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This paper describes the way that white noise (including 

quantised input section sampling) imparts errors onto frequency 

and rate-of-change-of-frequency (ROCOF) measurements. The 

main paper focus concerns the use of filtered heterodyned (i.e. 

Fourier) analyses for single-phase and 3-phase systems, and the 

filtered Clarke transform for 3-phase systems. The rules and 

equations governing the effect of white noise on frequency and 

ROCOF are formulated for these techniques, explaining the 

subtle effects of aliasing, splitting signals and noise into their 

positive and negative frequency components, and the correlation 

or de-correlation of noise. It is shown that - as expected - for 3-

phase AC measurements, averaging 3 single-phase Fourier 

measurements produces the same performance against noise as 

using a method based on Clarke’s transform, if identical filtering 

is used. Furthermore, by understanding the theory behind the 

frequency and ROCOF measurement processes, it is shown that 

to achieve the lowest RMS errors, in the presence of front-end 

white noise (alone, ignoring other dynamic signal and power 

quality aspects), a filter which provides ~40 dB/decade 

attenuation (i.e. a 2-boxcar cascade) is recommended for a 

frequency measurement, but a filter which rolls off at ~60 

dB/decade (i.e. a 3-boxcar cascade) is recommended for a 

ROCOF measurement. 

Keywords— Frequency measurement, Frequency estimation, 

White noise, Gaussian noise, Colored noise, Signal to noise ratio, 

Power system measurements, Finite impulse response filters, 

Fourier transforms, Phasor Measurement Units. 

I. INTRODUCTION. 

Frequency has always been, and will continue to be, a key 

parameter within AC power systems. Measurement of 

frequency is required both within frequency and active-power 

control loops, to despatch generators, storage and/or loads, and 

also within protective devices to monitor over-or-under-

frequency events. ROCOF (Rate of Change of Frequency) has 

been historically important as a measurand for protective 
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devices which attempt to determine unintentional islanding 

events. However, the measurand ROCOF is now finding many 

new applications within power systems containing high 

penetrations of renewables and other converter-connected 

devices such as DC links, storage devices, electric vehicles, 

and industrial loads. For example, the GridMetrix [1] system 

attempts to estimate system inertia using a network of 

distributed phasor measurement units (PMUs) which need to 

make accurate ROCOF measurements. 

While the amplitude and phase of an AC signal are 

relatively easy to determine, to usable accuracies, using short 

time windows such as 1 or 2 cycles, the determination of 

accurate frequency and ROCOF is much more problematic. 

Noise and imperfections of the AC power quality (particularly 

interharmonics) can have a dramatic effect on measurement 

accuracy [2]. This is because frequency is determined from 

phase via a differential against time. The transfer function of 

differentiation has a gain that linearly increases with frequency, 

amplifying the effects of unwanted wideband noise and other 

interferences that occur at frequencies outside the passband. 

ROCOF is calculated via an additional differentiation from 

frequency, further exacerbating the problems. 

This paper focusses on the effects of front-end white noise, 

introduced by analogue instrumentation, and ADC (Analogue 

to Digital Converter) quantisation effects. These introduce 

white or “nearly white” noise into the digital measurement 

process. They can result in an excessively noisy frequency 

measurement, and a ROCOF measurement in which the actual 

ROCOF magnitude is often swamped by noise, with 

measurand SNR < 0 dB [1]. Previously, [3] analysed this issue, 

but only considered rectangular filter windows and 

consequently made very pessimistic estimates of performance. 

The analysis was extended to include other windows in [4], but 

the effect of windowing was determined by time-domain full-

algorithm Monte-Carlo simulation, rather than analytically. 

Frequency-domain methods to analytically consider 

filter/window design were briefly presented in [5]. 

This paper builds on [5], presenting a more rigorous 

description of the practical effect of noise. The paper provides 



new formulations of the errors; formulations which are the 

analytical tools required to quickly (without simulation) 

estimate the resulting noise on frequency and ROCOF 

measurement, for given sampling and measurement processes, 

and for any filter/window design. This de-risks the selection of 

important device parameters like sample rate, analogue SNR 

(signal-to-noise ratio), ADC resolution, aperture jitter, input 

scaling, and filter design. The understanding gained through 

the development of these tools also has an additional benefit; it 

is now possible to suggest “optimal” filters which provide the 

best performance against white noise. 

This paper concentrates on the use of two common 

techniques used within 3-phase AC power systems: filtered 

heterodyned phase-by-phase (DFT, Discrete Fourier 

Transform) analyses, and the filtered Clarke transform. The 

rules and equations governing the effect of white noise on 

frequency and ROCOF are formulated for these techniques, 

explaining the subtle effects of aliasing, splitting signals (and 

noise) into their positive and negative frequency components, 

and the correlation or de-correlation of noise. Zero-crossing 

and phased-locked-loop techniques are also considered for 

comparison. 

II. THE HETERODYNE PROCESS 

The classic way to measure a single-phase AC power 

system fundamental carrier component is to use a heterodyne 

process followed by a filtering stage. The combination of these 

two components forms a Discrete Fourier Transform (DFT) 

which reveals the amplitude and phase of the input waveform, 

at the tuned frequency fT of the heterodyne quadrature 

oscillator. An overview of the process is show in Fig. 1. 

In Fig. 1, a single real signal enters at point A. The real 

signal hopefully has a dominant fundamental sinusoidal carrier 

at a positive frequency fC. It will also contain white noise due 

to analogue components and ADC quantisation, and other 

signals at harmonic or inter-harmonic frequencies. Dealing 

with these other components is outside the main scope of this 

paper, but it is discussed in [6]. In the context of this paper, 

the components of primary interest are the carrier at frequency 

fC and noise components at frequencies fN. To understand and 

quantify the interaction of these components at point E, the 

impact on the measurement V, it is necessary to examine very 

carefully the entire process through points A, B, C, D and E. 

 
Fig. 1 The heterodyning and filtering process 

Consider a single positive-frequency real-valued signal 

component entering at point A of Fig. 1, with an RMS 

magnitude of ARMS. 

   ftAtV RMSA 2cos2  (1) 

Between point A and point B of Fig. 1, a mathematical 

decomposition of this real signal effectively occurs. This is not 

a physical splitting, merely a different mathematical way of 

considering the signal, split into its positive and negative 

frequency components, as a pair of complex exponentials. It is 

easy to become confused at this point, thinking that the signal 

has been split into two parts, each with half the amplitude and 

one quarter of the original power. But, this is not true. The two 

split signals can still be reconsidered to re-combine back into 

the form of (1), interfering constructively since they are 

entirely correlated. 
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Between points B and C, a quadrature oscillator is applied, 

which is tuned to a frequency fT. Therefore, at point C of Fig. 1: 
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In a well-designed application, frequency-tracking is 

employed, and fT is set equal to the wanted carrier fundamental 

frequency fC. 

