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Abstract— This paper presents a multisensor-based approach
to outdoor scene understanding of mobile robots. Since laser
scanning points in 3-D space are distributed irregularly and
unbalanced, a projection algorithm is proposed to generate RGB,
depth, and intensity (RGB-DI) images so that the outdoor envi-
ronments can be optimally measured with a variable resolution.
The 3-D semantic segmentation in RGB-DI cloud points is,
therefore, transformed to the semantic segmentation in RGB-DI
images. A full convolution neural network (FCN) model with
deep layers is designed to perform semantic segmentation of
RGB-DI images. According to the exact correspondence between
each 3-D point and each pixel in a RGB-DI image, the semantic
segmentation results of the RGB-DI images are mapped back to
the original point clouds to realize the 3-D scene understanding.
The proposed algorithms are tested on different data sets, and
the results show that our RGB-DI image and FCN model-
based approach can provide a superior performance for outdoor
scene understanding. Moreover, real-world experiments were
conducted on our mobile robot platform to show the validity
and practicability of the proposed approach.

Index Terms—Full convolution neural network (FCN), mobile
robots, multisensor data fusion, outdoor scene understanding,
semantic segmentation.

I. INTRODUCTION

OBILE robots have been widely applied in many real-

world applications. Their control and decision making
are based on data acquisition, data analysis, outdoor scene
reconstruction, and scene classification. In this paper, we study
the problem of outdoor scene understanding for mobile robots
based on laser point clouds and monocular image data. There
are three tasks in our research. The first one is how to imple-
ment multisensor data fusion among laser scanner, monocular
vision, and IMU. The second one is how to find an optimal
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projection algorithm to transform the irregularly distributed
point clouds to 2-D images. The third one is how to design a
better semantic scene understanding framework based on the
multisensor fusing data.

Vision and laser sensors are widely used to accomplish
scene understanding tasks in autonomous navigation of mobile
robots. In order to improve the accuracy of vision and laser
data fusion, Hu et al. [1] proposed a calibration method that is
able to solve the problem of simplified perspective-three-point
and perspective-three-line, respectively. The key technique
in this paper is to transform the estimation of laser range
finder pose into a simplified perspective-three-point problem.
A vehicle localization method was proposed in [2], which can
fuse data from multiple sensors such as a stereoscopic system,
a laser range finder, and GPS. For more accurate laser-based
vehicle motion estimation, an outlier-rejection invariant closest
point method was proposed to reduce the matching ambiguities
of scan alignment [2]. A new algorithm to perform registration
from unordered point clouds was proposed in [3], which is an
automatic and model free one. More important, this algorithm
does not rely on any prior information about the objects in the
scene.

Vision-based outdoor scene understanding is also a hot
issue in the field of mobile robots. A task of image
semantic segmentation with deep learning was accomplished
by Chen et al. [4]. They proposed a kind of spatial pyramid
pooling algorithm to robustly segment objects at multiple
scales and improve the localization of object boundaries by
combining methods from deep convolutional neural networks
(DCNNSs) and probabilistic graphical models so as to combine
the responses at the final DCNN layer with a fully connected
conditional random field (CRF). In recent years, with the
development of deep learning theory, the segmentation results
of image semantics have made a great progress.

In [5], convolutional networks were trained end-to-end,
pixels-to-pixels, and made the improvement on the previous
best result in semantic segmentation. The key insight of this
paper was to build “fully convolutional” networks that took
the input of arbitrary size and produced corresponding output
with efficient inference and learning. They defined and detailed
the space of fully convolutional networks, and explained
their application to spatially dense prediction tasks, and
drawn connections to prior models. An efficient framework
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to perform recognition and grasp detection of objects from
RGB-D images of real scenes was presented in [6]. They
proposed a novel method to encode an RGB-D point cloud into
a representation that facilitated the use of large convolution
neural networks to extract discriminative features from RGB-D
images.

In order to obtain the better result of the 3-D scene under-
standing in outdoor scenes, the semantic segmentation of 3-D
point cloud is the fundamental task especially for mobile
robots. Zermas et al. [7] proposed pipeline aiming to solve
the problem of 3-D point cloud segmentation for data received
from a LIDAR in a fast and low complexity manner for real-
world applications [7]. An adaptive surface model approach
was proposed for the segmentation of 3-D point clouds into
geometric surfaces [8]. In [9], a two-layer classification model
was proposed, in which the first layer consists of a Gaussian
mixture model and the second layer consists of semisupervised
classifier trained in a large of data set of manual labeling.
Many scholars try to combine the classification results of 2-D
images and 3-D point clouds to improve the classification
accuracy of scene. A fast and efficient segmentation algorithm
for 2-D images and 3-D point clouds of building facades
trained a sequence of boosted decision trees using autocontext
features [10]. An algorithm for detecting the interest regions
of object’s surfaces in images and point clouds has been
proposed [11], which can accomplish application-viewpoint
selection so as to provide the most descriptive presentation of
the object’s surface.

