
Abstract— Phasor Measurement Units (PMUs) are the 

measurement devices fostering the transformation of electric 

power networks towards the Smart Grid paradigm. They should 

accurately measure synchrophasors, frequency and rate of 

change of frequency (ROCOF), so that the management and 

control applications relying on PMU-based distributed 

monitoring system can operate effectively. Commercial PMUs 

performance is typically guaranteed by the compliance with the 

IEEE standard C37.118.1, which is focused on PMUs for power 

transmission systems and defines testing conditions and error 

limits. However, actual operating conditions are much more 

variable than those covered by the standard, especially when 

PMUs are used in distribution networks. In particular, the 

standard does not consider unbalance, which may be negligible 

neither in transmission nor in distribution grids. For the first 

time, this paper analyzes the impact of unbalance on the 

accuracy of four of the most significant classes of signal 

processing algorithms for PMU measurements. Synchrophasor, 

frequency and ROCOF estimation performance under different 

unbalance conditions is investigated in the test cases suggested 

by the IEEE C37.242-2013 guide. Novel analytic expressions to 

predict the errors are derived and validated, and they are 

proved to be useful for an effective implementation of PMU 

algorithms intended for both distribution and transmission 

systems. 
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I. INTRODUCTION 

HASOR Measurement Units (PMUs) are expected to 

become the main tool for electrical power networks 

monitoring. PMUs are synchronized with respect to 

coordinated universal time (UTC), thus allowing voltage and 

current amplitudes and phase-angles, frequency and Rate Of 

Change Of Frequency (ROCOF) measurements to be 

performed in a common time reference. Large scale distributed 

measurement systems can be thus designed relying on PMU 

peculiarities. Such systems, namely wide area measurement 

systems (WAMS) in power transmission networks (TNs) 

context, can represent the future also for distribution network 

(DN) [1]. 

PMU employment in DNs is not straightforward, because of 

the different dynamics and characteristics typical of 

distribution systems [1]. DNs are made of shorter and weakly 

meshed lines, resulting in small phase-angle differences 

between nodes and will show less predictable operating 

conditions, due to a massive penetration of distributed and 

renewable energy resources. PMU algorithms that allow 

accurate measurements under a wide range of conditions will 

be one of keys to the success of PMU employment in DNs [2]. 

Nowadays, the starting point of PMU performance 

evaluation is the synchrophasor standard IEEE C37.118.1-

2011 [3], along with its amendment IEEE C37.118.1a-2014 

[4]. Since 2011, the standard defines the PMU measurement 

outputs and indicates errors limits under specific test cases. 

The test signals and requirements are used to define two 

classes (P and M) of compliance. Prescriptions are given in 

terms of reporting rate, accuracy, step response, and latency, 

and examples of PMU algorithms for P and M classes are 

reported in [3], Annex C. 

In the literature, particular attention has been devoted to the 

identification of techniques that are well-suited to PMU 

implementation and to the design of algorithms that allow 

complying with the requirements of the standard. The test 

conditions indicated in [3] are often a common ground to 

compare the proposed methods. Many algorithms have been 

defined (an overview can be found in [5]) and characterized by 

means of both simulations [6], [7] and experimental tests [8], 

[9]. Nevertheless, it has become clear that PMU algorithms, 

particularly in DN framework, require a deeper testing to cover 

more realistic cases. For instance, some aspects of narrow- and 

wide-band noise impact are assessed in [10], [11]. The guide 

IEEE C37.242-2013 [12] that has been published to help the 

calibration, installation and testing of PMUs, reflects these 

emerging discussions. The guide provides a detailed 

description of the procedures and of the conditions to perform 

PMU testing from a practical perspective. It also suggests 

performing additional tests, with respect to those imposed by 

[3], considering unbalanced three-phase inputs.  

In practical power systems the positive sequence 

synchrophasor carries most information about a three-phase 

quantity. For this reason, accurate positive sequence 

synchrophasor estimation is vital for state estimation as well as 

for grid control and automation. It is worth noticing that these 

applications are mostly based on a positive sequence 

representation of the system. 

But most important, [3] defines a unique system frequency 

for each set of three-phase quantities that is the angular speed 

of the positive sequence synchrophasor in a GPS-synchronized 

reference frame. In fact, reference P-class and M-class 
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algorithms proposed by the standard (Annex C) obtain 

frequency and ROCOF measurements by differentiating the 

positive sequence synchrophasor phase angle. 

For this reason, it is interesting to study how unbalance 

affects frequency and ROCOF measurements, other than the 

positive sequence synchrophasor estimation. Voltage and 

current unbalance is sometimes not negligible in high-voltage 

systems, since it may reach levels well above 1% even during 

regular operation. For example, the Italian transmission system 

operator monitors weekly the maximum voltage unbalance for 

power quality assessment. The expected 95th percentile value 

for 2017 is 4%, but measurements show that this value was 

significantly exceeded in the preceding years [13]. Current 

unbalance is supposed to be significantly greater. Higher 

unbalance figures are typical of DNs (which may include 

unbalanced or even single-phase loads and generators) [14]. 

Standard EN 50160 [15] states that, under regular operation, 

95% of the ten-minute voltage unbalance should be below 3%. 

However, this aspect is often overlooked since only few papers 

deal with the issues of PMU algorithms and operation under 

unbalance conditions for both TN and DN [16]-[19].  