CT ff   (5) 

This results in one of the complex exponentials due to the 

carrier falling at (fC - fT) = 0 Hz, i.e. having a steady-state 

phase, and the other one (called the image) having a frequency 

of (-fC - fT) = -2 fC = -2 fT. This will be filtered out later by H(f), 

which is normally designed to place deep notches at ±2 fT. 
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The magnitudes of the complex exponentials are not 

changed between points B and C. Only their frequencies are 

shifted downwards by fT. Also, a key point of understanding is 

that the two signal parts of each pair become de-correlated, and 

cannot be recombined into the form (1). If one of the carrier 

components is later removed through filtering, it does represent 

a genuine halving of the carrier amplitude, with apparent loss 

of ¾ of the power: a signal loss of 6 dB. 

Between point C and point D of Fig. 1, a gain of k = √2 is 

shown. Other values could be used, with no changes to the 

final results of this paper, since both carrier and noise will be 

affected equally. However, k = √2 is the most convenient 

choice since it produces phasors at point D with magnitudes 



that are equal to the RMS amplitudes of the corresponding real 

input signals at point A: 
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The final stage of the process, between points D and E of 

Fig. 1, is a filter, with frequency response H(f). This filter has 

unity gain at 0 Hz, but is designed to reject the image 

component at -2 fT, and also to reject wideband noise and any 

other unwanted out-of-band interference components. H(f) 

could be an IIR (Infinite Impulse Response) or a FIR (Finite 

Impulse Response) filter. However, FIR filters are particularly 

useful since deep notches can often conveniently be placed at 

the image frequency, and linear phase response can be 

achieved. In particular, the use of a rectangular (boxcar) filter 

as the Dirichlet kernel results in Fig. 1 becoming a 

conventional rectangular-windowed DFT. However, much 

more complex windows and filters can be applied, with 

responses and latencies tailored to a particular application. In 

this paper, FIR filters are created by cascading tunable boxcar 

filters together to provide effective image and harmonic 

rejection, even while frequency varies from nominal. Some of 

the concepts were laid down in [7], although the method we 

use is unconditionally (not marginally) stable, allows the use of 

windows that are non-integer numbers of samples, and allows 

the use of floating-point arithmetic without overflow or loss of 

precision. The method used is described in [8-10] and operates 

extremely quickly in real-time [11]. To include the adaptive 

tuning of fT to the measured value of fC in Fig. 1 also requires a 

careful breaking of the feedback loop so that the system does 

not inherit a resonant IIR property like a PLL (Phased Locked 

Loop). This is achieved using the “TickTock” method 

described in [12]. 

The heterodyne process between points A and C of Fig. 1 

can be explained visually using Fig. 2 to Fig. 4, which show a 

frequency-domain representation of the signal-splitting and 

heterodyning process when there are two discrete signal 

components present in the real-valued sampled signal: a carrier 

fundamental at +fC, and a single noise or interference 

component at +fN. The heterodyne oscillator is set so that 

fT = fC. 

Fig. 2 shows the two real-valued signals with positive 

frequencies +fC and +fN. Fig. 3 shows the signals split into two 

pairs of complex exponentials with both positive and negative 

frequencies, and halved amplitudes. 

 

 

Fig. 2 A carrier at frequency fC(=fT) and noise at fN: signal considered as 

real, with only positive frequency components, at point A of Fig. 1. 

 

Fig. 3 A carrier at frequency fC(=fT) and noise at fN: signals split into 

complex positive and negative frequency components with halved amplitudes 
at point B of Fig. 1. 

 

Fig. 4 Heterodyning of a carrier at frequency fC(=fT) and noise at fN: 

heterodyning applied to shift all complex components down in frequency by 

fT, at point C of Fig. 1. 

 

Fig. 4 shows the total expected content of the complex 

signal VC in this scenario. The wanted measurement result 

contains only the component at 0 Hz, which represents a 

steady-state phasor measurement of the carrier. The function of 

filtering is to remove the unwanted components, in particular 

the image at (- fC - fT) which has the same amplitude as the 

component at 0 Hz, and also, most relevantly for this paper, at 

all frequencies other than 0 Hz, where noise components can 

and will fall. 

III. NOISE SOURCES AND SPECTRAL DENSITY 

When a signal is sampled with an ADC, the digitised signal 

contains the wanted signal, plus noise which arises via four 

mechanisms. The noise degrades the Signal to Noise Ratio 

(SNR) from infinity, to some finite number expressed in dB. 

Firstly, all analogue input circuitry introduces a level of 

unavoidable white noise. Second, some applications apply 

ADC dithering techniques to improve linearity, which 

deliberately add white noise to the analogue signal. Third, the 

signal is quantised as it is sampled by the ADC, and assigned a 

digital value. The ADC quantisation is (in theory) perfect, but 

in reality also exhibits some level of INL (Integral Non-

Linearity) and DNL (Differential Non-Linearity). The fourth 

consideration is the ADC clock aperture jitter. Its effect can be 

estimated by [13]: 

 RMSCJitterdB tfSNR  2log20  (8) 

where tRMS is the ADC clock aperture jitter (which should be 

much smaller than, and distinguished from, clock accuracy & 

wander). In most commercial power system applications, noise 

due to jitter is acceptably low, since fC is low (50-60Hz), and 

typically tRMS < 1 ns. For example the AD7863 ADC has an 

aperture jitter of 50ps [14], equating to a SNR of ~156 dB 

which is high, so that its effect is insignificant to other noise 

mechanisms. However, clock jitters at 30ns or above [15] may 

have a noticeable impact on system performance. 

The combined effect of all four mechanisms need to be 

considered, to estimate overall SNR for the sampling front end. 

Then, the following equation can be used to translate between 

SNR and ENOB (the Effective Number of Bits) [5, 14, 16, 17]: 



76.102.6  ENOBSNRdB
   dB (9) 

A sampling process with N bits will always have 

ENOB ≤ N, by a quantity dependent on the analogue noise, and 

ADC imperfections. Some ADCs provide a pre-calculated 

estimate of inherent ENOB (e.g. [14]), which account for 

several of the mechanisms, at least in part. However, the 

ENOB may be further degraded in the final application, due to 

analogue sensors, cables, circuits or amplifiers in the signal 

chain. 

