEE
STANDARD C37.118.1A-2014 FOR A REPORTING RATE OF 50 FPS ARE ALSO SHOWN FOR COMPARISON.

Case Test type TVE [%] FE [mHz] RFE [Hz/s]
Limit | C=2 | C=3 | C=4 Limit | C=2 | C=3 | C= Limit | C=2 | C=3 | C=
a Freq. offset (£2 Hz) and amplitude within [0.8, 1.2] p.u. 1 0.00 [ 0.00 | 0.00 5 0.3 0.3 0.2 0.4 0.10 | 0.04 | 0.02
b Freq. ramp (+2 Hz at 1 Hz/s) 1 0.00 [ 0.00 | 0.00 10 0.4 0.3 0.2 0.4 0.11 0.03 0.02
c Freq. offset (£2 Hz) + 1% 2nd harmonic 1 0.00 0.00 0.00 5 0.9 0.2 0.1 0.4 0.18 0.04 0.02
d Freq. offset (=2 Hz) + 1% 3rd harmonic 1 0.00 [ 0.00 | 0.00 5 0.6 0.3 0.1 0.4 0.19 | 0.04 | 0.02
e Freq. offset (=2 Hz) + 1% 4th harmonic 1 0.00 [ 0.00 | 0.00 5 0.5 0.3 0.1 0.4 0.12 | 0.04 | 0.02
f AM (10% at 2 Hz) 3 0.00 0.00 0.00 60 0.3 0.2 0.2 2.3 0.15 0.03 0.01
g PM (0.1 rad. at 2 Hz) 3 0.00 [ 0.00 | 0.00 60 0.8 1.3 1.9 2.3 0.13 0.04 | 0.03
(.
TVE [% FE [mHz RFE [Hz/s

Case Test type T O | O [t [ i [ o2 | Oy T oo | Tt [ O3 | o3 [0t
a Freq. offset (£2 Hz) and amplitude within [0.8, 1.2] p.u. 1 0.02 0.02 0.02 5 1.8 0.7 0.4 0.4 0.78 0.13 0.05
b Freq. ramp (+2 Hz at 1 Hz/s) 1 0.02 | 0.02 | 0.02 10 1.8 0.6 0.4 0.4 0.55 0.14 | 0.04
c Freq. offset (2 Hz) + 1% 2nd harmonic 1 0.02 | 0.02 | 0.02 5 22 0.6 0.4 0.4 0.88 0.15 0.04
d Freq. offset (2 Hz) + 1% 3rd harmonic 1 0.02 0.02 0.02 5 2.1 0.6 0.4 0.4 0.72 0.13 0.04
e Freq. offset (=2 Hz) + 1% 4th harmonic 1 0.02 | 0.02 | 0.01 5 1.8 0.6 0.5 0.4 0.68 0.17 0.05
f AM (10% at 2 Hz) 3 0.02 | 0.02 | 0.02 60 0.8 0.6 0.4 2.3 0.70 | 0.16 | 0.04
g PM (0.1 rad. at 2 Hz) 3 0.02 | 0.02 | 0.02 60 1.9 1.5 2.0 2.3 020 | 0.08 0.06

(b)
TABLE II. MAXIMUM TVE, FE AND RFE VALUES OBTAINED THROUGH SIMULATIONS (A) AND EXPERIMENTS (B) IN VARIOUS CLASS M TESTING

CONDITIONS REPORTED IN THE IEEE STANDARDS FOR OBSERVATION INTERVALS OF C' = {5, 6, 7} CYCLES AND fs = 8 KHZz. THE LIMITS OF THE IEEE
STANDARD C37.118.1A-2014 FOR A REPORTING RATE OF 50 FPS ARE ALSO SHOWN FOR COMPARISON.