The aim of this paper is to solve the problem of semantic
segmentation of the RGB-DI point clouds (including color,
depth, and intensity) generated by multiple sensors on our
mobile robot. Considering the irregular and unbalanced distri-
bution of point data, the location representation of adjacent
points in point cloud is much difficult than that of image.
In order to extract the deep feature representation from the
multiattribute point clouds and make the distribution of point
clouds be more standardized, a novel projection algorithm
is proposed to generate RGB-DI images (including color,
depth, and intensity) from RGB-DI point clouds so that the
semantic segmentation of multiattribute cloud points with
complex structure is transformed into RGB-DI image semantic
segmentation. A full convolution neural network (FCN) model
is proposed, which is suitable for solving the semantic segmen-
tation of RGB-DI images, and then the semantic segmentation
results of the RGB-DI image are mapped back to the original
point clouds to realize the scene understanding.

The rest of this paper is organized as follows. Section II
describes the system framework proposed for our mobile robot
to conduct the outdoor scene understanding, which has three
subsystems. In Section III, a new projection algorithm is
proposed to generate RGB, depth, and intensity (RGB-DI)
images so that the outdoor environments can be optimally
measured with a variable resolution. Section IV introduces
the FCN-based system architecture for semantic segmentation
on RGB-DI images. In Section V, the proposed algorithms
are tested on different data sets and the real experiments
are conducted to show that our RGB-DI image and FCN
model-based approach can provide a superior performance for
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Fig. 1. Data collection and data fusion of mobile robot outdoor scene.

outdoor scene understanding. Finally, a brief conclusion and
future work are given in Section VI.

II. SYSTEM FRAMEWORK

Figs. 1-3 show the system framework proposed for
outdoor scene understanding of mobile robots, which conducts
data collection, data fusion, and outdoor scene under-
standing tasks. More specifically, the system consists of three
subsystems.

1) Fig. 1 shows a multisensor data fusion subsystem that
integrates data from multiple sensors for better under-
standing of outdoor scene.

2) Fig. 2 shows a subsystem for the RGB-DI image gener-
ation, in which an effective projection model is used
to convert 3-D point clouds to 2-D images so that the
semantic segmentation of 3-D point clouds is converted
to the semantic segmentation of 2-D RGB-DI images.

3) Fig. 3 shows a subsystem of FCN that is applied to
RGB-DI image semantic segmentation and the RGB-DI
image semantic segmentation results are mapped back
to the laser point cloud so as to obtain labeled point
cloud.

As shown in Fig. 1, a number of sensors have been deployed
for data collection and data fusion of outdoor scene, namely,
laser sensors, vision sensors, INS, and GPS. To fuse the data
from these sensors, a number of coordinates have been defined,
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Fig. 2. RGB-DI image is generated by our projection algorithm.
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Fig. 3. Prediction process of outdoor scene understanding by RGB-DI image
and FCN model.

namely, world coordinate, mobile robot coordinate, INS coor-
dinate, laser coordinate, and vision coordinate. Considering
that relative position between mobile robot, laser scanner, and
vision sensor are fixed, we use the rotation and translation
matrix (marked R1 and T1 in Fig. 1) to calibrate the laser
coordinate system to the mobile robot coordinate system.
The depth value (marked Dp in Fig. 1) is calculated in the
mobile robot’s coordinate system. In order to obtain the data
of the point cloud with color information, we use the rotation
matrix and translation matrix (marked R2 and T2 in Fig. 1),
to calibrate the mobile robot coordinate system to the vision
sensor coordinates and generate a (x, y, R, G, B, Dp, In) image
(marked blue points in Fig. 1).

Based on the relationship between mobile robot coordinate
system and visual coordinate system, it is able to obtain
point clouds including RGB values, depth values, and intensity
values [marked (x, y, zz R, G, B, Dp, In) in Fig. 1]. Then,
the rotation matrix R3 and the translation matrix T3 for INS
and GPS data fusion are used to generate the final results of
RGB-DI point clouds in the world coordinate system (see the
results labeled by the blue box in the bottom of Fig. 1).
To reduce the noisy scanning data acquired by the laser

scanner, a point cloud filtering algorithm is adopted to generate
a better point cloud to represent the real-world outdoor
scene.