By convention, quoted ENOB values assume that the 

measurement signal spans the full ADC range. However, in a 

practical application this is often not the case. ADCs need to be 

scaled so that they can capture signal amplitudes larger than 

nominal without clipping. At the same time, the most 

challenging measurement conditions include those where the 

signal amplitude is smaller than nominal. In these cases, the 

practical SNR is degraded, by: 
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Where AFullScale is the maximum amplitude which can be 

measured without clipping, and AActual is the actual signal 

amplitude. 

For example, if a 16-bit ADC has an ENOB of 15, due to 

all the first four mechanisms, and the ADC is configured to 

allow a signal at 125% of nominal amplitude to be sampled 

without clipping, but the actual signal is at 80% of nominal 

amplitude, then the practical SNR will be: 
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which is a SNR of 88.2 dB. This example value is used for 

investigations in section XI. 

In a scenario with a known (or estimated) SNR, at a 

sampling frequency fS, the relative power spectral density of 

noise LdBc(f) can be evaluated as [5, 16, 17]: 
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LdBc(f) describes the relative level of noise compared to the 

carrier, and quantifies a constant white-noise density, across 

the whole positive-frequency interval between 0 and fS/2 

(Nyquist). LdBc(f) can be used to derive L(f), a linear noise 

power density, relative to a carrier with power 1, with units of 

1/Hz, by: 
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Furthermore, the RMS noise amplitude density (relative to 

a carrier with unity RMS amplitude) can be expressed as: 

RMS Noise Amplitude Density  fL  Hz1  (14) 

This means that if the RMS carrier amplitude is 1 at the 

ADC output, then the RMS noise amplitude density is  fL  

across the frequency range 0 < f < fS/2. 

A. The effect of white noise between points A and C 

Fig. 5 shows the rectangular shape of the noise amplitude 

density with units of √(1/Hz). Every individual noise frequency 

component in Fig. 5 can be considered in the same way as the 

component fN in Fig. 2, and how it maps onto Fig. 3. As each 

noise component in Fig. 2 is a real positive-frequency sine 

wave (1) it can be regarded as being composed of two equal 

exponential components at positive and negative frequencies 

+fN and -fN, each exponential component reduced in amplitude 

by half (2). This is shown in Fig. 6. The relative noise 

amplitude density at each frequency over -fS/2 < f < +fS/2 is 

  2/fL . But, even though it is noise, for every fN, the pair 

of signals at ± fN are still correlated with each other at point B. 

 
Fig. 5 Noise considered as real, with positive frequency only, at point A 

 
Fig. 6 Noise amplitude density split into complex components with positive 
and negative frequencies at point B 

B. De-correlation of noise through heterodyning 

However, the action of the heterodyning process (Fig. 7), 

with fT set to anything other than 0 Hz, causes a de-correlation 

of the decomposed positive and negative frequency noise 

components. They are no longer at  ±fN, but -fN - fT and +fN - fT, 

so they cannot be considered to recombine by linear addition 

(e.g. by reversing (2) to (1)) to produce a single real sinusoid at 

frequency fN, at the original amplitude at point C of Fig. 1. The 

decomposed and heterodyned components form a de-correlated 

set of exponentials across the range -fS/2 < f < +fS/2, with 

relative amplitude density   2/fL . The effect of aliasing 

also plays a part in the de-correlation. 



 
Fig. 7 De-correlation of complex noise components by heterodyning (and 

aliasing) at point C 

 

After the noise components have been de-correlated 

through heterodyning with fT ≠ 0, they must be recombined as 

the root-sum-of-squares (RSS) of the amplitudes. 

C. The noise level at point D of Fig. 1, just before filtering 

By considering the findings thus far, it is now possible to 

say that for a sinewave carrier with RMS amplitude 1 entering 

at point A of Fig. 1, the wanted component of it (heterodyned 

to 0 Hz) which appears at point D will have an exponential 

(phasor) amplitude 1. At the same time, the exponential 

(phasor) amplitude density of noise, at all frequencies in the 

range -fS/2 < f < +fS/2, will be  fL , because the system gain 

through the process from point A to point D, via (1) - (7),  is 

identical for the carrier and all individual noise components, if 

fT ≠ 0. 

IV. ERRORS DUE TO A SINGLE FREQUENCY COMPONENT 

AFTER HETERODYNING 

In this section, expressions are derived which can later form 

the kernels of integrations across frequency, in order to 

determine the overall RMS frequency error (FE) and ROCOF 

error (RFE) on the measurand V in Fig. 1. 

Consider the real-valued input carrier at +fC with RMS 

amplitude 1 entering at point A of Fig. 1. After the 

heterodyning and filtering action of H(f), the image component 

is rejected and the carrier emerges at points D and E of Fig. 1 

as a complex exponential with magnitude 1. Assuming fT = fC, 

the carrier at E has a constant phase that can be written as ϕ. 

Now consider any heterodyned component of noise at 

positive or negative frequency fN in Fig. 7. The relative 

magnitude density of this complex exponential at point D of 

Fig. 1 will be will be   HzfL 1  as previously described. To 

analyse the effect of this on the measurements, we consider a 

small frequency segment of width δf in the region of fN, and 

consider the effect of the noise over fN ± δf/2 to be concentrated 

at fN. The magnitude of the resulting complex exponential, 

centred at fN, can therefore be written as M, which essentially 

results in a modulation of the carrier. 

   M M f L f f    (15) 

Since L(f) is constant across f for the special case of white 

noise, we can allocate a constant value M which is valid for all 

f, and is not a function of f. However, between points D and E 

of Fig. 1 the modulation due to noise will be attenuated by 

H(f). The above two paragraphs allow the following equation 

to be written which accounts for both the carrier and a single 

complex exponential due to a “spot” noise frequency in the 

region -fS/2 < fN < fS/2, over a small noise bandwidth δf: 
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This simplifies by (5) ((fC-fT) = 0), and H(0)=1: 
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The examination of error is easiest done by considering the 

deviation of V from its “nominal” value of: 

j

Nom e1V  (18) 

To do this, a new value ΔV is defined by referencing V to 

VNom, so that ΔV, in the presence of zero noise, would be a 

fixed phasor of value (1+0j). ΔV becomes a phasor of nominal 

value (1+0j), plus the interfering circular trajectory caused by 

the noise modulation: 

NomVVV /  (19) 
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Fig. 8 Phasor ΔV when a single noise or interfering component is added. 

 

A phasor diagram representing ΔV can be drawn as Fig. 8. 

ΔV can be expanded: 

    

    







tffffjMH

tffffMH

CNTN

CNTN

2sin

2cos1V
 (21) 

    

    







22cos

2cos1

tffffjMH

tffffMH

CNTN

CNTNV  
(22) 

This shows that every single complex exponential noise 

component, when considered individually, equates to both AM 

(Amplitude Modulation) and PM (Phase Modulation) of the 

carrier, simultaneously, with the PM effect lagging the AM by 

90 degrees [5]. 