In [20] the impact of a negative sequence component on the 

estimation performed by means of the aforementioned 

reference algorithms and of the recently proposed space vector 

(SV) based algorithms [21], [22] has been discussed from both 

a theoretical and practical point of view. In this paper, the 

analysis is expanded significantly including two other 

techniques that are particularly studied in recent literature for 

application in the synchrophasor estimation context. The first 

one is the Taylor-Fourier filtering algorithm [23], which is 

specifically designed for dynamic conditions, and is 

representative of a large class of methods based on 

synchrophasor dynamic modeling. The second one is the 

interpolated discrete Fourier transform (IpDFT) [24] that is 

particularly suited to deal with short range leakage problems. 

In this paper, the aim is thus to cover a wide range of 

estimation techniques, based on different principles, under 

unbalance conditions and to offer a detailed analysis of the 

impact of this phenomenon on classes of measurement 

algorithms that are designed with different goals. The impact 

of unbalance on the estimations provided by all the algorithms 

can be predicted with the analytical formulas that are 

introduced in this paper and validated by means of simulation 

results under different conditions inspired by the 

complementary tests described in [12]. Such equations also 

allow having a better insight into the main contributions to the 

errors of synchrophasor, frequency and ROCOF measurements 

in three-phase unbalanced systems. On the other hand, the 

derived expressions may also be helpful to an effective design 

of PMU algorithms both for DN and TN applications. 

II. ANALYTICAL PERFORMANCE PREDICTION 

Compliance tests suggested by the well-known 

synchrophasor measurement standard [3] are based on three-

phase balanced input signals, at least for the fundamental 

component. Although it is not required for the certification, 

[12] recommends assessing PMU performance in presence of 

unbalance. The suggested test signals to be applied are 

obtained starting from a positive sequence, three-phase signal, 

and changing, both in phase-shift and magnitude, one of the 

phases. Hence, the three sinusoidal signals xa, xb, xc at the 

frequency f1 (corresponding to the angular frequency ω1) can 

be represented by their respective phasors aX , bX , cX : 
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where 2 /3je  =  and the coefficients kx and ka allow 

introducing magnitude and phase unbalance respectively. For 

the following analysis, it is convenient to describe the test 

signal in terms of symmetrical components. Thus, by applying 

the Fortescue transformation, the positive, negative and zero 

sequence phasors X + , X − , 0X  are obtained: 
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It should be noticed that the negative and zero sequence 

phasors are exactly the same. It is worth defining the 

unbalance level, namely the magnitude of the ratio between 

negative and positive sequence phasors, that can be easily 

computed. Using the inverse Steinmetz transform, the time-

domain test signals can be written as: 
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  (3) 

where * denotes the complex conjugate operator. Using the 

inverse Fortescue transform: 
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The three-phase test signals have to be applied to the input 

of the PMU under test which returns the measured positive 

sequence synchrophasor, frequency and ROCOF. Assuming 

that ω0 is the rated angular frequency of the power system, an 

ideal PMU should return exactly zero ROCOF, the actual 

frequency f1 and a positive sequence synchrophasor x+ whose 

expression, as a function of time, is: 

 ( ) ( )1 0j t
x t X e
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+ +=   (5) 

From the estimations and the actual values, the usual 

performance indexes, Total Vector Error (TVE), Frequency 

Error (FE) and ROCOF Error (RFE), must be evaluated. 

It is clear that results strictly depend on the peculiar 

estimation technique implemented in the PMU. In this work, 

four types of algorithms are considered and compared. For all 



of them, analytic expressions that allow predicting TVEs, FEs, 

RFEs in case of unbalanced input have been derived. 

A. Space Vector based PMUs 

PMU algorithms based on the SV transformation have been 

firstly proposed by the authors in [21]. An improved version 

[22] is characterized by higher flexibility: its performance 

depends on five digital filters that can be tailored to meet 

specific goals, for example complying with P and M classes. 

One of the advantages is that the results of the performance 

tests required by [3], [4] can be predicted by using simple 

analytic expressions. These formulas, as shown in the 

following, can be employed also to predict the accuracy in 

case of unbalance. 

SV-based algorithms require computing the space vector

SVx in a reference frame rotating at the speed ω0, 

corresponding to the rated frequency f0 of the power system: 
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Substituting (3) and (4) into (6) it is possible to write the 

expression of the SV in terms of symmetrical components: 
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As expected, the SV is unaffected by the zero-sequence 

term. Moreover, equations presented in [22] for the steady-

state tests can be also employed to predict how unbalance 

affects the estimations. In fact, the negative sequence 

component can be seen as a harmonic disturbance 

characterized by a negative angular frequency -ω1. The SV 

approach requires designing the input filter H as well as the 

other filters for estimating the positive-sequence 

synchrophasor magnitude and phase (M and P respectively), 

frequency and ROCOF (F and R). Thus, introducing ( )H j , 

( )M j , ( )P j , ( )F j  and ( )R j as their frequency 

response functions, using (33), (26), (28) in [22] with ωd=-ω1, 

the following expressions for maximum TVE of the positive 

sequence synchrophasor estimation, FE and RFE can be 

obtained: 

 ( )max 1TVE max , 2K A P j=  −     (8) 

 ( )max 1FE 2KF j = −   (9) 

 ( )max 1RFE 2KR j = −   (10) 

being: 
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that are obtained from (23) and (30) in [22] by considering 

ωd=-ω1. In the above equations, a complex expression without 

overline denotes its magnitude, while ( )M j  and ( )F j  

indicate the zero-phase responses of filter M and F.  

