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Abstract—Nodes in electric distribution networks are greatly
differentiated and are very often nonlinear and/or unbalanced.
They can create significant harmonic pollution, with harmonics
that inevitably spread along the grid. Monitoring harmonic
propagation and correlated power quality phenomena requires
specific measurement devices and methodologies. Nevertheless,
because of the unavailability of a rapid diffusion of synchronized
and dedicated devices (due to technical and economic reasons) on
every node and branch of the network, estimating the harmonic
status of the entire grid by means of a complete or even redundant
monitoring system can be practically unfeasible. A more feasible,
though always meaningful, goal can thus be pursued, that is
estimating the main harmonic sources in the network, rather
than its complete harmonic status. This approach, of course, can
be based on a simpler and cheaper upgrade of the distributed
monitoring system. Even more, by considering the common
scenario where the number of significant harmonic sources is
lower than the number of loads connected to the grid, specific
estimation procedures can be defined to further reduce the
complexity of the monitoring system. In this scenario, this paper
presents an efficient Compressive Sensing Harmonics Detector
(CSHD) for the identification and the estimation of the principal
pollution sources. The proposed CSHD method is validated
by means of appropriate tests performed on an example of
distribution grid.

Index Terms—Compressed sensing; Harmonic distortion; Har-
monic Source Estimation; Matching pursuit algorithms; Power
distribution

I. INTRODUCTION

In the last decades, distribution grids have been evolving
rapidly and significantly towards highly complex systems, with
an impressive growth of distributed generation and a large
variety of loads. Most of them are power-electronics based,
and this causes power quality (PQ) phenomena along the grid
[1]. The PQ involves several scientific issues and practical
consequences, with effects perceivable by final users. Poor PQ
may cause damage and the total cost of electrical energy usage
can be doubled. As an example, in 2015, the European Copper
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Institute estimated that the total PQ cost for European industry
economy exceeds 150 - 10° euros [2].

In the industrial sector, the relevance of these phenomena
is only partially perceived, because industrialists are typically
more focused on other impairments, such as voltage inter-
ruptions. However, several studies draw the attention to the
harmonic distortion [1], [3]. The harmonics reduce the life
time of the components, incrementing costs, and their accurate
identification is still an open challenge [4]-[6].

In this context, several papers presented in the literature
have been focused on the evaluation of the harmonic pollution
through the grid, applying Harmonic State Estimation method-
ologies (see for example [7]-[9]). These techniques, mostly
derived from classic State Estimation methods originally de-
signed for transmission systems, require a significant quantity
of information, such as measured data, network topology and
network parameters, to obtain an accurate evaluation of the
quantities of interest. As a consequence, their implementation
becomes impractical from an economic point of view.

Nevertheless, rather than knowing the overall harmonic state
of the grid, it might be useful to identify correctly the harmonic
pollution sources, to reduce/compensate their effects on the
system, and, when possible, to attribute the costs arising from
the disturbances. This can be a crucial aspect, above all when
market liberalization impacts on electricity price.

In this scenario, specifically for the distribution networks, in
[10] and [11] an approach called Harmonic Source Estimation
was proposed. It consists in finding only the sources of
harmonic pollution in the system and, therefore, requires less
measurements than the evaluation of the whole harmonic
state. It is worth noticing that the harmonic behavior of the
distribution systems is usually poorly known, since still few
real measurements are available on the field, commonly only
in the high/medium voltage, HV/MYV, stations, and very few
PQ-meters are connected to the grid. Consequently, it is still
not possible to monitor directly harmonic pollution in a large
number of nodes of the grids. In this regard, an upgrade of
the monitoring system is to be expected in the near future.

Nonetheless, at each moment, the number of significant
harmonic sources in a distribution grid can be much lower
than the total number of loads. This means that, practically,
the model used for main harmonic sources identification
can be considered as sparse. Based on this consideration,
in this paper the problem of harmonic source identification
and estimation is addressed by means of the Compressive
Sensing (CS) theory, which is a signal recovery technique
suitable to recover sufficiently sparse signals from limited



information ([12], [13]). In particular, starting from the single
harmonic identification approach presented in [14], where
the main harmonic currents in the network were detected
based on an Block Orthogonal Matching Pursuit (BOMP)
algorithm, this paper introduces a new global Compressive
Sensing Harmonics Detector (CSHD) that allows identifying
the main polluting sources regardless of the specific harmonic
involved, and estimating the corresponding injected harmonic
currents.