A. Phase, Frequency and ROCOF error due to a single 

complex noise component 

To determine the frequency error resulting from an individual 

noise component, the assumption is made that the noise is 

small compared to the signal, so that M << 1, which is 

reasonable if SNR is in the usual ranges. In this case, the AM 

contributes nothing to the perception of phase on ΔV, but the 

PM component does [5, 6]. 



The phase perturbation of ΔV, due to just this single noise 

component, will be an amount Δϕ which can be expressed as: 

      tffffMH CNTN 2sin  (23) 

Evaluating the frequency error (FE) and ROCOF error (RFE) 

can now be done by differentiating phase and subsequently 

FE. 
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Therefore the amplitudes of FE and RFE, due to a single 

complex exponential noise or interfering component, are: 
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V. OVERALL FE AND RFE FROM HETERODYNED 

MEASUREMENTS 

Following all the above arguments, it is now possible to 

write expressions for the total expected RMS FE and RFE after 

a heterodyned and filtered measurement of a single-phase real 

sinusoidal carrier. 

The expression (31) for RMS FE is formed by examining 

the cumulative effect of every individual real noise signal 

component at frequency fN, over the positive-frequency noise 

range 0 < fN < fS/2, using (29) and (15) to determine the effect 

of each small segment of noise contribution δf, and being 

careful to use an RSS analysis since the noise components are 

de-correlated by the heterodyne process. The expression (32) 

for RMS RFE is similarly constructed using (30) and (15). 
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(32) 

The function A() in (31) and (32) refers to the potential 

aliasing of a sampled waveform onto a different frequency 

during the heterodyne process and can be evaluated as: 
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In (31) and (32), it is assumed that the heterodyned carrier 

image component at (-fC - fT) is completely removed by the 

filtering. If this is not so, the “spectral leakage” term can result 

in large FE and RFE errors. On the assumption that the 

heterodyne stage is tuned so that fT = fC, then (31) and (32) can 

be shortened by writing: 
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The accurate expressions (35) and (36) have a slightly 

different form than those given in [5]. The most obvious 

difference is that the action of heterodyning is fully accounted 

for in (35) and (36), with an individual treatment of positive 

and negative frequencies, whereas [5] makes an 

approximation that (fT = fC) << fN. To better compare the 

predictions, modify (35) and (36) by adding the assumption 

that (fT = fC) << fN. In this case: 
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Both (39) and (40) predict RMS FE and RFE errors which 

are half the magnitude of the expressions in [5]. 

A. Three-phase heterodyned measurements 

The frequency and ROCOF of a set of N, independent, real-

valued sinusoids with the same frequency can be determined 

by making N independent measurements and averaging the 

results. If the sinusoids are independent, their noise is not 

correlated and the resulting FE and RFE will be reduced by 

1/√N. So, in the case of a three-phase measurement set, the 

expected errors will be (35) and (36) divided by √3: 
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In this paper, the expressions for errors contain integrations 

across the Nyquist range of frequencies, as continuous integral 

expressions. In practice, discrete numerical integration 

expressions are more convenient to evaluate. For example, the 

expression (42) can be approximated by choosing an interval 

Δf << fS and then evaluating the following (or similar) using a 

computer, where m2 = (m + ½) to slightly enhance accuracy: 

 
   

1
2

2
2

2 2

0

2
3

Sf
f

m

L f
RFE m f H m f f

      



     
(43) 

VI. CLARKE (AND PARK)TRANSFORM METHODS 

If a 3-phase set of signals is to be measured, which contains 

a dominant positive-sequence component, then the frequency 

and ROCOF can be measured directly using a Clarke transform 

approach. The dominant positive sequence signal set (with 

RMS magnitude A on each phase) is given by: 

 
T

RMSA 


























3

2
cos

3

2
coscos2





abcV  (44) 

The Clarke transform, which maps the three positive-

sequence signals onto the 2-dimensional vector Vαβ, is: 
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(45) 

In (45), the Clarke transform gain is such that the signal set 

Vabc, with the positive sequence having RMS magnitude ARMS 

on each phase, results in a steady-state value of 
RMSAαβV . 

Meanwhile, the RMS noise on Vαβ can be assessed directly by 

considering the RMS noise on Va, Vb & Vc and how these noise 

components pass through (45). 

There is no heterodyning (frequency translation) during the 

Clarke transformation process. Therefore, there is no 

decorrelation of either fundamental signal or noise components 

due to a frequency translation. Hence, an analysis of wideband 

noise contribution needs to consider only the positive-half of 

the frequency span 0 < fN < fS/2, over which the relative RMS 

noise amplitude density is   HzfL 1  (Fig. 6 top). While 

the noise is correlated with itself between positive and negative 

frequencies on each of the three signals, the noise is not 

correlated between the three signals. So, the addition of the 

noise contributions from the three phases needs to be 

considered on an RMS basis. 

The simplest way to describe the effect on frequency and 

ROCOF measurement is to consider the example snapshot in 

time when ϕ = 0. Other times could be used with the same 

result, but requiring a more complex mathematical description. 

At ϕ = 0, the expected result if the fundamentals have RMS 

amplitude 1, is Vαβ = 10. The expected measured phase of 

Vαβ is ϕ = 0. Any error in measuring this phase contributes to 

frequency and ROCOF error. The analysis proceeds with a 

similar argument as (23)-(30). Assuming the noise L(f) << 1, 

then the error on Vα = Re(Vαβ) contributes essentially nothing 

to the error. However, the RMS noise error in phase Δϕ will be 

exactly equal to the RMS noise on Vβ = Im(Vαβ), i.e. 

Δϕ = Vαβ ≈ Vβ, since Vαβ ≈ Vβ if Vα ≈ 1 and Vβ << 1. On this 

basis, the noise Δϕ can be expressed in a form, which also 

considers the filtering H(f): 

   NN fHtfM   2sin  (46) 

The value for M (valid across 0 < fN < fS/2) is calculated via 

the RMS noise amplitude density on Vβ (45): 
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The value of M is then determined by simplifying the peak 

error value of the error on Vβ, and accounting for a finite 

frequency segment δf: 
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Finally, by a parallel and similar process to (16)-(30), and 

considering only 0 < fN < fS/2: 
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In terms of performance against noise, (49) & (50) show 

that the errors from a Clarke transform approach will be the 

same as the errors from averaged three-phase heterodyned 

measurements (41) & (42), if the same filter is used. 

Additionally, should a Park transform be used instead of the 

Clarke transform, then so long as a quasi-static frequency 

estimate is used to define the rotating reference frame, the Park 

transform result sensitivities to noise will be identical to those 

of the Clarke transform. This is because the Park transform can 

be easily derived from a Clarke transform, by referring it to a 

rotating frame. 