B. Reference P- and M-class algorithms 

Reference P and M-class algorithms proposed by the 

standard represent the second type of algorithm to be 

investigated. The architecture is reported in [3], but some of 

the parameters have been changed in the amendment [4]. The 

algorithms, first of all, require demodulating the phase 

quantities using quadrature oscillators at the rated angular 

frequency ω0. Using the complex notation, recalling (3), after 

demodulation the three signals ,a dx , ,b dx  and ,c dx are obtained. 
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After that, the three synchrophasors are estimated by 

applying a linear phase, low pass filter H   characterized by its 

frequency response function ( )H j , and compensating for 

the group delay. Considering the generic phase p, it results: 
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Where ( ) ( ) / 2H j H j = , ( )H j is the zero-phase 

response of filter H and ,p ex  is the measured synchrophasor. 

The positive sequence synchrophasor is estimated using the 

Fortescue transformation. Recalling (4), the estimated positive 

sequence synchrophasor can be expressed in terms of 

symmetrical components. 
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having defined: 
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Therefore, the positive sequence synchrophasor estimation 

contains a disturbance proportional to the ratio between 

positive and negative components (unbalance level), but is 

completely unaffected by the zero-sequence term. Frequency 

and ROCOF are obtained by using the finite differences 

method to approximate an ideal differentiation of the phase of 

,ex+ . From these computations, the maximum frequency and 

ROCOF errors (FEmax and RFEmax) can be obtained: 

 max 1FE 2Kf   (17) 

 
2

max 1RFE 8 Kf   (18) 

For the M-class algorithm, the TVE can be computed by 

comparing (15) with (5). The TVE is composed by an average 

value plus an oscillating term; after some computations, the 

peak value TVEmax results: 
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In this case, TVEmax is composed by the sum of two terms: 

the first one is the gain error of filter H with respect to unity; 

the second is proportional to K, hence to the unbalance level. 

As for the P-class reference algorithm, the FIR filter H is 

represented by a two-cycle triangular window resulting in 

significant attenuation under off-nominal frequency 

conditions. For this reason, the P-class algorithm includes an 

amplitude compensation of the filter output according to the 

estimated frequency. If the amplitude compensation exactly 

implements the magnitude response of H, performing a 

computation similar to that presented in [22] for steady-state 

tests, the following expression of maximum total vector error 

is derived: 

 ( )maxTVE max ,1K A=   (20) 
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As a final consideration, all the derived expressions clearly 

show how the main effect of unbalance is the infiltration of a 

double frequency component due to the negative-sequence 

phasor into all the measurements. The effect of such 

disturbance is magnified by the differentiations required for 

frequency and ROCOF computations. 

C. Taylor-Fourier Filter algorithms 

Another important class of synchrophasor estimation 

algorithms, specifically conceived for dynamic conditions, is 

that considering a dynamic model given by the Taylor 

expansion of the phasor around the measurement reference 

time [23]. The discrete-time model underlying the 

measurement algorithm is the following one (here and in the 

following ℜ[⋅] and ℑ[⋅] indicate the real and imaginary parts, 

respectively): 
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where 𝑛 = −
𝑁−1

2
, ⋯ ,

𝑁−1

2
 is the index spanning the samples of 

the signal 𝑥𝑝 in the N-sample observation window around the 

measurement instant 𝑚𝑇𝑠, while subscript p{a, b, c} denotes 

the phase. The coefficient 𝑞𝑝,𝑖(𝑚𝑇𝑠) represents the generic 𝑖-

derivative of the phasor 𝑥̅𝑝(𝑡) at the instant 𝑚𝑇𝑠 and 𝑘 is the 

adopted expansion order.  

Rewriting (22) in matrix form, the linear model follows (the 

measurement time is dropped for the sake of simplicity): 
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where 𝐱𝑝 is the vector of the samples in the measurement 

window, 𝐪𝑝 = [𝑞𝑝,0, 𝑞𝑝,1, ⋯ , 𝑞𝑝,𝑘, 𝑞𝑝,0
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𝚽 is a diagonal matrix including the complex exponentials 
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The solution of (23) in the least squares sense gives the 

estimation of the synchrophasor along with its derivatives: 

𝐪̂𝑝 = (𝐁H𝐁)−𝟏𝐁 ⋅ 𝐱𝑝 = 𝐇 ⋅ 𝐱𝑝 (25) 

From (25) it is clear that the estimation is linear and each 

row of the matrix allows performing the corresponding phasor 

derivative estimation. Once 𝐪̂𝑝 is obtained, the following 

expression holds: 
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and the desired quantities can be estimated for each phase. It 

can be noticed that, the matrix 𝐇 rows can be seen as 

containing the following filter coefficients: 

0 1,( ) nh n− = H  

1 2,( ) nh n− = H    2 3,( ) nh n− = H  
(27) 

used to compute 𝑞̂𝑝,0, 𝑞̂𝑝,1 and 𝑞̂𝑝,2. Such filters have 

peculiarities due to their definition and to the property 

2 2k+ =H B I . Phasor estimation is performed by means of ℎ0 

and it is easy to show that: 
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Then the estimated phasors, relating to a single phase and 

the positive sequence, can be expressed similarly to (14) and 



(15), respectively (replacing the generic filter H  with 
0H ). 