The CSHD aims at giving an explorative tool, which can
help the operator to investigate harmonic sources and decide
how to carry on further and more targeted measurement
campaigns. It is validated by means of appropriate simulation
tests carried out on a small network derived from the 13-
bus IEEE network and practical aspects of the detection
are discussed with reference to international standards. The
proposed CSHD proves to be efficient in the identification of
the principal polluting loads with respect to both the single-
harmonic algorithm in [14] and an identification algorithm
based on the classic WLS estimation.

II. PROPOSED HARMONIC SOURCE IDENTIFICATION AND
ESTIMATION ALGORITHM

A. Definition of the Measurement Model

The harmonic sources identification and estimation problem
can be defined by means of the underlying measurement model
in the frequency domain. The following general and linear
model is adopted for each harmonic order h:

z, = Hyuy, + €, (D

where z, € CM includes M phasor measurements (voltage
or current measured phasors at harmonic k), H, € CM*N
is the measurement matrix, 4, € CV is a vector whose
entries are the NV unknown forcing terms (harmonic sources),
and ej, represents the phasor measurement errors vector. The
over-bar represents complex quantities and all the involved
quantities change depending on the harmonic order h. In
detail, the measurement matrix H; = H(hfy) represents
the matrix frequency response of the network computed at
frequency hfy, with fy the fundamental frequency of the
system. This matrix links the measured harmonic phasors to
the input harmonic sources produced by the possible polluting
loads or generators connected to the MV distribution system.
uy, includes all the sources of the Ath harmonic that can
affect the network (usually currents injected by nonlinear
loads or generators, but potentially also voltage supply) and
impact on the measurements given by the PQ instrumentation
located at different points of the network (included in zp).
For these reasons, the entries of H; can be computed from
the impedances of lines and loads (see the network model in
Section III-A, Fig. 1) and measurement relationships.

Equation (1) reflects the approach for harmonic measure-
ments of international standards as [15], [16] and refers to
steady-state or quasi-steady-state phenomena and measure-
ments computed on sliding observation windows associated
with given time tags.

The aim of the harmonic sources identification and estima-
tion process is thus to find uy for each harmonic order h of
interest starting from the available phasor measurements zj,.
A more suitable model to apply the algorithm keeping into
account the accuracy of the measurements, is the following
linear and real-valued model:
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where z ; and zj ; are the real and imaginary parts of the
ith measurement in 7, respectively, and uj, u¥, e}, e¥ are
similarly defined starting from the input and error vector. The
measurement matrix Ay is defined as follows:
T x
M=l | ()
h h
where H £ R[H,] and Hf £ S[H}] (that is the real and
imaginary parts of the complex measurement matrix).
Since a potentially polluting load or generator can be seen
as a multiple harmonic producer, the model in (2) can be
generalized into:
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where ) denotes the total number of harmonics considered.
In (4) the set of the measured phasors at different frequencies
is expressed as a function of the forcing terms spectrum (for
the considered harmonics). The overall measurement matrix is
block-diagonal because of the orthogonality of the harmonics
and the validity of the superposition principle. e is the overall
measurement error vector.

While in [14] single harmonic detection was con-
sidered, in this paper the estimation of the injecting
loads/generators is considered as direct estimation of u £

T
ujb ujl, o, ugupl |, where T’ indicates the trans-
pose.

B. Identification and Estimation Algorithm

In the following, the proposed algorithm for harmonic
sources identification and estimation is presented. It is aimed
at finding the loads that are main sources of harmonics and
estimating the injected harmonic currents when significant.
The forcing terms vector u can be assumed to be sparse.
In fact, the number of main polluting loads/generators at
a given time instant (corresponding to the time-tag of the
measurements set) can be expected to be much smaller than
the total number of loads. For this reason, each vector 11, and,
as a consequence, u can have a small number of significant
entries with respect to its size, which correspond to the main
injecting loads and to their non-negligible harmonic sources.



In the following, a harmonic source will be usually repre-
sented as a harmonic current generator in parallel with the load
impedance (or as a harmonic voltage generator with Thevenin
representation) and thus assuming sparsity means considering
only few significant generators to be active simultaneously.