Case Test type TVE [%] FE [mHz] RFE [Hz/5]
Limit | C=5 | C=6 | C=7 Limit | C=5 = C= Limit | C=5 | C=6 | C<
a Freq. offset (£5 Hz) and amplitude within [0.8, 1.2] p.u. 1 0.00 0.00 0.00 5 0.1 0.1 0.1 0.1 0.01 0.01 0.01
b Freq. ramp (+5 Hz at 1 Hz/s) 1 0.00 [ 0.00 | 0.00 10 0.3 0.4 0.3 0.2 0.02 | 0.01 0.01
c Freq. offset (&5 Hz) + 10% 2nd harmonic 1 0.00 0.00 0.00 25 0.1 0.1 0.1 - 0.01 0.01 0.00
d Freq. offset (5 Hz) + 10% 3rd harmonic 1 0.00 0.00 0.00 25 0.1 0.1 0.1 - 0.01 0.01 0.01
e Freq. offset (=5 Hz) + 10% 4th harmonic 1 0.00 [ 0.00 | 0.00 25 0.1 0.1 0.1 - 0.01 0.01 0.00
f AM (10% at 5 Hz) 3 0.04 | 0.07 0.13 300 3.1 4.6 7.4 14 0.04 | 0.03 0.06
g PM (0.1 rad at 5 Hz) 3 0.03 0.07 0.12 300 42 62 79 14 1.2 1.6 22
h 10% inter-harmonic within [10,25] Hz and [75,100] Hz 1.3 32 1.2 0.19 10 196 34 6.1 - 44 13 1.2
(a)
TVE [%] FE [mHz] RFE [Hz/s]

Case Test type Limit | C=5 | C=6 | C=7 || Limit | C=5 | C=6 | C=7 || Limit | C=5 | C=6 | C=7
a Freq. offset (£5 Hz) and amplitude within [0.8, 1.2] p.u. 1 0.01 0.01 0.01 5 0.2 0.2 0.2 0.1 0.03 0.02 | 0.01
b Freq. ramp (£5 Hz at 1 Hz/s) 1 0.02 | 0.02 | 0.02 10 0.3 0.2 0.2 0.2 0.03 0.02 | 0.01
c Freq. offset (5 Hz) + 10% 2nd harmonic 1 0.01 0.01 0.01 25 0.3 0.2 0.2 — 0.03 0.02 0.01
d Freq. offset (&5 Hz) + 10% 3rd harmonic 1 0.01 0.01 0.01 25 0.3 0.2 0.2 - 0.03 0.02 | 0.01
e Freq. offset (+£5 Hz) + 10% 4th harmonic 1 0.01 0.01 0.01 25 0.3 0.2 0.2 - 0.03 0.02 | 0.01
f AM (10% at 5 Hz) 3 0.06 0.09 0.14 300 32 4.9 7.2 14 0.04 0.05 0.07
g PM (0.1 rad at 5 Hz) 3 0.03 0.07 0.12 300 40 56 75 14 1.2 1.6 22
h 10% inter-harmonic within [10,25] Hz and [75,100] Hz 1.3 32 1.2 0.12 10 196 33 6.5 - 44 13 1.2

(b)

The results in Tab. II(a)-(b) for Class M testing generally
confirm those in Tab. I(a)-(b). Observe that the Class M
ROCOF accuracy requirements are partially undefined, since
some RFE limits have been suspended in [24]. As a general
rule, using longer observation intervals reduces the impact
of steady-state disturbances (particularly harmonics and inter-
harmonics). Moreover, the maximum TVE, FE and RFE values
are smaller than or at most comparable with those shown in
Tab. I(a)-(b), even if the harmonics magnitude is 10 times
larger than in Class P testing and the number of harmonics
modeled in the algorithm is lower (H = 2). These results
suggest that for C' > 4 it is pointless to include harmonics
higher than the second in (14). However, as C increases the
sensitivity to AM, and particularly, to PM grows. This is a

known issue due to the fact that the approximation errors of the
synchrophasor Taylor’s series increases with the distance from
the central reference time. Nevertheless, the IEEE Standard
limits (which are less strict in cases f and g than in steady-
state conditions) are safely met. As, expected, the most critical
results are obtained under the effect of out-of-band inter-
harmonics particularly when they are closer to the passband
(i.e. at about 25 Hz and 75 Hz if the reporting rate is set to
50 frame/s). Under this testing condition, the maximum TVE,
FE and RFE values are below the limits of the IEEE Standard
C37.118.1a-2014 only for C' = 7. Quite interestingly, in this
case experimental and simulation-based results are perfectly
consistent.