For the estimated phasor of each phase it results: 

( ) ( ) ( )1 012
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When considering the positive sequence estimation, 

obtained applying Fortescue transformation to the three 

estimated synchrophasors, the following expression applies (a 

generic time variable 𝑡 is used for the sake of clarity): 

( )1 12
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1
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+

+

−
= . Analogously to previous section, 

the maximum estimation error can be expressed, by means of 

TVE, as: 

0 1 0 1
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( ) ( )
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−
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The maximum TVE depends on the ratio between negative 

and positive sequence and thus involves both amplitude and 

phase-angle unbalance. 

It is interesting to notice that, when all but the first term of 

the Taylor series remainder can be considered in the 

expansions of the filter frequency response around ± 𝜔0, 
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, due to (28). 

The above expressions of the TVE and, in the following, 

those relating to FE and RFE, are valid for a generic order of 

expansion 𝑘. 

Frequency and ROCOF are estimated by the second and 

third expressions in (26), respectively, and such equations 

allow defining also the frequency and ROCOF estimation 

errors when 𝑞̂𝑝,0, 𝑞̂𝑝,1 and 𝑞̂𝑝,2 are expressed using the 

corresponding filters. Focusing first on single-phase 

estimations, it is possible to obtain: 
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(32) 

where the denominators are |𝑞̂𝑝,0|2  for 0 1K  . 

Similarly to (28), it is possible to define the derivatives of 

𝐻̅1 around ± 𝜔0. Only the first derivative 
𝑑𝐻̅1 

𝑑𝜔
|

𝜔0

is non-zero, as 

follows: 
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(33) 

and thus it is possible to express the filter frequency responses 

by means of their Taylor expansions till the order 𝑘 + 1. 

After a few simplifications, the following expression can be 

derived: 
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where: 
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Frequency estimations for each phase have been obtained; 

nevertheless, a set of three-phase quantities is characterized by 

a unique frequency value. For this reason, the frequency of the 

three-phase quantities is obtained as the average of the three 

measured frequencies and seeking an expression for the 

maximum frequency error, the following holds in the 

unbalanced system defined by (1): 
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(36) 

The error includes a first term due to off-nominal frequency 

and two others relating to the phase unbalance. This 

underlines how frequency estimation is independent from 

amplitude unbalance, since the frequency errors on a single 

phase (34) are only influenced by relative level of 

disturbances. 



With similar passages, using (26) and the properties of the 

second derivative filter ℎ2 (zero derivatives at ± 𝜔0, except for 

the second derivative at 𝜔0, as required by the second order 

derivation filter), it is possible to obtain the ROCOF estimation 

for each phase. ROCOF𝑝,𝑒 can be approximated as: 
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where: 
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and, by averaging with further simplifications, the following 

holds for an unbalanced system: 
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(39) 

As for the RFE, similarly to FE, the error budget can be 

divided into a first term due to the deviation from nominal 

frequency and a second one due only to the phase unbalance, 

because a magnitude change on a single phase does not affect 

the corresponding ROCOF estimation. 

D. Interpolated DFT based PMUs 

Frequency-domain interpolation techniques are commonly 

employed for synchrophasor and frequency estimation [24]. 

The main advantage lies in the excellent steady-state 

performance, also under off-nominal frequency conditions. Let 

us consider the generic phase voltage or current signal xp(t), 

p{a, b, c}, as from (3), acquired with a sampling frequency 

fs=Mf0. A N-sample rolling window (N=P·M, where P is the 

number of nominal cycles) whose order is at least equal to two, 

is applied to the signal. Introducing 𝑇𝑤 = (𝑁 − 1)𝑇𝑠, the 

expression of the windowed signal xp,w(t,τ) is obtained. 

 ( ) ( ) ( ), ,p w p wx t w x t T  = − +  (40) 

where τ spans from 0 to Tw in discrete steps. After some 
computations, the DFT of the windowed signal results: 
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ωw is the DFT angular frequency resolution and ( )W j  the 

window frequency response. Let us introduce k  as the 

harmonic index of the greatest positive frequency spectral 

component and kγ as that of the highest component adjacent to 

the k -th. When the usual, two-point interpolation is 

considered, the ratio γ between the magnitudes of these two 

components has to be computed. Assuming that w(t) has 

linear-phase response (hence constant group delay τw), the 

analytic expression of γ results: 

 ( )( )( )0 11 cos 2 w w pK t T     − − + +
 

 (42) 

where: 
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 (43) 

being ( )W j the zero-phase response of the window. It 

should be noticed that spectral leakage results in a double-
frequency alternating component in γ. The fundamental 
frequency fp,e can be estimated as: 

 ( ),p e p wf k k f= +   (44) 

having introduced fw=ωw/2π and Δkp is the estimated frequency 
deviation of phase p in bins, obtained from a proper function 
Dw(γ) depending on the weighting window. By means of a 
first-order expansion, the following expression of Δkp is 
obtained: 
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where sgn(∙) denotes the sign function. Compensating the 
group delay, the estimated frequency is given by: 
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Thus, phase p maximum frequency error results: 
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The ROCOF can be obtained through differentiation, for 

example by means of the finite differences method. Its analytic 

expression as well as that of the RFE comes straightforwardly. 