In this context, the sources identification and estimation
problem can be considered as a recovery problem under
sparsity conditions and thus CS techniques can be exploited
for its solution. In particular, considering the global harmonic
model (4), the forcing vector u is considered to be block-
sparse: the sources associated with each load/generator are
considered as blocks of u that can be either zero or active (non-
zero). Every available prior information on harmonic behavior
of loads or plants can be considered, while defining the
problem, or introduced in the model as additional constraints.

Grouping the forcing terms by source, the unknowns vector
and the measurement matrix can be rearranged as:
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where u; (k=1,...,Qand [l =1,..., N) is the real part of
the forcing quantity of the /th possible injecting load/generator
for the harmonic & and an analogous definition holds for the
imaginary part. A}? ; = [a} ,aj ;] is the M X2 measurement
matrix that corresponds to the kth considered harmonic and
the Ith source. In the following, the rearranged source vector
in (5) is denoted as s £ Pu (P is the permutation matrix)
and the rearranged overall measurement matrix is indicated
by L = APT.

It is thus proposed to find a block-sparse solution for (5),
by looking for a £y-norm solution. The minimization problem
can be generally defined, in the CS context, as follows:

§ = argmin|[s||,, s.t. ||z — Ls||, <€ (6)
where e represents the bound of the noise energy [12] and

[lull,o is the block-fo-norm of u, that is the number of non-
zero source vectors s; = [ul . u? oo, uh ,uf |7 when
Byl Yha o7 s Uhg b Yk

l=1,---,N.
For example, when the sparsity level is S = 2, the
solution becomes § = [0,---,0,s%,,0,---,0,s%,,0,---,0]T,

pls P2’
corresponding to two injecting loads pl and p2.

It has been demonstrated (see [17]) that (6) is NP-hard
when recovering an unknown sparse signal. So, the solution is
usually computed with approximated methods, and, in partic-
ular, with algorithms seeking the solution of a corresponding
£1-norm (or block-¢;-norm in the specific case) problem. In

this way, the optimization problem becomes convex and, thus,
easier to solve. Several algorithms have been proposed in
the literature to face this problem [18]-[20]; in this paper
a Block Orthogonal Matching Pursuit (BOMP) algorithm is
adopted ([21], [22]). It is worth highlighting that while in
[14] a BOMP algorithm was used at single-harmonic level, the
new proposed algorithm is a BOMP algorithm performed at
injecting/polluting element (hereinafter referred to as “load”
for the sake of brevity) level. Since, in most cases, the
harmonic sources are the loads, the new algorithm will be
indicated as LBOMP in the following. A description of the
procedure will be reported in Section II-D.

C. Measurement Uncertainty

The estimation framework represented by (5) and (6) has to
be adapted to keep into account the measurement uncertainty.
In the following, it is assumed that each harmonic phasor in z
is measured with given accuracy. In particular, uncertainty in
the measurement of magnitude and phase angle is considered.
With most recent technologies, it is possible to imagine a
monitoring scenario where synchronized phasor measurements
for the harmonics of interest are available, e.g. from PMU-like
devices with GPS receivers, as those presented and widely

= . : +-€einstalled in [23], [24], and operator efforts in this perspective

are under way.

From suitable model of harmonic measurement uncertainty,
it is thus possible to define, for each phasor, maximum
deviations of magnitude and phase angle. Standard deviations
of such measurements are computed by considering the under-
lying probabilistic distribution and a given level of confidence.
In the following, uniform distributions are considered in the
absence of other information.

Each measured phasor can be expressed in z in terms of its
real and imaginary parts and the associated 2 x 2 covariance
matrix is obtained by uncertainty propagation law [25]. The

following expression is used:
2
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where zp, ; = |Zn, | and ¢y, ; are the magnitude and phase
angle of the ith measured phasor zj,, ; = z},, ;+jz, ; relating
to the kth considered harmonic.

In this paper all the measured phasors are considered
independent and thus:

b1 0
3, = ®)
0 XM
The analysis in the presence of correlations among harmon-
ics and measurements is out of the scope of this paper, but it

can be conceptually set into the same framework.
The model in (5) is thus changed as follows:

Z 2U T2=U"TLs+e, =L's+e, )



where U is obtained from the Cholesky factorization of 3,
(that is X, = U~TU) and U~ T denotes the transpose of
its inverse, which can be computed since the measurement
covariance matrix is positive-definite. This transformation is
introduced to weight all the measurements according to their
uncertainties and e,, is thus the result of measurement errors
whitening.