In order to solve the problem of semantic segmentation
of 3-D point cloud, a novel projection algorithm is proposed
to project 3-D laser point cloud into 2-D image in our work,
which will be introduced in Section III. As shown in Fig. 2,
(x, v, z R, G, B) represents the point cloud with color infor-
mation, (x, y, z, Dp) represents the point cloud with the depth
value, (x, y, z In) represents point cloud with the intensity
value. It should be noted that the projection algorithm is
only to accomplish the task of coordinate transformation from
3-D point cloud to 2-D image, and the values of each pixel
(RGB-DI value) in 2-D image are always associated with the
original 3-D scanning point. The final result of RGB-DI image
generation can be illustrated in two images [(x, ¥, R, G, B)
and (x, y, Dp, In, 0) in the bottom of Fig. 2].

Now, we can perform outdoor scene understanding using
RGB-DI image and FCN model. In practice, the resolution of
the RGB-DI image is affected by the range of 3-D point cloud
in different scenes. If the range of the 3-D point cloud is large,
the resolution of the RGB-DI image is increased accordingly.
In our experiments, according to the distribution of the actual
laser scanning points, the image resolution is usually set at
180 x 240, 240 x 320, or 300 x 380. It should be noted
that the system framework of FCN model can work well for
semantic segmentation of outdoor scenes if the resolution of
the input RGB-DI images for training and predicting of FCN
model is equal to the resolution of the output labeled images.

Fig. 3 illustrates the prediction process of outdoor scene
understanding by RGB-DI image and FCN model. Semantic
segmentation results can be obtained from these output labeled
images. Finally, the results of FCN semantic segmentation
are mapped to the 3-D point cloud according to the exact
correspondence between each 3-D point and each pixel in an
RGB-DI image, which are provided to the path planning
unit of mobile robots to accomplish the task of autonomous
navigation.

III. RGB-DI IMAGE GENERATING

A. Projection of Point Cloud

For different objective functions of projection, different
algorithms are created to perform the projection from 3-D data
to 2-D data, including principal component analysis (PCA),
latent dirichlet allocation (LDA), and multidimensional
scaling (MDS). In order to generate an optimal RGB-DI image
for semantic segmentation of an outdoor scene, the algorithm
that conducts the projection from 3-D point cloud to the 2-D
plane should keep contour information of the original 3-D
point cloud in the 2-D image format as much as possible.

Fig. 4(a) illustrates the proposed projection algorithm.
As can be seen, the same objects are projected onto different
planes, but the contour of objects and the layout of the
scene will be different in 2-D images. We aim to find an
optimal plane to represent an outdoor scene with geometric
and semantic information. Taking the three images [labeled
as (a)—(c)] in Fig. 4(a) as example, (b) is a more optimal than
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Fig. 4. (a) Illustration of the projection of objects from 3-D space to 2-D
plane. (b) Representation of the normal vector.

others since it is easier to distinguish different objects and
reduce the mutual occlusion between objects.

B. Algorithm

Fig. 4(b) defines the parameter of normal vector for accu-
rate algorithm derivation, in which ¢ is the angle between
the normal vector and y-axis; € is a rotating angle in xoz
coordinates; and r is the norm of normal vector. The plane
equation and linear equation is defined as follows:

A(x —x0) + B(y = yo) + C(z —20) =0 (1)
y:prd+Bt, Z:chd+Cf (2)
A=rsingcosd, B=rcosp, C=rsingsingd (3)

X = Xped + Af,

where » = 1, (xo,y0,20) represents
(Xped> Yped» Zped) represents point clouds.

It should be noted that ¢ is a formal parameter of linear
equation and it can be derived by (1) to (3) as follows:

viewpoint and

t = sin@ cosO(xo — Xped) + €0s @ (Yo — Yped)
+ sin g sin6(z0 — xpca). (4)

Point (x,, yp, zp) is the projection point from 3-D point
cloud to 3-D plane and it can be written as (5) to (7)

Xp = Xped + tSing cos @ (5)
Yp = Yped +1COS (6)
Zp = Zped + 1 Sin @ sin @ 7

where (xp, yp, Zp) represents a projection point.
The center of projection point is written as in the following
equation:

1 n 1 n 1 n
Tp=_ 2 A = > =2 ®)
i=1 i=1 i=1
where (X, ¥, Zp) represents center of projection point and n
is total number of points.
The objective function is given as follows:

(p*,0%) = arg . maxdis(p,6)

n

: 1 —
dis(p,0) = ~ > [ (i = 5)?
i=1
1
+ O = )+ = )]
SLQ=1{(.0lpo<p <g1.b0<0 <01} ()
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Fig. 5. When a point on the ground is selected as viewpoint, the result of
RGB-DI image generating is displayed in each subfigure.

where o and ¢ are set at 7/3 and 27 /3, respectively. 6y
and #; are set at 0 and 7 in our experiments.