The synchrophasor magnitude xp,e is computed by 

compensating the group delay and the scalloping loss from the 

k -th component of the DFT 
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After some computations and first-order approximations: 
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 (49) 

Also the synchrophasor phase angle θp,e is derived from the 

k -th component of the DFT, having properly compensated the 

delays due to DFT and windowing: 
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The term containing the estimated frequency appears when 

the group delay is not exactly half of the window length, for 

example when a periodic window is employed. In this case, 

Tw-2τw=Ts, therefore this contribution can be neglected for high 

sampling rates. After some computations: 
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Having obtained the phase p synchrophasor in terms of 

magnitude and phase angle, the TVE can be obtained. Its 

expression is quite complicated and not reported for the sake 

of brevity. However, a simple, approximated expression of the 

maximum TVE can be derived: 
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Analytic expressions for the frequency and ROCOF 

estimations for each phase have been obtained; frequency and 

ROCOF of the three-phase quantities are computed by 

averaging the three single-phase measurements. 

Let us start with the frequency estimation. Using (46), 

substituting the phasor magnitudes and angles reported in (1) 

while taking the average of the three estimations, the 

expression of the frequency is obtained. The peak frequency 

error results: 
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As expected (like in Section II.C), the frequency estimation 

obtained by averaging three single-phase measurement is not 

affected by magnitude unbalance. It is worth noticing that by 

using the approximated expressions, and in absence of phase 

angle unbalance, the double-frequency components due to 

leakage in the single-phase frequency estimations cancel out 

thanks to the average. Being the ROCOF obtained by 

differentiation, the expression of RFEmax is obtained 

immediately. 

Finally, an analytic expression of the positive sequence 

synchrophasor can be obtained using (1), (49), (51) and 

applying the Fortescue transformation. The TVE can be 

obtained, but the equation is rather complex and a simple yet 

accurate expression of the peak value is available for the 

magnitude unbalance only: 
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III. TESTS AND RESULTS 

The measurement performance of the different techniques in 

presence of unbalance has been compared by means of 

numerical simulations, which also permit to validate the 

analytic expressions of the maximum errors derived in Section 

II. The conditions resemble those suggested by [12], thus the 

test signals are obtained from three perfectly balanced 

sinusoids, having frequency f1, by changing the magnitude or 

angle of one of them. In particular: 

• Magnitude variation kx: ±10% and ±20%, 

corresponding to about 3% and 6% unbalance 

levels. 

• Phase-angle variation ka: ±20°, ±40° and ±60°, 

namely 11%, 24% and 38% unbalance levels. 

• Test frequency f1: 0f  and 
0f -1 Hz (50 Hz and 49 

Hz for 50 Hz systems). 

For each kind of algorithm, two implementations have been 

tested: one designed to provide low latency and fast response 

times, the other tailored to ensure high steady-state accuracy. 

When available, the P- and M-class versions of the algorithms 

(for the maximum reporting rate stated in [3], that is 50 

frames/s for a nominal system frequency of 50 Hz) have been 

used, otherwise two different window lengths have been 

adopted, inspired by those of the filters suggested in [3] for the 

two classes. 

As for SV algorithms, the following configurations 

implemented with a 
016sf f=  sampling frequency (same as 

in [22]) have been tested: 

• P-SV: 2 Hz passband frequency and 50 Hz 

stopband frequency for H, M, P, F and R filters. 



Passband ripple 32 10−  for H, 210−  for M and P. 

Stopband ripple 23 10− for H, M and P. Filter 

order 36 and stopband weights 100 and 1000, 

respectively for F and R. 

• M-SV: 5 Hz passband frequency and 25 Hz 

stopband frequency for H, M, P, F and R. 

Passband ripple 32 10−  for H, 210−  for M and P. 

Stopband ripple 23 10− for H, 210−  for M and P. 

Filter order 128 and stopband weights 100 and 

1000, respectively for F and R. 

The P- and M-class reference algorithms proposed by the 

standard have been implemented and tested with a sampling 

rate 
016sf f=  . In the following, they are indicated as P-

C37.118 and M-C37.118, respectively. 

Two- and six-cycle Taylor-Fourier algorithms have been 

considered, and denoted as 2-TF and 6-TF in the following. 

Both of them have been implemented with the usual 

016sf f=   sampling frequency using a second order 

expansion, the minimum that allows performing both 

frequency and ROCOF estimations without turning to discrete-

time derivatives. 

The considered IpDFT implementations are based on 

periodic Hann windows that allow considerably better 

performance with respect to the symmetric versions. As 

explained in Section II.D, with this choice the phase delay 

compensation depends on the estimated frequency, resulting in 

an additional error contribution evident in (50) and (51). Since 

this term is inversely proportional to the sampling rate, 

0200s ff =   has been employed so that its impact results to be 

very small. Two-cycle and six-cycle implementations have 

been studied, and are denoted as 2-IpDFT and 6-IpDFT. 

For all the tests and algorithms, the maximum TVE, FE and 

RFE have been computed using 1-second test signals and 

sample-by-sample estimations. Since all the unbalance tests 

are steady-state tests, using a time resolution equal to the 

sampling interval allows to better determining the maxima 

without changing the initial phase-angle. 

First of all, the impact of unbalance on low-latency PMU 

algorithms is analyzed. Table I reports the maximum percent 

TVE for the positive sequence phasor estimation, the 

maximum FE and RFE for the above test cases as well as in 

symmetrical test conditions with 49 Hz frequency. Error 

values at 50 Hz without unbalance are not reported since they 

are negligible for all the algorithms. Results are compared with 

the values (between round brackets) derived by means of the 

analytic expressions proposed in Section II. For the amplitude 

unbalance tests, only the results for negative variations are 

reported: being characterized by higher unbalance level, for all 

the algorithms they have a greater impact on the estimations. 