D. LBOMP procedure

The LBOMP algorithm is then applied to the measurement
vector z' and is composed of the following stages:

1) Measurement matrix columns normalization. This is the
first step of the algorithm and consists in the orthonormal-
ization of the columns of L’ inside each column-block.
The normalization is particularly important because it
allows treating together different sources (currents or
voltages) based on their effects. A new measurement
matrix and a new source vector are thus obtained:

z =L'DD !s+e, =L,s, + ey, (10)

where D is the orthonormalization matrix, L,, = L'D
and s,, = D~ 's. If only normalization is applied, D is

diagonal and its element d; ; = HL:"Z

(the inverse of

the euclidean norm of the [th column of L').

2) Block OMP iterative algorithm. Similarly to [14], the
estimation is obtained by a greedy procedure:
First, a vector of residuals is initialized to the measure-
ments, that is rg = z’.
Then, the iteration process starts. At each iteration ¢t > 0,
the algorithm finds and selects the maximum energy inner
product between the residual vector at previous iteration
r;;—1 and the 2¢) columns of L,, relating to a given load
(indicated as L, ;). Thus the selection of the source at
iteration ¢t can be written as:

Jit = (11)

arg max

-1 L
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"JH2
where I';;_; is the set of load indices already chosen
during previous iterations.

Once the new load is chosen, the corresponding submatrix
L, s, is added to the matrix that stores all the selected
columns as follows:

BFit = I:BFitf 1 anfit]

where Br,, , indicates the submatrix of L,, composed
of all the load submatrices selected during previous
iterations. Br,, is thus of size (M - Q) x (2- @ -4t) and
represents the measurement matrix for the newly defined
model. Defining s,,(I';;) as the subvector of s,, obtained
by keeping all the elements corresponding to the column
of L,, included in L,, (T';;), the sparse solution at iteration
it is obtained by the classic left-inverse computation as:

13)

(12)
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since Br,, is, in general, a rectangular tall matrix having
full column rank.

The residuals vector is then updated as ri; = z’' —

Br,,$,(T';;) and the process continues with next iteration
until the maximum number of iterations S is reached.

3) Once the estimated sources vector §,, is obtained, the
actual forcing terms are computed by applying de-
normalization and thus § = DS,,. The estimated vector
allows to compute the complex values corresponding to
the harmonic sources.

For the sake of comparison, in the Section III, the estima-
tions performed with the proposed method are compared with
those obtained with the single-harmonic estimator presented
in [14] and with a WLS estimator defined using Z;,l as
weighting matrix and L’ as model matrix. Since the system
can be underdetermined (typically M < N) this estimator
(indicated as WLS in the following) computes the minimum
Mahalanobis-norm (with respect to ¥,/) solution of the sys-
tem.

E. Detection of Harmonic Sources

The proposed algorithm selects at each iteration a candidate
load to be labeled as an injecting and potentially polluting
load and then refines the estimations of the forcing terms.
This allows to directly consider as non-polluting all the loads
that are not chosen during the process. Nevertheless, for a
meaningful detection of the main sources it is also necessary
to define post-estimation detection thresholds that prevent
the algorithm from considering as polluting even loads that
actually introduce negligible distortion. It is important to
highlight that the algorithms looks for significant harmonic
sources. Considerations on the harmonics propagation and on
the actual polluting role of each injection at each time instant
can be assessed only by targeted investigations, which can be
triggered by the proposed identification.

The discussion on possible thresholds is presented in Sec-
tion III, along with the detection results. Here it is important to
highlight that the following rule is applied for each harmonic
order hy and each load [:

Vhyt = (, [y a2, > thk,l) _ {true = polluting .
’ ’ false = non-polluting
(14
where ¢, ; is the threshold fixed for harmonic h; and load
l, and must be tailored to the needs of the operator. It can
generally depend on the type of the considered source, on
the network characteristics and it can be written as a function
of different parameters. In the following, it is considered as
varying with the harmonic order and the nominal absorption
characteristic of the load.