As it is difficult to solve the gradient expression of the
objective function, the Monte Carlo method is adopted to
solve the optimal solution of the objective function [12]. It is
easy to obey the uniform distribution to generate N random
points (¢, ) in a feasible domain. Finally, according to the N
solutions, it is easier to find a solution (p*, 8*) that maximizes
the objective function, which is approximately equal to the
optimal solution.

Fig. 5 shows the process of calculating the optimal solution
of the objective function (9) using Monte Carlo method.
It is can be seen that many projection planes determined by
different parameters have been randomly given by Monte
Carlo method. It searches an optimal projection plane to
maximize the objective function (9) from those projection
planes. In order to ensure that the projection algorithm is
free from noise interference, the noise reduction of point
cloud should be performed before the projection algorithm
is used. A statistical-outlier-removal filter has been applied
to remove the noise in point cloud and it is helpful for
the semantic segmentation of RGB-DI images. The detailed
description of the algorithm is given at the website
URL.: http://pointclouds.org/documentation/tutorials/statistical_
outlier.php#statistical-outlier-removal.

The plane equation can determine a point on the plane
and it is defined as the viewpoint. Since each plane has
infinite extensibility and the normal vector of each point
is the same, it is clear that the projected RGB-DI images
are the same when the two planes have different viewpoints
and the same normal vector, as shown in Fig. 6. There-
fore, the changing viewpoint does not need to be considered
and the normal vector obtained from the projection plane
is the crucial step to generate RGB-DI images. The code
of the proposed projection algorithm is given at the website
of URL: https://github.com/ZhuangYanDLUT/pcl/tree/master/
projection_algorithm(RGB-DI%20Image).
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Fig. 6. Performance of RGB-DI image is displayed on condition that different
viewpoints are selected.

c1 c2 c3 c4 c5 ce
(3.35, aa) 3,3,54,64) (3.354128) (3,3128,128) (33,128, 125) (3,3,128,256)
> 2 . > 2> > >

cio c11 c12 c13 Decl
(3,3,256, 256) (33255 255) !33255 512! (3,3,512,512) (7,7,512,4096) (1, 14095 4096) (1,140866)  (4.4588)

convolutional layer
relu layer

maxpooling layer

' softmaxlog laver

(1,1,256,6)

Dec3

dropout layer (16,161,
deconvolutional layer
g
sum layer

Fig. 7. Proposed FCN architecture is applied to the semantic segmentation
of RGB-DI image.

V. FCN-BASED SEMANTIC SEGMENTATION
ON RGB-DI IMAGES

Fig. 7 describes the architecture of our FCN, which is
derived from the revised VGG16 and achieved the state-of-the-
art performance in ImageNet [13]. It can be seen that the archi-
tecture of our FCN model is composed of convolutional layers,
relu layers, pooling layers, dropout layers, deconvolutional
layers, softmaxlog layers and sum layers. For the convolutional
layers, the size of convolution kernel is set to 3 x 3, 1 x 1, or
7 x 7 and marked in Fig. 7. The relu layer represents the relu
activation function. Multiple maxpooling layers are contained
in the down-sampling, path, each maxpooling layer performing
a 2 x 2 pooling operation with a stride of 2. The dropout
layers prevent the overfitting of the model so as to improve
the performance of the neural network, when training samples
are less. Sometimes the deconvolutional layer is also called
the up sampling layer, which is backwards stride convolution.

Interpolation is another way to connect coarse outputs to
dense pixels. In this paper, simple bilinear interpolation is
chosen to initialize the deconvolution kernel, which needs to
compute each output from the nearest four inputs by a linear
map. The method only relies on the relative positions of the
input and output cells. If the deconvolution kernel size is set
to 4 x 4, the output of feature maps in length and width,
respectively, is 2 times that of the feature input maps in length
and width, and the other cases are also marked in Fig. 7.