When looking at (8)-(10) and (17), (18), (20), it can be noticed 

that maximum TVE, FE and RFE of the reference algorithms 

and of the SV-based techniques are proportional to /X X− + , 

namely the unbalance level. From (2) it immediately appears 

that this ratio is higher for the negative amplitude changes. 

Furthermore, higher errors in the phase unbalance tests are 

expected, being them characterized by higher unbalance levels.  

TABLE I.  IMPACT OF MAGNITUDE AND PHASE UNBALANCE ON LOW-
LATENCY PMU ALGORITHMS 

Method 
Freq 

[Hz] 

kx 

[%] 

ka 

[°] 

Max Errors 

TVE 

[%] 

FE 

[mHz] 

RFE 

[Hz/s] 

P-C37.118 49 

0 0 
7.3e-4 

(0.0000) 

0.000 

(0.000) 

0.000 

(0.000) 

-10 0 
0.0012 

(0.0005) 
0.328 

(0.363) 
0.213 

(0.223) 

-20 0 
0.0017 

(0.0009) 

0.679 

(0.751) 

0.440 

(0.463) 

0 +20 
0.0023 

(0.0016) 

1.12 

(1.23) 

0.723 

(0.760) 

0 +40 
0.0039 

(0.0032) 

2.29 

(2.53) 

1.48 

(1.56) 

0 +60 
0.0057 

(0.0050) 

3.59 

(3.98) 

2.33 

(2.45) 

P-SV 

50 

-10 0 
2.5e-4 

(2.4e-4) 
0.012 

(0.012) 
0.0083 

(0.0083) 

-20 0 
5.1e-4 

(5.1e-4) 

0.025 

(0.025) 

0.017 

(0.017) 

0 +20 
8.5e-4 

(8.3e-4) 
0.040 

(0.042) 
0.027 

(0.028) 

0 +40 
0.0018 

(0.0017) 

0.084 

(0.086) 

0.057 

(0.058) 

0 +60 
0.0029 

(0.0027) 

0.134 

(0.134) 

0.091 

(0.091) 

49 

0 0 
0.0000 

(0.0000) 
0.000 

(0.000) 
0.000 

(0.000) 

-10 0 
4.9e-4 

(4.9e-4) 

0.0039 

(0.0039) 

0.0038 

(0.0039) 

-20 0 
0.0010 

(0.0010) 
0.0080 

(0.0080) 
0.0082 

(0.0082) 

0 +20 
0.0017 

(0.0017) 

0.013 

(0.013) 

0.013 

(0.013) 

0 +40 
0.0036 

(0.0034) 

0.027 

(0.027) 

0.028 

(0.027) 

0 +60 
0.0058 

(0.0054) 
0.044 

(0.042) 
0.043 

(0.043) 

2-TF 49 

0 0 
0.37e-4 

(0.37e-4) 

1.59 

(1.59) 

0.000 

(0.000) 

-10 0 
0.58e-4 

(0.58e-4) 
1.59 

(1.59) 
0.000 

(0.000) 

-20 0 
0.80e-4 

(0.80e-4) 

1.59 

(1.59) 

0.000 

(0.000) 

0 +20 
1.1e-4 

(1.1e-4) 

1.64 

(1.65) 

0.0082 

(0.0073) 

0 +40 
1.8e-4 

(1.8e-4) 
1.69 

(1.69) 
0.015 

(0.014) 

0 +60 
2.6e-4 

(2.6e-4) 

1.72 

(1.72) 

0.021 

(0.019) 

2-IpDFT 49 

0 0 
2.3e-4 

(0.0000) 
0.021 

(0.000) 
7.8e-5 
(0.000) 

-10 0 
0.0024 

(0.0024) 

0.021 

(0.000) 

2.4e-4 

(0.000) 

-20 0 
0.0049 

(0.0049) 

0.021 

(0.000) 

2.4e-4 

(0.000) 

0 +20 
0.0097 

(0.0096) 
15.3 

(15.4) 
9.48 

(9.45) 

0 +40 
0.0193 

(0.0191) 

28.8 

(28.9) 

17.8 

(17.8) 

0 +60 
0.0289 

(0.0287) 
38.9 

(38.9) 
24.0 

(23.9) 

FE and ROCOF estimations obtained by means of Taylor-

Fourier filtering are not sensitive to magnitude unbalance, 

while from (31) appears that the maximum TVE increases with 

the ratio /X X− + . As for the IpDFT techniques, from (54) it is 



clear that kx<0 produces higher TVE for a given amplitude 

change, while frequency and ROCOF estimations are expected 

to be unaffected by magnitude unbalance. The results of the P-

C37.118, 2-TF and 2-IpDFT algorithms when the test signals 

have the nominal system frequency are not reported because 

they are almost zero, due to the zeros of the adopted filters. 

In general, all the algorithms show very good performance 

in terms of TVE even when the input frequency is equal to 49 

Hz: as shown in Fig. 1, the values are lower than 0.03%, thus 

negligible from a practical point of view. 

On the contrary, unbalance has a significant impact, in 

particular under off-nominal frequency conditions, on 

frequency (Fig. 2) and ROCOF estimations. The reference and 

the SV-based algorithm use a similar approach for frequency 

and ROCOF estimations, which are obtained by differentiating 

the phase angle of the positive sequence synchrophasor. 

Unbalance results in a double-frequency ripple in its phase 

angle whose amplitude is increased by the differentiating filter 

employed to compute frequency and ROCOF. As for the P-

class algorithm, unbalance leads to unacceptable errors, in 

particular for the estimated ROCOF, since the filters do not 

provide enough attenuation of this double-frequency 

component that acts as a third-harmonic disturbance. On the 

contrary, the P-SV is designed with approximated first and 

second order differentiators that allow a good rejection of the 

third harmonic, even under off-nominal frequency conditions. 