The rule in (14) is defined for each harmonic and thus it
is also applied in Section III to other methods for the sake
of fair comparison. Nevertheless it is important to underline
that the proposed method labels as polluting a load ! when
\/kQ:;L'Uhk,l = true, which means that at least one harmonic
generator for that load is above the chosen threshold.



III. TESTS AND RESULTS
A. Setup

The system used to validate the proposed methodology is a
single-phase distribution grid, derived from the IEEE 13 bus
distribution test feeder [26]. The model of the grid, previously
considered in the literature and already used also in [27], is
presented in Fig. 1.

Fig. 1. Test grid.

The grid is composed by a voltage supply (nominal rms
value E; = 2,4kV) and five loads, characterized by the
nominal active powers and corresponding nominal current,
as reported in Table I. The measurement devices location
is shown in Fig. 1. In particular, two devices, each with
multiple measurement channels, are considered at two typical
monitoring locations. No custom optimization of the device
location has been performed. It is worth noticing that device
technologies and architectures similar to those considered in
[28] can be used for a in field implementation.

Each load is a clustered load, represented also in terms of
an ohmic-inductive, RL, impedance. Loads clusters L3 and
L5 also contain capacitors, connected in parallel with the RL
impedance.

The non-linearity of the loads has been modeled by means
of forcing harmonic current sources. These forcing sources
have been placed in parallel with each load as harmonic
current generators, except for load L1 that is always considered
linear (see Fig. 1).

TABLE I
NOMINAL LOADS CONFIGURATION
Load P, [kW] I, [A]
L1 1333.33 55.51
L2 80.15 39.00
L3 73.90 34.46
L4 345.33 180.47
L5 140.72 65.07

The forcing current of the pth load (i,(t)) is obtained by
summing its odd harmonic components (i, ,(t)), up to the
9-th (h =1,3,5,7,9 and Q = 5) order, as follows:

Q
ip(t) = Zihk,p(t)
k=1

i}1k7p(t) = \/§Ihk,p SiIl(Q’]Thka + ¢hkqp)

(15)

where I, , and ¢y, , are, respectively, the rms value and the
phase angle for the pth load, referred to the harmonic order hy,.
Default values for each harmonic source generator are reported
in Table II, where the rms values are expressed in terms of
percentage with respect to the fundamental component of the
corresponding load (Z,, in Table I). The settings of the tests
permit enabling or disabling each forcing source, for single or
multiple harmonic orders.

The reference values used in the tests have been evaluated
by means of (15). Then, the uncertainties introduced by the
measurement system have been taken into account by means of
a Monte Carlo (MC) approach, based on 10000 simulations, in
which additive terms are extracted from uniform distributions.
In order to define the limit values of these distributions,
standard IEC 61000-4-7 [15] has been considered. It refers
to the accuracy requirements for both harmonic voltage and
current measurements, by defining two different classes: Class
I and Class II. In [15], the use of Class I instruments is
recommended for accurate measurements, such as standard
compliance and emission measurements, while Class II in-
struments are suggested for general purpose. In this paper,
focused on the correct detection of possible polluting loads,
Class I instruments have been considered. Class I uncertainties
are reported in Table III, where U,,, and I,,, are the measured
values of the voltage and current magnitudes for a generic
harmonic, respectively, and U,, and I,, are the nominal voltage
and current of the measurement device.

It is worth recalling that phase angle accuracies are not
considered in [15]. In this paper the accuracy of the phase
angle of the fundamental component is set to 1 crad, while
the accuracy for the harmonic phase angle measurement is
assumed to increase proportionally with the harmonic order.

The aforementioned accuracies are intended to represent the
overall uncertainty, also including uncompensated transducer
errors. However, if different uncertainty models are available,
e.g. for instrument transformers, these models can be included
in the procedure, without changing the core of the algorithm.

B. Results

In this section, the performance of the proposed method
is presented and compared with other methods previously
presented in the literature, in particular the method proposed
in [14] and a WLS method briefly introduced in Section II.

In the following, main results will be reported in terms of
the percentage of detection of the harmonic sources for each
method and in terms of accuracy for the estimation of the
harmonic current (or voltage) injected by those sources.

In this paper, the detection policy is based on a given
detection threshold, relaying on the idea that the injection of a
small harmonic current/voltage in the system can be negligible
if its effects do not significantly affect the behavior of the
grid. It is worth highlighting that the use of specific thresholds
in the methodology can allow preventing false detections and
neglecting the poorly polluting loads/generators, whereas a 0%
threshold corresponds to consider as polluting a load whenever
the corresponding algorithm output values for current/voltage
magnitude are greater than zero.