Up sampling is performed in-network for end-to-end
learning by backpropagation from the pixel wise loss. The soft-
maxlog layer is the classification layer, which is the last layer
of the network. During the testing process, it outputs the
predicted results. During the training process, it is the starting
layer for error generation. In order to improve the performance
of deconvolution and obtain more accurate prediction results,
the function of sum layer is the sum of the intermediate results
specified in the red arrow in Fig. 7.

The VGG16 network is modified here for the semantic
segmentation of image. The RBG-DI images are inputs to our
network. We change the first layer of the VGG16 network from
(3, 3, 3, 64) to (3, 3, 5, 64), remove some of the convolution
layers and relu layers of the VGG16 network, adjusted the
position of the pooling layers, and added two dropout layers,
three deconvolutional layers and three convolutional layers.
We defined six categories: columnar objects, plants, buildings,
cars, roads, and others for the scenes understanding.

To ensure that the fusion related intermediate layer results
match the segmentation requirements of scene understanding,
we added three convolution kernels C13, C14, and Cl15,
respectively, set to [1, 1, 4096, 6], [1, 1,512, 6], and
[1, 1, 256, 6]. In this paper, the performance of network
is improved by fusing the output of multiple intermediate
network layers and multiple up sampling layers rather than
adding a deconvolutional layer at the end, which can ensure
the consistency of the resolution of the input and output images
of FCN model. The residual of network in this paper cannot
disappear in backpropagation.

V. EXPERIMENTS AND ANALYSIS
A. Experimental Data Sets and Platforms

In order to fully verify the versatility and practicability
of the algorithm, we have used two data sets in this paper.
The first one is the Oxford robot car data set that is a common
public data set for unmanned vehicle research, and the second
one is the DLUT data set that is collected by our mobile
robot. The training and testing of related algorithms in our
experiments are performed using both data sets.

Oxford robot car data set is public on the URL
(http://robotcar-data set.robots.ox.ac.uk/). The data collection
spans the period of May 6, 2014 to December 13, 2015,
and consists of 1010.46 km of recorded driving in central
Oxford, U.K. The vehicle was driven manually throughout
the period of data collection; no autonomous capabilities were
used. Traversal times were chosen to capture a wide range
of conditions, including pedestrian, cyclist and vehicle traffic,
light and heavy rain, direct sun, snow, and dawn, dusk and
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Fig. 8. Smart-Cruiser, a home-developed mobile robot equipped with multiple
lasers and monocular camera, etc.

night. The total uncompressed size of the data collected is
23.15 TB. Labels for each condition have been added to each
traversal, and traversals can be grouped by labels for easy
collection of a particular condition.
DLUT data set built by our laboratory is public on the URL
(http://pan.baidu.com/s/1085fc4E). The data set was collected
by our mobile robot named Smart-Cruiser at Dalian University
of Technology Campus. The data set includes buildings, trees,
vehicles, pedestrians, grasslands, poles, and others. The data
collection was conducted within the period of August 26,
2016 to August 28, 2017. Data set has color point clouds,
depth point clouds, intensity point clouds, and mobile robot’s
pose, and its size is 9.18 GB.
Fig. 8 shows our mobile robot platform used for imple-
menting the algorithms. It was developed in house, and
equipped with multiple lasers, industrial PCs, GPS, monocular
camera, and inertial navigation system. The sensors used
in this experiment are as follows.
1) 1 x CCD Fly Capture Flea3, 3.2 million pixels
(2080 x 1552), and a frame rate of 60 frames/s as shown
in Fig. 8(b).

2) 1 x SICK LMS-151 2-D LIDAR, 2700cFoV, 50 Hz, 80 m
range, 0.5oresolution, as shown in Fig. 8(c).

3) 1 x XW-ADUS5600 ALIGN inertial and GPS navigation
system, 6 axes, 50 Hz, GPS/GLONASS, dual antenna,
as shown in Fig. 8(d).

4) 2 x Advantech IPCs with InterCorei7 CPU, 24 GRAM,
GTX970 graphics card, DDR3 SSD, and one D-Link
DKVM-L708H Fig. 8(e).

B. Results of RGB-DI Image Generating

There are many projection methods that could 3-D point
clouds onto 2-D planes. In this paper, we compare our projec-
tion algorithm with the other existing projection methods
in terms of image semantic segmentation for outdoor scene
understanding. Five commonly used projection algorithms are
used here, namely, PCA, Kernel PCA (KPCA) [14], MDS [15],
LDA [16], and autoencoder [17]. The first three are linear
methods, and the latter two are nonlinear methods. In order
to observe the projection results of each algorithm more
intuitively, a representative example of the experiment has
been given and shown in Figs. 9 and 10.
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Fig. 9. Results of different projection algorithms using the same group of
point cloud (x, ¥, z, R, G, B).
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Fig. 10. Results of different projection algorithms using the same group of
point cloud (x, y, z, Dp, In, 0).