The two-cycle TF filter shows fairly high frequency errors 

that weakly depend on the unbalance level, both in magnitude 

and phase. When looking at (36), this means that the error 

contribution due to a frequency different from the rated one is 

considerably higher than that due to unbalance. Conversely, 

ROCOF estimation is not affected by magnitude unbalance, 

and errors are low even in case of phase angle unbalance. 

As for the two-cycle IpDFT, results show a weak sensitivity 

to magnitude unbalance, but phase unbalance produces very 

high FE and RFE. 

The analytic formulas allow, generally, a good prediction of 

the errors. Slight discrepancies can be found for the expected 

TVE of the P-C37.118 algorithm because the theoretical 

expressions assume ideal compensation of the scalloping loss. 

Further refinement can be performed by considering the 

empirical one proposed by the standard. The results in terms of 

FE and RFE for the standard algorithm are instead slightly 

affected by the shape of the differentiator filters: ideal 

differentiation was supposed to simplify the analytic 

expressions, but the finite difference frequency response can 

be also easily kept into account. As for the IpDFT, analytic 

expressions predict perfectly zero frequency error without 

phase angle unbalance. In fact, having linearized (46), the 

errors in the single-phase frequency estimations due to spectral 

leakage perfectly cancel out when the average is computed in 

order to obtain the three-phase frequency. Actually, higher-

order effects may produce bias and alternating components 

having frequency multiple of 6f1 that cannot be erased by 

averaging, thus affecting also the ROCOF estimation as 

evident from the results. In any case, it can be noticed that, as 

expected, FE and RFE do not depend on magnitude unbalance. 

 
Figure 1. TVE % for low-latency algorithms: 𝑓0 = 49 Hz, different 

unbalance conditions. 

 
Figure 2. FE for low-latency algorithms: 𝑓0 = 49 Hz, different 

unbalance conditions. 

Table II shows the results for the same test cases, when 

high-accuracy algorithms are considered. Positive-sequence 

synchrophasor estimation is accurate for all the algorithms 

even under off-nominal frequency conditions, as highlighted 

by Fig. 3. The M-C37.118 algorithm achieves the largest 

errors, and this applies also to frequency and ROCOF 

measurements, even at nominal frequency. This is due to the 

characteristics of the M-class filter that is designed with the 

constraint of a minimum attenuation of -57.8 dB in the 

stopband, irrespective of the frequency of the zeros of the 

frequency response. The frequency errors obtained by using 

the six-cycle TF filter are quite large and almost independent 

from the unbalance. Like before, this means that these errors 

are almost only due to the test frequency which is different 

from the rated one. One the contrary, ROCOF errors are small, 

and practically null in case of magnitude unbalance. These 

results highlight, as described by the equations in Section II.C, 

how the errors strongly depend on the derivation filters order 

and shape, in particular when negative frequencies are 

considered. Besides, the effect of averaging among the three 

phases plays a crucial role in canceling balanced errors. The 

six-cycle IpDFT shows excellent frequency estimation, but a 

non-negligible ROCOF error in case of phase-angle unbalance. 

Fig. 4 compares the frequency errors achieved by the 

considered high-accuracy algorithms in presence unbalance, 

when the frequency is equal to 49 Hz. The SV-based method, 

thanks to the approximated differentiator, results in the lowest 

frequency and ROCOF errors. 



TABLE II.  IMPACT OF MAGNITUDE AND PHASE UNBALANCE ON HIGH-
ACCURACY PMU ALGORITHMS 

Method 
Freq 

[Hz] 

kx 

[%] 

ka 

[°] 

Max Errors 

TVE 

[%] 

FE 

[mHz] 

RFE 

[Hz/s] 

M-

C37.118 

50 

-10 0 
0.0011 

(0.0011) 

1.03 

(1.14) 

0.683 

(0.719) 

-20 0 
0.0024 

(0.0024) 

2.13 

(2.13) 

1.41 

(1.49) 

0 +20 
0.0039 

(0.0039) 

3.36 

(3.89) 

2.23 

(2.45) 

0 +40 
0.0080 

(0.0080) 

7.04 

(7.99) 

4.67 

(5.02) 

0 +60 
0.0125 

(0.0125) 
11.3 

(12.5) 
7.46 

(7.88) 

49 

0 0 
0.0023 

(0.0023) 

0.000 

(0.000) 

0.000 

(0.000) 

-10 0 
0.0042 

(0.0042) 

1.73 

(1.92) 

1.12 

(1.18) 

-20 0 
0.0063 

(0.0063) 

3.59 

(3.97) 

2.33 

(2.45) 

0 +20 
0.0089 

(0.0089) 

5.90 

(6.53) 

3.82 

(4.02) 

0 +40 
0.0159 

(0.0159) 
12.1 

(13.4) 
7.85 

(8.25) 

0 +60 
0.0237 

(0.0237) 

19.0 

(21.0) 

12.3 

(12.9) 

M-SV 

50 

-10 0 
4.5e-4 

(4.5e-4) 

0.0026 

(0.0026) 

0.26e-4 

(0.26e-4) 

-20 0 
9.4e-4 

(9.2e-4) 

0.0053 

(0.0053) 

0.54e-4 

(0.54e-4) 

0 +20 
0.0016 

(0.0015) 