VII. OTHER METHODS 

A. Use of Zero Crossings 

Compared to all but the simplest rectangular-windowed 

Heterodyne or Clarke/Park-transform methods, the results from 

zero-crossing measurements are noisy. This is because most of 

the waveform samples, including the samples with biggest 

amplitude and highest SNR, are not included in the analysis. 



Also, the options for filtering are limited. For example, taking a 

1-cycle zero-crossing measurement, and averaging it with the 

next 1-cycle one, will produce an identical answer to that 

obtained by carrying out a 2-cycle analysis in the first place. 

This is because the zero-crossing time evaluated at the end of 

the 1st cycle is shared and correlated between the two 

measurements. It is possible to update the measurement results 

every half cycle, using a rolling window of length N cycles, 

and allowing both positive-going and negative-going zero-

crossings to bound the window. 

A model to approximately predict FE and RFE from such 

zero-crossing methods has been developed. The noise 

correlation mechanisms are more complex than for 

heterodyned or Clarke/Park-transform measurements. The 

model is therefore lengthy to describe, even though it does not 

account for all the correlation mechanisms in perfect detail. 

Since the zero-crossing measurement technique is ultimately 

not as effective as the others, and due to space considerations, 

the model is not presented in this paper. 

B. Use of Phased-Locked-Loops (PLLs) 

PLLs have historically been used to synchronise sampling 

in (for example) power-quality analysers, by locking on to the 

mains frequency. PLLs are also commonly used within the 

control loops of power converters. However, their performance 

as frequency and ROCOF measurement devices is known to be 

relatively poor [9, 18]. Most fundamentally, the closed loop of 

the PLL structure means that it responds as an infinite impulse 

response (IIR) device, with a damped resonance at some 

frequency. The IIR response deviates significantly from 

anything which could be related to a rectangular FIR window 

possessing low ENBW (Effective Noise Bandwidth) 

properties. The passband width is very wide compared to the 

effective latency. While not the focus of this paper, 

comparative results from 5 different PLL arrangements, shown 

in Table I, are presented. Equivalent performance can be 

realised by using a 3-phase PLL, or the average of 3 single-

phase PLL outputs, if equivalent controller gains are applied. 

Therefore, while 5 PLL configurations were considered, there 

are only three distinct results, named P1, P2 & P3 in Table I. 

We used single-phase PLLs and three-phase PLLs from the 

MATLAB® “Simscape Power Systems” blockset (present and 

past versions). P1 and P2 have controllers of the “PID” variety 

with a differential damping term. P3 is the classic “Type 2” 

PLL containing a “PI” controller. “Type 3” PLLs which 

include controller terms in s-2 were not explicitly examined 

since their response to dynamic events such as phase steps (a 

common occurrence in power systems) is reported to be even 

worse than “Type 2” [19]. All these PLLs also contain a single-

cycle tunable boxcar filter within the control loop, and an 

additional 2-pole low-pass filter with fC = 25 Hz and ζ = 0.707, 

which post-filters the PLL loop frequency before output. 

Ramp-rate filters were disabled since these nonlinear devices 

can impart bias on the output in the presence of inter-harmonic 

components. 

TABLE I PLL EXAMPLES USED FOR COMPARISON 

 Controller 
{Kp, Ki, Kd} and τ 
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I D
P

K K s
C s K

s s
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

 

Resonant 
peak 

Gain & 
Phase 

Margins 

P1 : 3-Phase PLL {180, 3200, 1} and 0.0001 4dB 27Hz 10dB, 40° 

P2 : 3-Phase PLL {90, 1600, 0.5} and 0.0001 2dB 6Hz 16dB, 56° 

P2 : 3x 1-Phase PLLs {180, 3200, 1} and 0.0001 2dB 6Hz 16dB, 56° 

P3 : 3-Phase PLL {60, 1400, 0} 11dB 18Hz 4dB, 18° 

P3 : 3x 1-Phase PLLs {120, 2800, 0} 11dB 18Hz 4dB, 18° 

VIII. LATENCY OF THE METHODS 

The latency of the heterodyned and Clarke/Park-transform 

methods (excluding calculations and communications) is equal 

to half the filter window time length. Since the measurements 

are not tied to zero crossings, a new measurement output can 

be produced every time a new sample arrives, and the practical 

measurement latency can be close to the theoretical value.  

By comparison, a zero-crossing frequency measurement 

obtained across a base window of N cycles is constrained, in 

that it can only produce a new result when a zero crossing 

occurs. This means that the latency varies with time in a saw-

tooth fashion. Additionally, to derive ROCOF from the 

frequency requires differentiation using 2 samples obtained 

from the base window at the update rate, which could be every 

1 or ½ cycle. Table II describes the options for latency. 

TABLE II COMPARISON OF LATENCY OF FREQUENCY AND ROCOF 

MEASUREMENTS, FOR A BASE WINDOW OF TIME LENGTH N CYCLES 

 
Minimum 

latency 

Maximum 

Latency 

Average 

Latency 

Heterodyne: 
Frequency and ROCOF 

N/2 N/2 N/2 

Clarke/Park transform: 

Frequency and ROCOF 
N/2 N/2 N/2 

Zero crossing, update every cycle: 

Frequency 
N/2 N/2+1 N/2+½ 

Zero crossing, update every cycle: 
ROCOF 

(N+1)/2 (N+1)/2+1 N/2+1 

Zero crossings, update every ½ 

cycle: 

Frequency 

N/2 N/2+½ N/2+¼ 

Zero crossings, update every ½ 
cycle: 

ROCOF 

(N+½)/2 (N+½)/2+½ N/2+½ 

 

The useful latency of the frequency and ROCOF 

measurements at a PLL output are significant, but hard to 

quantify, due to the IIR oscillatory nature of the impulse and 

step responses in the time domain. While the group delay 

evaluated from the frequency-domain response is relatively 

low at ~0.02 s, the real-world latency for designs P1-P3 in 

Table I is estimated from the time-domain response in this 

paper as 5 cycles (100ms). 



IX. SELECTING THE BEST FILTER WINDOW FOR FREQUENCY 

AND ROCOF MEASUREMENTS 

While (35)-(42) and (49)-(50) provide useful mathematical 

expressions through which to predict the error magnitudes, it is 

also illuminating to perform a more intuitive analysis, which 

leads to a fundamental “prediction” of the best filter/windows 

to use for frequency ROCOF measurements. It is well known 

that in the presence of white noise spread evenly across the 

whole Nyquist band (e.g. Fig. 6 lower), the lowest-noise direct 

measurement of signal amplitude or phase, for a specified 

window length, would be achieved by using a rectangular 

boxcar window, since it has the lowest ENBW [20]. However, 

the frequency measurement requires differentiation of phase. In 

practice, the differentiation can be implemented digitally over a 

short 2-sample window, but, for the sake of understanding only 

(not the actual measurement algorithm), can here be 

approximated by the continuous-time Laplace operator s. 