As can be seen from Figs. 9 and 10, the nonlinear projection
method loses the semantic information of the point cloud
and the morphological information of the scene. Therefore,
the nonlinear projection method KPCA and autoencoder do
not contribute effectively to the research in this paper. Instead,
the linear projection method is superior to the nonlinear projec-
tion method in terms of results. Although PCA, LDA and
MDS maintain the morphological and semantic information
of the original point cloud, the context of the projected object
is greatly changed. The LDA algorithm maps a number of 3-D
points to 2-D points, resulting in greater loss of information.
Compared with MDS and PCA, the loss of information is
insignificant, but there is still a great change in the location
of the objects and different degrees of rotation.

In order to further analyze the effect of different projection
methods on the semantic segmentation of RGB-DI images,
the two-order CRF method, which takes into account the
pixel position relationship [18], is applied to the semantic
segmentation of RGB-DI images generated by PCA, LDA,
MDS, and our method. In experiments, the RGB-DI images
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Fig. 11.  Accuracy of semantic segmentation with different algorithms
(our method, MDS, PCA, and LDA) in Oxford data set. There are totally
six classes in the semantic segmentation, which are building, ground, plant,
vehicle, pole, and others.

generated by different projection algorithms have a resolution
of 240 x 320. Color histogram features are extracted from the
neighborhood of a pixel in RGB-DI images.

The classification results of RGB-DI images generated by
different algorithms are mapped to point clouds, and the
histogram statistics is done according to the classification
accuracy of point cloud, as shown in Fig. 11. The accuracy
in Figs. 11 and 13-15 is based on ground truth of RGB-DI
point cloud. The definition of accuracy is as follows:

TP
TP+ FP
where true positives is the number of samples that are actually
positive samples and divided into positive samples by the
classifier, and false positives is the number of samples that
are actually negative samples and are divided into positives
samples by the classifier.

As shown in Fig. 11, compared with different projection
methods, our method can improve the recognition accuracy of
objects in the scene, but no matter what projection methods
do not significantly improve the accuracy of objects that are
not obvious such as poles or others.

It is clear the results of our method are substantially better
than those of PCA, LDA, and MDS. The results of MDS
and PCA are superior to LDA. We can draw a conclusion
that the shape of the original point cloud is consistent with
one of projection RGB-DI images, and the rotation range
of the projected objects is reduced. The proposed algorithm
takes into account the constraints of the correlation angle and
the maximization of object projection, which ensures that the
generated RGB-DI images have better semantic segmentation
results so as to obtain better classification results of point
cloud.

accuracy = (10)

C. Semantic Segmentation With Different Input Values

The purpose of this experiment is to analyze the influence
of different input values of point cloud on the semantic
segmentation results. It should be noted that the classifier
and the feature extraction algorithm are the same in all of
the experiments of this section. According to different input
values of point clouds, five groups of input data in our exper-
iments are (x, y, z), (x, ¥, z R, G, B), (x, y, zz R, G, B, Dp),

R color histogram
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Fig. 12. Process of feature extraction on point cloud (x, y, z, R, G, B, Dp, In).

(x, v, z R, G, B, In), and (x, y, z, R, G, B, Dp, In). The feature
extraction of cloud points is composed of two parts. In the
first part, Fast Point Feature Histograms (FPFH) is applied to
compute the features of point clouds based on (x, y, z) [19].
In the second part, color histogram feature of neighborhood of
a point in point cloud is used. The specific process of feature
extraction is shown in Fig. 12.

In the experiment, the feature dimension of the
FPFH algorithm is 33 and the feature dimension of
color histogram feature is 16. As color histogram
statistics ranges from O to 255, histogram features are
intercepted in units of 16 in order to eliminate redundancy.
The features of five groups of input data (x, y 2),
x vz R G B), (x,y2zR G, B Dp), (x, 2z R G, B, In)
and (x, 3,z R G, B, Dp, In), are (Xfl,..., Xf33),
(Xf1, ..., Xf33, XR1, ..., XR16, XG1, ..., XG16, XBI, ..., XB16),
(Xf1,..., Xf33, XR1, ..., XR16, XG1, ..., XG16, XB1, ..., XBI6,
XDpl, ..., XDpl6), (Xf1, ..., Xf33, XRI, ..., XR16, XG1, ...,
XGl6, XBI, ..., XBI6, XInl, ..., XInl6), (XfI, ..., Xf33,
XRI, ..., XR16, XGI, ..., XGl6, XBI, ..., XB16, XDpl, ...,
XDpl6, XiInl, ..., XInl6), respectively. Random Forest
classifier is applied to semantic segmentation of point clouds
since it is directly applicable to multiclass problems and yield
good results in reasonable time on large point clouds [20].