To complete the analysis, further experiments have been
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Fig. 2. Experimental maximum phase estimation errors when the test

waveform frequency changes linearly between about 45 Hz and 55 Hz and
vice versa at different rates.

conducted to evaluate just the phase estimation accuracy. As
explained in Section I, the angle differences between voltage
bus and current branch phasors at the distribution level are
expected to be extremely small, i.e. in the order of a few mrad
or less. The results of most of the testing conditions specified
in the IEEE Standards have shown that the TLTFT algorithm
is generally able to meet this requirement, as confirmed by
the small TVE values shown in Tabs. I and II. Since the
case of dynamic disturbances is probably more interesting
for active distribution networks, Fig. 2 explicitly shows the
experimental maximum phase estimation errors for C' = 2,
C = 4and C = 6 (i.e. using H = 4, H = 3 and
H = 2 harmonics, respectively, in the system model) when
the waveform frequency changes linearly from about 45 Hz
to 55 Hz and vice versa at different rates (e.g. =2, +4 and
46 Hz/s). In all cases, the maximum phase estimation errors
range between 0.2 and 0.3 mrad, with minor fluctuations that
are quite independent of the frequency ramp rate and are
probably due to the uncertainty contributions introduced by
the measurement testbed.

V. EMBEDDED IMPLEMENTATION AND PROCESSING TIME
ANALYSIS

The C++ implementation of the TLTFT algorithm has been
compiled with GCC v4.6.3 in release mode (i.e. without the
debug data that tend to slow down software execution) to be
ported on a Beagle-Bone Black board (BBB). This is a low-
cost embedded development platform, which has been recently
used to develop the acquisition and synchronization stages
of a prototype PMU within the OpenPMU project [49]. The
goal of the research reported in this paper is complementary
to [49], as it shows that not only acquisition and synchro-
nization functions, but also waveform parameters estimation
can be successfully and effectively implemented using low-
cost embedded systems. The BBB platform is equipped with
an Angstrom Linux distribution with kernel v4.4 patched for
real-time operation. The board consists of a 32-bit 1-GHz
Sitara ARM Cortex-A8 Central Processing Unit (CPU) with

512 MB DDR3 SDRAM memory, and up to 4 GB on-board
flash memory. One key advantage of the BBB over other
embedded platforms is the presence of two additional 32-bit
200-MHz Programmable Real-time Units (PRUs). The PRUs
can be configured as co-processors to run time-critical portions
of a given software application (e.g. for data streaming). Each
PRU is equipped with 8 kB of RAM data memory and has a
direct access to peripherals. PRUs and the main processor share
12 kB of RAM memory for data communication. The BBB
platform includes two 46-pin headers for General Purpose
Input-Output (GPIO) connections, USB ports, a micro HDMI
connector for audio/video output, and a 10/100 Ethernet port.