The differentiation is a part of the measurement filter chain. 

If this chain is linear, then the order of the filter components 

can be adjusted without affecting the final result. So, instead of 

being the last part of the chain, the differentiation stage can be 

considered to apply before the main filter windowing, at point 

C or D in Fig. 1. On that basis, the differentiation step applies a 

colouring to the noise, through the application of s = j2πf. 

Essentially the noise can be considered to be modified to a 

shape such as Fig. 9. 

 
Fig. 9 Noise coloured by a single differentiation s = j2πf. 

 

Logic would then dictate that the lowest noise output would 

then be obtained by de-colouring the noise by a filter with a 

response equal to (1/s) (rolloff 20 dB/decade), and then 

following with a rectangular boxcar window which has the 

lowest ENBW for white noise. The de-colouring filter (1/s) 

cannot be exactly implemented, since it is an unbounded 

integration. However, a bounded integration over finite time 

can be implemented. It is, of course, a rectangular boxcar 

window with a rolloff of 20 dB/decade. This suggests that 

while a single boxcar filter has the best ENBW for a normal 

measurement, when the measurement result is differentiated, 

the best filter will be a cascade of two boxcar filters, with a 

rolloff of 40 dB/decade, and intuition would suggest that the 

filtering is likely to be the most effective if the boxcars are of 

equal length. A similar filter with ~40 dB/decade rolloff should 

also give good performance. 

The same argument can be extended to the ROCOF 

measurement, which requires 2 stages of differentiation, by s2. 

This colours the noise even more (Fig. 10), as the noise rises at 

40 dB/decade. However the colouring can be largely “undone” 

by applying 2 boxcars, which have a combined rolloff of 

40 dB/decade. Added to the single boxcar required to provide 

the main filter, this suggests that the best filter to use for 

double-differentiated measurements like ROCOF is likely to be 

a cascade of 3 equal-length boxcar filters, with a total rolloff of 

60 dB/decade. Other filters with the same ~60 dB/decade 

rolloff will also be competitive. 

 
Fig. 10 Noise coloured by a double differentiation s2 = -4π2f2. 

X. GAUSSIAN VS QUANTISATION NOISE 

The predictions of errors for Heterodyned and Clarke/Park-

transform methods, using the methods in sections V and 0, 

assumes that each sample is subject to Gaussian (white) noise 

that is uncorrelated between samples. The validity of this 

assumption depends upon whether the noise is composed of 

genuine white noise (e.g. from analogue circuitry, imperfect 

ADC linearity, or deliberate ADC dithering), or ideal 

quantisation errors due to perfectly linear ADC behaviour. In 

reality, front-end noise will be composed of a mixture of the 

two. For Heterodyned and Clarke/Park-transform methods, the 

actual FE and RFE is found to be mostly independent of the 

exact format of the noise, since there are many samples per 

cycle. However, a special case can occur if the noise is 

dominated by ADC quantisation (including static INL and 

DNL performances), with negligible analogue noise 

contribution, and the sample rate is an exact multiple of the 

signal fundamental frequency, and the input signal waveform is 

entirely steady-state. In this corner case the noise can 

concentrate at particular frequencies [16, 17]. If the digital 

filter places a zero near any of those frequencies, the noise can 

be highly attenuated, and errors reduced. However, in practice 

this scenario is highly unlikely to occur, and, if it does, the 

errors are reduced, not increased. 

The errors from zero-crossing methods are much more 

dependent on the exact scenario, due to the small number of 

samples used and potential correlations. The predictions and 

simulations for FE and RFE from zero-crossings, for the same 

SNR and sample rate, show a strong dependence on exactly 

how the noise is split between white and quantisation types, the 

fundamental frequency, and the precise time of the 

measurement. 

XI. COMPARISON OF PREDICTIONS AGAINST SIMULATIONS 

To compare the predictions against reality, fundamental 

signals at frequencies close to 50 Hz were synthesised at a 

10 kHz sample rate. Noise was added to the signals 

representing SNR=88.2dB. The simulations were carried out 

twice for each algorithm/window/filter and frequency: firstly 

using white noise, and then again using noise which is due to 

perfect linear quantisation, and contains more (but probably 

inconsequential in a practical application) quantisation 



correlations. All the algorithms are coded in Simulink/C so that 

they can be built/compiled for execution in real-time on 

suitable target platforms. However, the results shown are 

derived from desktop simulations, and presented in Table III. 

The agreement between predictions and simulations is 

reasonable, typically within 10% and often less than 5%. The 

performance of the three-phase Clark-transform algorithm is 

shown to be exactly equivalent to the three-phase heterodyned 

measurements, for equivalent filtering, as predicted. In general, 

there is little marked difference between results using white 

noise, and results using purely quantisation noise. However, 

there are two exceptions from these generalisations: 

1) The FE, and particularly RFE, for heterodyned and 

Clarke/Park transform methods, is lower than predicted by 

up to 35% when the shortest single-cycle single-boxcar 

window is used. This is probably because each digital 

differentiation uses a 2-sample window and provides a tiny 

bit of additional filtering. These same single-boxcar 

measurements possess large FE and RFE, and are not 

recommended for frequency or ROCOF assessment. 

2) Zero errors can be recorded for algorithms which use a 

single boxcar filter of length 2 cycles, or the 2-cycle zero-

crossing algorithm, for fC = 50.1253 Hz, when the noise is 

modelled as perfectly quantised. This is due to perfect 

correlation of the quantisation noise, as discussed above, 

and is unlikely to be observed in practice. 

To further examine the effects of algorithm and filtering 

options, predictions and simulations are carried out for the 

three-phase algorithms using a wider range of window lengths 

(up to 12 cycles) and filter designs, at the single frequency 

fC = 50.033 Hz. The predicted errors continue to match the 

simulations, generally within 5%, with occasional outliers. All 

the simulated results are summarised on Fig. 11 (FE) and Fig. 

12 (RFE). The Clarke/Park and heterodyned measurements are 

labelled with the cascaded boxcar lengths, in cycles, within {} 

brackets. The zero-crossing measurements are labelled Zn:1 

and Zn:½, where n is the base window length in cycles, and the 

1 or ½ signifies a 1-cycle or ½-cycle update rate. 