The idea of Random Forest classifier is repeatedly and
randomly to extract K samples from the original N training
samples and then to generate K decision trees based on the K
samples to form Random Forests. The classification results of
the test data are based on the vote of multiple decision trees.
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Fig. 13.  Accuracy of semantic segmentation with different input values
in Oxford data set [Row A: (x, y, z, R, G, B, Dp, In), Row B: (x, y, z, R, G,
B, In), Row C: (x, ¥, z, R, G, B, Dp), Row D: (x, y, z, R, G, B), and Row E:
(x, y, z)]. There are totally six classes in the semantic segmentation, which
are building, ground, plant, vehicle, pole, and others.

The classification ability of a single decision tree may be very
limited. However, after a large number of decision trees are
generated randomly, a test sample can be classified according
to the statistical results of each tree, so as to get the most
probable classification results.

In these five groups, the accuracy of semantic segmentation
with different input values is counted in Fig. 13. Considering
that the extracted features are based on data collected by
sensors of mobile robot which are independent, the extracted
features are also independent so as to avoid curse of dimen-
sionality. As shown in Fig. 13, in order to analyze the
accuracy of the overall recognition, the results of the sum of
accuracy are 3.8249, 3.716, 3.6969, 3.6023, and 3.0739 for
five input values A, B, C, D, and E in Oxford data set,
respectively.

With the increase of the input values of point clouds,
the accuracy of semantic segmentation is also improved.
Therefore, we draw a conclusion that the performance of
outdoor scene understanding can be improved by making full
use of multisensor data fusion of mobile robots.

D. Semantic Segmentation Results With Different Algorithms

The task of outdoor semantic segmentation is often guided
by two kinds of research ideas. The first one extracts features
and designs classifier directly from point clouds. The second
one uses RGB-DI images to perform sematic segmentation,
and return the segmentation results to 3-D point clouds. In our
experiments, the data point clouds (x, y, zz R, G, B, Dp, In)
are used to test the performance of different algorithms. There
are five kinds of semantic segmentation algorithms used in this
experiment.

For the first idea, FPFH, and color histograms are used
to extract features and specific process is shown in Fig. 12.
The random forest classifier [21] and the CRF classifier [18]
are selected. For the second idea, the RGB-DI image is gener-
ated by the proposed method and color histogram features
are extracted from the neighborhood of a pixel in RGB-DI
images. The random forest classifier, the CRF classifier and the
proposed FCN model are applied to the semantic segmentation
of RGB-DI images and classification results are mapped onto
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TABLE I
FIVE ALGORITHMS COMPARED IN OUR EXPERIMENTS

Algorithm Data source Featux:e Classifier
Extraction
Al RGB-DI images color histogram | random forest
A2 RGB-DI images color histogram CRF
A3 (ours) RGB-DI images FCN FCN
. color histogram
B1 RGB-DI point cloud '+ FPFH random forest
. color histogram
B2 RGB-DI point cloud + FPFH CRF
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Fig. 14. Accuracy of semantic segmentation with different algorithms on
Oxford robot car data set.
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Fig. 15. Accuracy of semantic segmentation with different algorithms on
DLUT data set.

the point cloud. The detailed description of the five algorithms
is shown in Table I.

Both A1 and A2 are based on the first idea, and the
feature extraction methods are the same and the classifiers
are different. The random forest classifier is used by Al and
the CRF classifier is used by A2. B1, B2 and A3 are based
on the second idea, the feature extraction methods of B1 and
B2 are the same, and the classifiers are different. The random
forest classifier is used by Bl and the CRF classifier is
used by B2. A3 is based on the proposed FCN model.
Fig. 14 shows the accuracy of semantic segmentation with
different algorithms on the Oxford data set. Fig. 15 shows the
accuracy of semantic segmentation with different algorithms
on the DLUT data set.

The random forest algorithm achieved similar accuracy
on both point clouds and RGB-DI images, respectively, and
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Fig. 16.
data set.