The processing time of the TLTFT estimator has been
measured with low-level software timers (i.e. through the
clock function of the standard C library) for different possible
sampling rates between 2 kHz and 12 kHz, with observation
intervals ranging from 2 to 7 nominal waveform cycles, in line
with the experiments described in Section IV. The maximum
processing times computed over 100 iterations of the TLTFT
algorithm are shown in Fig. 3 as a function of the sampling
frequency. In general, they are quite deterministic, i.e. they
exhibit minor fluctuations over multiple iterations. In all cases
the curves exhibits approximately a linear trend. This result is
consistent with the order of complexity of both the IpDFT and
the TFT, which grows linearly with the total number of samples
N. Observe that the processing time values obtained with
C =4 and C = 5 are very close. This apparently weird result
is due to the fact that in the former case H = 3, whereas in the
latter H = 2. As a result, the size of matrix (15) changes as
well. Since the order of complexity of (18) depends cubically
on the number of columns of (15), the higher computational
burden due to a larger data record when C' = 5 is almost
perfectly compensated by model complexity reduction. A
similar situation occurs between C' = 2 and C' = 3, namely
when the number of estimated harmonics H switches from 4
to 3. However, in this case the reduction in model complexity
just partially counterbalances the processing burden increment
caused by the larger record size. Therefore, the lines associated
with the maximum processing times in Fig. 3 are farther apart.
The dashed horizontal lines at 20 ms and 16.7 ms represent
the upper bounds to processing time needed to ensure that the
PMU reporting rates reach the maximum mandatory values
specified in the IEEE Standards, i.e. 50 frame/s when fy = 50
Hz and 60 frame/s when f; = 60 Hz, respectively. Observe
that with f; = 8 kHz (as it was assumed in Section IV)
a reporting rate of 50 frame/s can be safely achieved even
with C = 7. To assure a reporting rate of 60 frame/s over
7 cycles, the sampling frequency should be slightly reduced
(e.g. fs = 7 kHz). However, this change does not affect
accuracy significantly. It is interesting to highlight that in the
C++ implementation of the TLTFT algorithm for the BBB
platform, all floating point variables are defined as float (i.e.
single precision) to fully exploit the 32-bit data path of the
available floating point units. This choice slightly degrades
accuracy with respect to the results shown in Section IV.
However, processing times are about 35% shorter on average
than using double-precision variables.

Finally, the bar diagram in Fig. 4 shows a comparison
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between the maximum processing times of the TLTFT and
those obtained with the algorithm described in [25], as a
function of the number of samples N in the worst case,
namely when C = 7. Clearly, the TLTFT is much faster than
the algorithm in [25], as the processing time is reduced by
50% =4 2%. This is due to the fact that the estimator in [25]
relies on a classic, complex-valued TFT, with both real and
imaginary parts represented as float variables and with H = 3
in all cases. Over shorter observation intervals, the relative
speed improvement is a bit lower. However, it is still about
40% on average and never smaller than about 25%.

VI. CONCLUSIONS

This paper presents an estimation algorithm for Phasor
Measurement Units (PMUs) suitable to be implemented on
low-cost processing platforms. The adopted technique results
from the tailored combination and optimization of two state-
of-the-art algorithms, i.e. an Interpolated DFT (IpDFT) along

with a preliminary bandpass filter and a real-valued Taylor-
Fourier Transform (TFT). The IpDFT is applied to the filtered
waveform to estimate the fundamental static off-nominal fre-
quency deviation, which in turn is used to tune the coefficients
of the TFT matrix. The TFT consists of a flexible number of
harmonic terms which decreases with the observation interval
length, and it is applied to the unfiltered waveform in order
to track synchrophasor, fundamental frequency and ROCOF
changes over time.

The algorithm, implemented on a BeagleBone Black board,
is potentially able to return estimates at reporting rates com-
pliant with the mandatory requirements of the IEEE Standards
C37.118.1-2011 when the sampling range is up to 8 kHz.

The experimental data obtained using a PMU calibrator
are generally consistent with the respective simulation results
and show a good compliance with most of the Class P
and Class M accuracy requirements specified in the IEEE
Standard C37.118.1-2011 and the Amendment C37.118.1a-
2014, although different transducers can strongly and unpre-
dictably affect measurement results. Phase estimation accuracy
is smaller than 1 mrad in most testing conditions, which is very
important for distribution system monitoring.
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