Fig. 11 verifies that for a given latency, the best results are 

always obtained by using a Clarke/Park or heterodyned 

measurement using a filter which consists of 2 cascaded 

boxcars, of roughly equal lengths, with a rolloff of 

~40 dB/decade. For the longest 12-cycle window, some 3-stage 

filters with very unequal boxcar lengths such as {6.5,5.9,0.1}, 

{6,5½,½} etc. provide almost equivalent performance to the 2-

stage {6,6} filter. This shows that there can be some careful 

deviation from the “optimal” design without incurring serious 

penalties. However, moving to a 3 (or more) stage filter using 

roughly equal-length boxcars, with >=60 dB/decade rolloff, 

leads to noticeably worse results. The PLLs evaluated, (P1, P2 

& P3 from Table I) all perform poorly. Even if their latency 

was considered to be half of the estimated value (5 cycles), 

their performance would still not be competitive. 

 
Fig. 11 RMS Frequency errors obtained by simulation, for three-phase 

measurements, using different algorithms and window lengths between 1 and 
12 cycles. fC = 50.033 Hz. fS = 10kHz. SNR=88.2 dB L(f)=-125.17 dBc/Hz. 

All noise modelled as white (Gaussian). 

 

 
Fig. 12 RMS RFE errors obtained by simulation, for three-phase 
measurements, using different algorithms and window lengths between 1 and 

12 cycles. fC = 50.033 Hz. fS = 10kHz. SNR=88.2 dB L(f)=-125.17 dBc/Hz. 

All noise modelled as white (Gaussian). 

 

Similarly, Fig. 12 shows that the best results in terms of 

ROCOF are always obtained by Clarke/Park or heterodyned 

measurements which use a filter made up of a cascade of 3 

boxcar filters of roughly equal lengths, or a filter which has 

similar performance, possessing rolloff of ~60 dB/decade. 

Clarke/Park or heterodyne measurements using fewer cascaded 

boxcar filters produce significantly worse results, as do zero-

crossing measurements. Moving to a 4 (or more) stage filter 



using roughly equal-length boxcars, with  80 dB/decade 

rolloff, also leads to noticeably worse results. 

XII. CONCLUSIONS AND DISCUSSION 

The formulas derived in this paper allow prediction of the 

RMS errors on frequency and ROCOF measurements, due to 

white noise, for a particular sample rate, SNR, and 

algorithm/window/filter configuration. SNR needs to be 

carefully assessed, accounting for pre-ADC analogue 

instrumentation noise, ADC quantisation, ADC aperture jitter, 

ADC dithering (if applied), and ADC scaling. Knowledge of 

the mechanisms by which noise percolates to the final 

measurements also allows a rational prediction of the “optimal” 

filters for such measurements, in terms of performance against 

white noise. Predictions and simulations show that for 

frequency measurement, the best measurements are made with 

heterodyned or Clarke/Park-transform based measurements 

which use a filter that consists of a cascade of 2 roughly-equal-

length boxcar filters, or a similar filter possessing roughly 

40 dB/decade rolloff. The best filters for ROCOF, however, 

require ~60 dB/decade filtering, which can be achieved using a 

cascade of 3 roughly-equal-length boxcar filters. 

It is possible to extrapolate from the presented results using 

(41)-(42) and (49)-(50) as guidelines. In an application with 

SNR higher or lower than that presented, every 6 dB increase 

of SNR halves the FE and RFE errors, and vice versa. The 

effect of sample rate needs careful consideration. In a 

conventional un-differentiated measurement application, 

increasing sample rate always decreases the effect of noise on 

the final measurement, since the linear noise amplitude density 

√L(f) scales with 1/√fS, as the noise is spread over a wider 

Nyquist band. Any sensible filter H(f) with rolloff bigger than 

0 dB/decade normally allows a higher-sample rate application 

to reject a higher proportion of the noise. However, the 

differentiated FE and RFE errors due to noise are additionally 

affected by the presence of fN and fN2 in the integral kernels of 

(for example) (49) & (50). To realise a measurement whose 

error due to noise reduces with increasing sample rate, it is 

necessary for the rolloff in H(f) to be more than 20 dB/decade 

for a frequency measurement, and more than 40 dB/decade for 

a ROCOF measurement. Since the recommended filters (for 

noise) have rolloffs of 40 dB/decade for frequency and 

60 dB/decade for ROCOF, these conditions should be met in a 

well-designed application. So, as usual, sample rate should be 

kept as high as reasonably possible to minimise the effect of 

noise. Down-sampling to lower rates should be implemented as 

late in the signal processing chain as possible. However, if this 

is not possible, even simple front-end over-sampling can be 

beneficial [21]. 

Some applications down-sample the phase measurand to a 

lower sample rate (e.g. 50 Hz), and then deduce frequency and 

ROCOF using 2-sample finite difference equations at the lower 

sample rate. In this case, the output of each low-rate finite 

difference equation is equivalent to differentiation at the 

original (higher) sample rate, combined with a boxcar filter at 

the higher sample rate, with the boxcar length equal to the 

lower-sample-rate period. For these applications, this is an 

important consideration when designing the core (higher 

sample rate) filter. Many existing algorithms apply extra 

filtering in this manner, perhaps without realising it, but 

sometimes to good practical effect. 

Zero-crossing and PLL-based methods cannot compete 

against heterodyned and Clark-transform methods, if sensible 

filters are selected for them. 

In a real application, overall filter design will be defined not 

only by performance requirements against white noise, but also 

by other requirements such as passband flatness, and general 

stop-band rejection of specific signals like harmonics and low-

frequency inter-harmonics. For example the requirements for 

PMUs [22, 23] contains strict requirements for FE due to out-

of-band signal application. In [12, 24] this led to a filter design 

with 6 cascaded boxcar filters in the frequency measurement 

path, and 7 in the ROCOF path, possessing roll-offs of  ~120 

and ~140 dB/decade. We now know that such filters are far 

from ideal in terms of white noise performance. A design with 

fewer (but longer) stages might perform better, if it could also 

meet the other system requirements. Discussions in [6] 

described how the optimal filters to measure phasors, 

frequency and ROCOF may well be quite different to each 

other. Work in this paper reinforces that message. 
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APPENDIX 1 : COMPARISONS OF PREDICTIONS AGAINST SIMULATIONS 

TABLE III RMS FE AND RFE ERRORS FROM NUMERIC SIMULATIONS, AGAINST PREDICTIONS (IN BRACKETS). FS = 10KHZ. SNR=88.2 DB L(F)=-125.17 DBC/HZ. 
‘Q’ : NOISE MODELLED AS PURELY QUANTISATION. ‘W’ : NOISE MODELLED AS WHITE (GAUSSIAN). ‘*’ SIGNIFIES AVERAGE LATENCY. 