Point cloud processed after multisensor data fusion in Oxford

Fig. 17. Performance of semantic segmentation using FCN model in Oxford
data set.

the same is CRF. However, the accuracy of CRF is much
better than the one of the random forest algorithm for both
point clouds and RGB-DI images. The reason is that CRF
took the classification effects of adjacent points into account.
The classification effects of the proposed FCN model are
superior to the other four methods. The experimental results
show that the FCN model can extract much valuable features
when the sensor information is fully used Figs. 16 and 17 show
the performance of the FCN model.

E. Generalization Analysis of FCN Model

We obtained the FCN model by modifying the
VGG16 model whose parameters are used to initialize
the parameters of the training FCN model. Hence, a relatively
good initial value of the neural network is obtained at
the start of training so that the stochastic gradient descent
method [22] is used to obtain the optimal parameters in the
training network. The cross validation process has been used
in the experiment. In the experiment, our RGB-DI images
have been divided into three parts to be defined as train set,
validation set, and test set. The train set contains 500 RGB-DI
images. The validation set only contains 100 RGB-DI images
which are not mixed by train set. In the same way, test only
contains 100 RGB-DI images which are not mixed by train
set and validation set. The loss results of train set have been
shown in Fig. 18. The results of training FCN model in test
set have been shown in Fig. 19. The results of training FCN
model in train set have been shown in Fig. 20. The results
of training FCN model in validation set have been shown
Fig. 21.

Finally, in order to verify the accuracy of the trained
model in (epoch = 350), 100 RGB-DI images, which

Fig. 18. Performance of training FCN model in loss function in train set.
Fig,: 19. Performance of training FCN model in test set. .
Fl; 20. Performance of training Fc;l el i train set L

Fig. 21.  Performance of training FCN model in validation set. I\I.

are not intersecting with train set, test set, and validation
set, are generated by random sampling algorithm. These
100 | RGB-DI images were predicted by a trained model.
The prediction accuracy of the model is shown in Fig. 22.
In experiment, epoch is 400, and batch size is 20, and learning
rate is 0.5. In order to optimize the model, the learning rate
is adjusted dynamically according to the accuracy of the real-
time validation set. The accuracy is based on ground truth of
RGB-DI images. The accuracy in FCN model is the average
accuracy of multiple object recognition in a RGB-DI image.
When the accuracy is stable in multiple epochs, the learning
rate is reduced by 0.8 times so as to make loss continue to
decline. The tensor flow framework is applied to training FCN
model.

As shown in Fig. 22, the FCN model obtained by modifying
the VGG16 is trained on the train set and the optimal parame-
ters can be obtained from validation set. In Figs. 18 and 21,
when epoch is greater than 350, the results of test and
validation are approximately the same. It can be seen from
the results of cross validation that the FCN model obtained
by modifying the VGG16 has a better robustness.
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Fig. 23.  Output of some convolutional layers and deconvolutional layers
in testing process.

The proposed FCN model contains three deconvolutional
layers, each of which is stacked with the information of the
middle layer. In order to observe the performance of each
layer more visually, the output of some convolutional layers
and deconvolutional layers are shown in Fig. 23. It can be
seen clearly that the convolution and deconvolution of the FCN
model realize the encoding and decoding of the input RGB-DI
image. The process is able to extract the features, which are
more conducive to classification. Therefore, the combination
of RGB-DI images and the FCN model is more suitable for
solving outdoor scene understanding.

VI. CONCLUSION

This paper proposes a novel sensor fusion method to solve
the problem of outdoor scene understanding for mobile robots.
In order to make full use of the information collected by
multiple sensors, the image and laser are fused to generate
point cloud with color, depth, and intensity value. In order
to solve the semantic segmentation of point cloud, a projec-
tion algorithm is designed to generate multichannel RGB-DI
images. Finally, the FCN model is used to segment the
RGB-DI images and the 2-D results based on RGB-DI images
are mapped to 3-D point cloud.

Comparing the projection algorithm proposed in this paper
with a variety of traditional projection algorithms, we have
come to the conclusion that our projection algorithm generates
RGB-DI images more suitable for solving outdoor scene
understanding of mobile robots. Comparing the FCN model

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

proposed in this paper and the traditional semantic segmenta-
tion of point clouds, the experiment shows that the FCN model
can make full use of the fused data generated by multiple
sensors that are onboard of a mobile robot, so as to obtain
better feature representation and classification results. For
Oxford and DLUT data sets, the accuracy of trees, buildings
and ground have been improved 3% to 5%, and the accuracy of
vehicles, poles and others have been improved 4% to 6%. Our
future work will be focused on reducing the layer number of
FCN model to improve the training and predicting efficiency
of FCN model without reducing the accuracy of semantic
segmentation.
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