TABLE I
HARMONIC LOAD CONFIGURATION
harmonic Load L2 Load L3 Load L4 Load L5
order In (%] ¢nlradl In[%] ¢plrad] In[%] ¢plrad] Ip[%] &y [rad]
3 10.2 -0.48 19.3 -0.37 7.5 -1.53 21.1 -0.35
5 2.1 0.89 3.8 1.12 3.7 -0.33 4.1 1.16
7 1.6 2.58 3 2.59 0.7 2.40 32 2.59
9 1.0 -1.67 1.9 -1.67 0.5 -1.69 2.1 -1.67
TABLE III percentage of the nominal current) is indicated with a black

ACCURACY REQUIREMENTS FOR VOLTAGE AND CURRENT
MEASUREMENTS [15]

Class Measurements Conditions Max Error
Unm > 1%U, +5%Unm,

. Voltage Um < 1%Upn  +0.05%U,
I > 3%I, +5%1Im

Current Im < 3%In  +0.15%I,

A realistic criterion to determine whether a harmonic
component can be considered as really polluting or, on the
contrary, negligible, can be based on information available in
the technical report IEC/TR 61000-3-6 [16]. This report, which
is informative in its nature, deals with distorting installations
to MV, HV and extra-high-voltage (EHV) public power sys-
tems, considering as distorting an installation (which may be
either a load or a generator) that produces harmonics and/or
interharmonics. In particular, Table 2 in [16] defines indicative
planning levels for harmonic voltages. These levels are equal
or lower than the compatibility levels defined in Table 1 in
[16], and their values depend on the system under study. As
far as the loads currents are concerned, Table 5 in [16] defines,
for some odd harmonic orders, indicative limits relative to
the customer installations with an agreed power lower than or
equal to 1 MVA.

In this paper, these relative harmonic current emission limits
are considered as a starting point for the identification of
the thresholds. For the sake of simplicity, the limits for the
3rd and 9th harmonic currents, which are not included in the
mentioned Table 5 of [16], will be assumed to be, respectively,
5% (as for the 5th and 7th harmonics) and 3% of the nominal
current (as for the 11th harmonic), as shown in Table IV.

TABLE IV
HARMONIC CURRENT EMISSION LIMITS FROM [16], EXTENDED WITH
3RP AND 9™ HARMONICS

Harmonic order h 3 5 7 9 11 13
Emission Limits [%] 5 5 5 3 3 3

>13
500/h2

In real practice, such limits should be fixed depending on
the operator needs and grid characteristics. For this reason,
an analysis on possible effect of different values of detection
thresholds has been performed and discussed.

In the following, the detection percentage will be plotted
as a function of the defined threshold. In the plots, the values
of [16], defined as percentages of the nominal current, will
be reported in each figure with a red dotted line, labeled
as “STD”. Moreover, to better understand the behavior of
each methodology, the actual value of the polluting load (as

dotted line, labeled as REF.

This type of graphical representation aims at testing the
effects of different possible thresholds on the considered
methodologies. The ideal detection curve (of a given harmonic
due to an injecting load) can be represented by a step function
located around the actual value of that harmonic (REF):
the detection probability should be basically 100% for every
threshold value below the REF value, after which it should
fall quickly to 0%. Therefore, when a load does not inject any
harmonic current, the detection probability should be always
zero, irrespective of the threshold level.

Among the high number of tests that have been performed,
three different operating conditions are here discussed, to
exemplify possible behaviors:

Case 1.
Forcing loads L3 and L4;
harmonic order under analysis h = 3.
Case 2.
Forcing loads L4 and LS5;
harmonic order under analysis h = 5.
Case 3.
Forcing loads L3 and L4,
harmonic order under analysis h = 5, under the
hypothesis of load L3 producing harmonics without any
5-th harmonic content.

The three considered detection methods are the BOMP
proposed in [14] (blue line and circle marker in the figures),
the WLS (red line and diamond marker), and the new proposed
LBOMP methodology (yellow line and star marker).