 Filter fC = 50.033 fC = 50.0626 fC = 50.1253 

Method 

Number 
of 

boxcar 
sections 

Length 
of each 
boxcar 
(cycles) 

Total 
window 
length 

(cycles) 

Latency 
(cyles) 

 

RMS 
FE 

(mHz) 

RMS 
RFE 

(mHz/s) 

RMS 
FE 

(mHz) 
 

RMS 
RFE 

(mHz/s) 
 

RMS 
FE 

(mHz) 
 

RMS 
RFE 

(mHz/s) 
 

1 phase Heterodyne 1 {1} 1 ½ 
0.311 W 

(0.335 W) 
0.311 Q 

3190 W 
(4330 W) 
3190 Q 

0.317 W 
(0.343 W) 
0.328 Q 

3370 W 
(4740 W) 
3510 Q 

0.322 W 
(0354 W) 
0.291 Q 

3540 W 
(5210 W) 
3400 Q 

1-phase 1-cycle Zero-crossing 
(updated every half cycle) 

  1 ¾ * 

0.238 W 
(0.252 W) 
0.269 Q 

(0.247 Q) 

- 

0.253 W 
(0.253 W) 
0.329 Q 

(0.215 Q) 

 

0.261 
(0.252 W) 
0.268 Q 

(0.361 Q) 

 

  1½ 1 * - 

33.8 W 
(35.7 W) 
33.8 Q 

(34.9 Q) 

 

35.9 W 
(35.8 W) 
46.7 Q 

(30.4 Q) 

 

36.4 W 
(35.8 W) 
38.1 Q 

(51.1 Q) 

1-phase 1-cycle Zero-crossing 
(updated every full cycle) 

  1 1 * 

0.224 W 
(0.252 W) 
0.270 Q 

(0.247 Q) 

- 

0.260 W 
(0.253 W) 
0.269 Q 

(0.215 Q) 

 

0.285 W 
(0.252 W) 
0.380 Q 

(0.361 Q) 

 

  2 1½ * - 

19.0 W 
(17.8 W) 
26.2 Q 

(17.5 Q) 

 

22.3 W 
(17.9 W) 
23.3 Q 

(15.2 Q) 

 

24.4 W 
(17.9 W) 
38.1 Q 

(25.6 Q) 

3 phase Heterodyne 1 {1} 1 ½ 
0.180 W 

(0.193 W) 
0.181 Q 

1860 W 
(2500 W) 
1870 Q 

0.182 W 
(0.199 W) 
0.177 Q 

1930 W 
(2740 W) 
1950 Q 

0.186 W 
(0.204 W) 
0.174 Q 

2050 W 
(3010 W) 
2170 Q 

3 phase Clarke/Park transform 1 {1} 1 ½ 
0.180 W 

(0.193 W) 
0.181 Q 

1860 W 
(2500 W) 
1870 Q 

0.182 W 
(0.199 W) 
0.177 Q 

1930 W 
(2740 W) 
1950 Q 

0.186 W 
(0.204 W) 
0.174 Q 

2050 W 
(3010 W) 
2170 Q 

3-phase 1-cycle Zero-crossing 
(updated every half cycle) 

  1 ¾ * 

0.145 W 
(0.146 W) 
0.136 Q 

(0.143 Q) 

- 

0.145 W 
(0.146 W) 
0.129 Q 

(0.124 Q) 

 

0.147 W 
(0.146 W) 
0.090 Q 

(0.208 Q) 

 

  1½ 1 * - 

20.4 W 
(20.6 W) 
20.4 Q 

(20.1 Q) 

 

20.3 W 
(20.7 W) 
17.6 Q 

(17.6 Q) 

 

20.7 W 
(20.7 W) 
12.7 Q 

(29.6 Q) 

3-phase 1-cycle Zero-crossing 
(updated every full cycle) 

  1 1 * 

0.137 W 
(0.146 W) 
0.126 Q 

(0.143 Q) 

- 

0.149 W 
(0.146 W) 
0.141 Q 

(0.124 Q) 

 

0.163 W 
(0.146 W) 
0.127 Q 

(0.208 Q) 

 

  2 1½ * - 

11.7 W 
(10.3 W) 
12.1 Q 

(10.1 Q) 

 

12.8 W 
(10.3 W) 
11.2 Q 
(8.8 Q) 

 

14.1 W 
(10.3 W) 
12.7 Q 

(14.8 Q) 

3-phase Heterodyne or 
Clarke/Park 

1 {2} 2 1 
0.0919 W 

(0.0993 W) 
0.907 Q 

983 W 
(1380 W) 

969 Q 

0.0935 W 
(0.1019 W) 
0.0921 Q 

1020 W 
(1500 W) 
1010 Q 

0.0896 W 
(0.0953 W) 
0.0000 Q 

899 W 
(1180 W) 

0.00 Q 

3-phase Heterodyne or 
Clarke/Park 

2 {1,1} 2 1 
0.0166 W 

(0.0179 W) 
0.0165 Q 

13.4 W 
(14.6 W) 
13.3 Q 

0.0170 W 
(0.0179 W) 
0.0211 Q 

13.4 W 
(14.9 W) 
12.8 Q 

0.0182 W 
(0.0179 W) 
0.0082 Q 

13.7 W 
(15.2 W) 
14.0 Q 

3-phase 2-cycle Zero-crossing 
(updated every half cycle) 

  2 1¼ * 

0.0736 W 
(0.0729 W) 
0.0423 Q 

(0.0658 Q) 

- 

0.0709 W 
(0.0728 W) 
0.0859 Q 

(0.0807 Q) 

 

0.0736 W 
(0.0730 W) 
0.0000 Q 

(0.0329 Q) 

 

  2½ 1½ * - 

10.4 W 
(10.3 W) 
6.56 Q 

(9.31 Q) 

 

10.1 W 
(10.3 W) 
6.08 Q 

(11.4 Q) 

 

10.3 W 
(10.4 W) 
0.00 Q 

(4.67 Q) 

3-phase 2-cycle Zero-crossing 
(updated every full cycle) 

  2 1½ * 

0.0740 W 
(0.0729 W) 
0.0364 Q 

(0.0658 Q) 

- 

0.0773 W 
(0.0728 W) 
0.0859 Q 

(0.0807 Q) 

 

0.0817 W 
(0.0730 W) 
0.0000 Q 

(0.0329 Q) 

 

  3 2 * - 5.27 W 
(5.16 W) 
2.93 Q 

(4.65 Q) 

 5.37 W 
(5.15 W) 
6.08 Q 

(5.71 Q) 

 5.73 W 
(5.18 W) 
0.00 Q 

(2.34 Q) 

 