0.0083 

(0.0087) 

0.85e-4 

(0.89e-4) 

0 +40 
0.0034 

(0.0031) 
0.018 

(0.018) 
1.8e-4 

(1.8e-4) 

0 +60 
0.0056 

(0.0049) 

0.028 

(0.028) 

2.9e-4 

(2.9e-4) 

49 

0 0 
0.0000 

(0.0000) 
0.000 

(0.000) 
0.000 

(0.000) 

-10 0 
2.1e-4 

(2.1e-4) 

0.0035 

(0.0035) 

0.36e-4 

(0.36e-4) 

-20 0 
4.4e-4 

(4.4e-4) 

0.0073 

(0.0073) 

0.75e-4 

(0.75e-4) 

0 +20 
7.3e-4 

(7.2e-4) 
0.012 

(0.012) 
1.2e-4 

(1.2e-4) 

0 +40 
0.0015 

(0.0015) 

0.025 

(0.025) 

2.5e-4 

(2.5e-4) 

0 +60 
0.0025 

(0.0023) 
0.039 

(0.039) 
4.0e-4 

(4.0e-4) 

6-TF 49 

0 0 
0.0069 

(0.0069) 

14.3 

(14.4) 

0.000 

(0.000) 

-10 0 
0.0073 

(0.0073) 

14.3 

(14.4) 

0.000 

(0.000) 

-20 0 
0.0077 

(0.0077) 
14.3 

(14.4) 
0.000 

(0.000) 

0 +20 
0.0083 

(0.0083) 

14.4 

(14.5) 

0.014 

(0.012) 

0 +40 
0.0098 

(0.0098) 
14.5 

(14.6) 
0.026 

(0.023) 

0 +60 
0.0114 

(0.0114) 

14.5 

(14.8) 

0.035 

(0.030) 

6-IpDFT 49 

0 0 
0.0000 

(0.0000) 

1.9e-5 

(0.000) 

0.000 

(0.000) 

-10 0 
2.5e-4 

(2.5e-4) 
1.9e-5 
(0.000) 

0.000 
(0.000) 

-20 0 
5.1e-4 

(5.1e-4) 

1.9e-5 

(0.000) 

0.000 

(0.000) 

0 +20 
0.0011 

(0.0011) 
0.302 

(0.302) 
0.186 

(0.186) 

0 +40 
0.0022 

(0.0022) 

0.568 

(0.568) 

0.349 

(0.350) 

0 +60 
0.0032 

(0.0032) 

0.765 

(0.765) 

0.471 

(0.471) 

Except for the slight differences due to the discrete 

differentiators, the theoretical expressions presented in Section 

II.D ensure a good prediction of the errors in the presence of 

unbalance and can help in the design of suitable filters for the 

PMUs. Also in this case, it can be noticed that the IpDFT 

algorithm does not result in exactly zero frequency and 

ROCOF errors: the reason has been previously explained. 

From the analytic expressions, it is possible to see how the 

level of unbalance can clearly affect the frequency and 

ROCOF measurements in practical conditions. For instance, at 

48 Hz (the limit of the P-class frequency range) a 1.6% 

negative sequence component is sufficient, when P-C37.118 

algorithm is used, to violate the limit (0.4 Hz/s) prescribed by 

[3] for the RFE of P-class in steady-state conditions, without 

considering any other disturbance such as input noise or 

residual harmonic distortion. For the M-class, all the limits for 

RFE in case of harmonic or interharmonic disturbances have 

been suspended by the amendment [4], but when the reference 

algorithm is concerned, a 0.5% negative sequence component 

leads, even at nominal frequency and without harmonics, to a 

maximum RFE higher than the 0.1 Hz/s limit for steady-state 

conditions. 

 
Figure 3 - TVE % for high-accuracy algorithms: 𝑓0 = 49 Hz, 

different unbalance conditions. 

 
Figure 4 - FE for high-accuracy algorithms: 𝑓0 = 49 Hz, different 

unbalance conditions. 

IV. CONCLUSION 

The paper presents analytic expressions that allow 

predicting the impact of unbalanced three-phase inputs on the 



performance of different PMU algorithms, designed to 

measure the positive sequence synchrophasor, frequency and 

ROCOF. Four techniques that have recently risen in the 

context of synchrophasor measurements are investigated. Their 

performance in terms of TVE, FE and RFE are assessed by 

means of simulations using the test signals suggested by IEEE 

C37.242-2013 guide. 

The theoretical analysis indicates that the influence of 

unbalance is radically different for each algorithm, depending 

on its capability to reject the equivalent harmonic disturbance. 

All the methods relying on a filtering approach for 

synchrophasor estimation (C37.118, SV and TF algorithms) 

are directly affected by the harmonic pollution induced by the 

negative sequence component due to unbalance. IpDFT 

instead starts from the estimation of frequency and thus the 

influence of amplitude and phase angle unbalance on phasor 

estimation is more cumbersome and becomes more evident in 

case of phase-angle impairments. It is not possible to define a 

general rule, but it is obvious that the choice of filters and 

windows is of crucial importance in this context. 

Frequency and ROCOF measurements are particularly 

sensitive to unbalance (especially to phase-angle unbalance), 

but to a different extent, depending on filter characteristics or 

on the procedure to evaluate compensation terms. The 

presented analytic expressions allow predicting different error 

contributions, thus helping the design of modern PMUs that 

are expected to be employed also in distribution systems, 

where voltages and currents unbalance levels are considerably 

higher. 
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