Figure 2 shows the detection percentages as a function of
the threshold level in Case 1, focusing on the results obtained
for loads L3, L4 and LS. Both L3 and L4 loads are correctly
detected by all the methods (100%) whenever the detection
threshold is lower than the REF.

Looking at the detection ratios corresponding to load L5, it
is clear how the WLS algorithm can give a false detection,
indicating L5 as a polluting load, while both BOMP and
LBOMP detections are identical to the ideal curves (constantly
equal to zero). The WLS curve reaches the 0% detection, in
this specific case, with a threshold equal to 9% of the nominal
current.

These results are also reported in Table V, where the
percentages of occurrence of detection are showed when the
5% threshold is applied, according to [16].

The mean values and the standard deviation of the absolute
current magnitude estimation errors for Case 1 are reported in
Table VI. Both BOMP and LBOMP algorithms give the same
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Fig. 2. Harmonic detection - Case 1: forcing loads L3 and L4, harmonic order under analysis h=3.

CASE 1, PERCENTAGE OF OCCURRENCE OF SOURCE DETECTION

TABLE V
BOMP LBOMP WLS
L2 0 0 12.31
L3 100 100 100
L4 100 100 100
L5 0 0 14.95

results, while the WLS is characterized by a slightly higher
error and standard deviation.

Similar considerations hold when all the loads not indicated
as forcing in Case 1 actually inject harmonic currents, but
with smaller amplitudes (5% of Table II values have been
tested). The same detection rates are found for LBOMP, while
the estimation errors increase as expected (L3 and L4 mean
absolute errors increase, respectively from 0.13 A to 0.22 A
and from 0.2 A to 0.23 A). In the following, all the tests are
performed by setting at zero the harmonic currents injected by
the loads that are not indicated as forcing in the three cases.

TABLE VI
CASE 1, MEANS AND STANDARD DEVIATIONS OF CURRENT MAGNITUDE
ESTIMATION ABSOLUTE ERRORS FOR LOADS L3, L4 AND L5

BOMP [A] LBOMP [A] WLS [A]

mean std mean std mean std
L3 0.13 0.16 0.13 0.16 0.16 0.18
L4 020 024 020 024 032 037
L5 0 0 0 0 2.12 1.05

Figure 3 shows the results for Case 2. It is possible to
see, for each considered algorithm, the correct detection of
load L4. But, for the same case, the results for load LS5
underline the differences among the methodologies under test.
The LBOMP reaches 100% even for a threshold close to the
REF value, while the BOMP detection percentage is lower

(around 80%) also for low thresholds. Even worst, WLS has a
100% detection rate only considering a zero threshold, while
its capability of detection slowly decreases for increasing
threshold values Furthermore, when the threshold is above
REF, WLS still presents very large false detection rates.
Moreover, in the threshold range between 1% and 9%, the
WLS curve corresponds to a high standard deviation of the
estimation errors, as reported in the Table VIIL.

TABLE VII
CASE 2, MEANS AND STANDARD DEVIATIONS OF CURRENT MAGNITUDE
ESTIMATION ABSOLUTE ERRORS FOR LOADS L4 AND L5

BOMP [A] LBOMP [A] WLS [A]

mean std mean std mean std
L4 0.15 0.17  0.15 0.17 0.15 0.17
L5 0.16 020 0.16 0.19 1.20 1.39

Case 3 refers to the methodologies performance when load
L3 injects at all harmonic orders, except for h = 5. The
main results are reported in Table VIII, focusing on the non-
polluting harmonic order. Two values for the threshold, namely
the 5% defined in the IEC report [16] and one tenth of this
value, i.e. 0.5%, are considered to show the robustness of the
proposed methodology also in this particular case.

TABLE VIII
CASE 3, PERCENTAGE OF OCCURRENCE OF SOURCE DETECTION
BOMP LBOMP WLS
05% 5% 05% 5% 05% 5%
L2 0 0 0 0 98.3 11.53
L3 0 0 0 0 0.01 0
L4 100 0 100 0 100 0
L5 258 0 0 0 98.12 5.08

The percentages of detection in Case 3 underline once again
the validity of the proposed method. Looking at the results
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Fig. 3. Harmonic detection - Case 2: forcing loads L4 and LS, harmonic order under analysis h=5.

obtained with a very low detection threshold, the LBOMP
is the only method correctly detecting the real polluting
load. The other methods obtain either a low false detection
percentage (L5, BOMP) or false detections (L2 and L5, WLS).
Meanwhile, the false detections are significantly reduced or
eliminated by using the 5% threshold.

The mean and the standard deviation of the estimation errors
in Table IX underline the better identification performances
of the LBOMP with respect to the other algorithms. These
results confirm that, in general, whereas both LBOMP and
BOMP give good similar results in terms of estimation, the
WLS algorithm gives a less trustworthy estimation which is
characterized by higher errors and standard deviations.

TABLE IX
CASE 3, MEANS AND STANDARD DEVIATIONS OF CURRENT MAGNITUDE
ESTIMATION ABSOLUTE ERRORS FOR LOADS L3, AND L4

BOMP [A] LBOMP [A] WLS [A]

mean std mean std mean std
L3 0.08 0.03 0.06 0.03 0.07  0.04
L4 0.12 0.15 0.09 0.11 0.15 0.17

The reported results highlights the advantages of LBOMP.
Then, focusing on the proposed algorithm, further tests based
con Case 1 have been performed to demonstrate the effect of
different measurement configurations.

The performance of LBOMP with only 4 measurements
is considered removing vs. The detection results with a 5%
threshold are the same as before, with 100 % of occurrence of
source detection for both L3 and L4. However, as expected, the
absence of v3 affects the estimation of the forcing currents as
showed in Table X. In particular the estimation errors increase
of about 10 % for L4 with respect to Table VI.

TABLE X
CASE 1 WITHOUT v3, LBOMP SOURCE DETECTION RATES, MEANS AND
STANDARD DEVIATIONS OF CURRENT MAGNITUDE ESTIMATION
ABSOLUTE ERRORS FOR LOADS L3, L4

Occurrence of Detection mean std

[%] [A] [A]
L3 100 0.13 0.16
L4 100 0.22 0.27

In another test, considering the measurement placement of
Fig. 1, the uncertainty of harmonic phase angle measurements
is increased to a maximum deviation of 2h crad, while
keeping the maximum error for voltage and current magnitudes
as in Table III. With this assumptions the same detection
percentages are obtained, whereas the estimation errors of the
found sources become up to 12 % larger.

Finally, the robustness of the method is verified with respect
to network model accuracy. In particular, the MC simulations
have been also performed by including random variations
(from uniform distributions with a maximum deviation of
+20%) in the load parameters. Also in this case, source
detection is preserved, while the estimation results worsen
(see Table XI). It is important to underline that, in this test,
parameter uncertainty is not included in the model and thus
reflects a pure model noise.

TABLE XI
CASE 1 WITH UNCERTAIN LOAD PARAMETERS, MEANS AND STANDARD
DEVIATIONS OF CURRENT MAGNITUDE ESTIMATION ABSOLUTE ERRORS
FOR LOADS L3, L4

Occurrence of Detection mean std

[%] [A] [A]

L3 100 0.18 0.22
L4 100 0.43 0.53

IV. CONCLUSIONS

This paper has presented an efficient and accurate Compres-
sive Sensing Harmonics Detector, CSHD, for the identification
and the estimation of the main harmonic sources in a power
grid.

The proposed method relies on an appropriate definition of
the measurement model and of the uncertainty contributions
and it is based on a Block Orthogonal Matching Pursuit
algorithm performed at the polluting source level.

The procedure permits identifying the main sources regard-
less of the specific harmonic involved, and estimating the
corresponding harmonic currents injected in the grid.



APPENDIX

ORTHOGONALIZATION OF THE MEASUREMENT MATRIX

In general, D in (10) is a block-diagonal matrix, since it
includes all the orthogonalization bases for all the blocks of L’

relating to different loads. Denoting L as the (2-M-Q) X

(2-Q)

submatrix including the columns associated with load ! and

L, = 1] 1,171, ] the couple of Lj columns corresponding
to the load forcing term for harmonic order hy, D [th block
is:
B 1 _ l;ll ! lﬁl,L ]
o R T
0 R S
thlvl”z
D, =
_ lhgThg
IZQ,quthQJHZ
0 1
i [orgall,
(A.16)
ar
where [[by, 1|, = \/thg ! B h‘T’ and analogously
Lo
for ||bpg.i||,- Matrix Dy is block-diagonal because of the

orthogonality of the harmonics for each load.
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