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Abstract: 
Image reconstruction plays a key role in the application of electrical capacitance tomography (ECT). Although many different algorithms have been developed in the past, it is oftenusually difficult to obtain satisfactory images in all imaging regions by a single algorithm due to the the soft-field nature of ECT. To address this issue, Therefore, beyond the line of thought to develop new image reconstruction algorithms, a novel idea was this paper presents proposed in this worka method to combine the images reconstructed by two existing algorithms. More specifically, this was done based on thea concept of graph cut is proposed. To verify the method, images reconstructed by two single-step algorithms, i.e. linear back projection (LBP) and Tikhonov regularization, are combined. Preliminary tests with the implementation on images reconstructed by two single-step algorithms, i.e., linear back projection and Tikhonov regularization, show that the proposed methodstrategy can retain the advantages of both algorithms. and at the same time abandon their disadvantages. By this way, In numerical simulation, both data without noise and with noise are examined. the reconstructed images with the examination in both numerical simulations with and without noise andGood experimental results s are also obtained. l satisfied.
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1. Introduction
Since 1980s, pProcess tomography, since its inception in 1980s, has attracted considerable interestattention due to its ability to visualizesense and interpret complex two-phase flows moving within processes by visualization [1, 2]. There are many different process tomographyic modalities due to the differentce in sensing techniques, such as xX-ray computed tomography [3], Gamma-ray tomography [4], uUltrasound tomography [5], eElectrical capacitance tomography (ECT), and mMicrowave tomography [6]. Among themothers, ECT is the most mature one and hasshows advantages in terms of high temporal resolution, robustness, withstanding high temperature and high pressure, non-intrusive and non-invasive, and no radiation, which make it an ideal toolcandidate for the measurement of highly dynamic two-phase flows encountered in many industries [7, 8]. So far, ECT has been successfully applied to the measurement of gas-solids fluidized beds [9-11], oil pipelines [12], and combustion flame [13] and other industrial processes. 
The measurement principle of ECT is to reconstruct the permittivity distribution as a representation of the material distribution in the region of interest from the measured inter-electrode capacitance via a specific image reconstruction algorithm. With the reconstructed images, some key hydrodynamic parameters, such as the bubble size in athe gas-solids fluidized beds and oil fraction in anthe oil pipeline,s can be obtained. Therefore, image reconstruction algorithm plays a key role in the application of ECT [14]. However, there are two main difficulties, which are associated with imagethe reconstruction process. First, the inverse problemit is severely under-determined due to the number of raw capacitance measurements is far less than the number of pixels that need to be derived from the capacitance measurementscalculated. Second, the ill-posed and ill-conditioned property of the sensitivity matrix reconstruction process make the reconstructed imagesresults be sensitive to measurement noise. 
To address the abovese problems, many image reconstruction algorithms have been developed in the last two decades [9, 15-23]. For example, Xie et al. [22] proposed a simple linear back projection (LBP) method. Peng et al. [21] introduced Tikhonov regularization (TR), as a universal tool for ill- posed inverse problems, to ECT image reconstruction. Yang et al. developed a Landweber iterationn method [20]. Recently, Lei et al. used deep learning methodology to improve the reconstruction accuracy [16]. 
However, due to the soft-field nature of ECT, it is difficult usually impossible to obtain satisfactory images in all imaging regions by a single image reconstruction algorithm., and a common knowledge is that sSome algorithms are good at reconstructing permittivity distributions in a specific region while some other algorithms perform well in other regions. Considering this fact, an very intuitionistic idea is to combine the images reconstructed by two different complementary algorithms. However, in literature, researchers attemptedusually tended to develop new image reconstruction algorithms to improve the image quality of ECT. To our best knowledge, to date, little work has been attempted to combine the advantages of two existing algorithms, which may take advantages of the two algorithms. although this method shows a potential alternative. Therefore, beyond the line of thought toWe propose a new method to combine two images reconstructed by differention algorithms to improve image quality in different regions, this work focuses on the combination of images reconstructed by two existing algorithms. Although the idea is straightforward,. 
 a sSimply stacking e images stacking method or weighted superposition has a particularthe difficulty in selecting appropriate weighting factor values for each image pixel. Another avenue that dDirectlyly synthesissynthesizing two images to a new one can easily overcome thisese difficultyies by making use of introducing the concept of computer graphics. TWith the ability to findextract similarity in a local pixel similarities and implement provide bases for image segmentation and synthesis, a widely used computer graphicasl technique known as graph cut has been used attracted attentions for science and engineering research recently. A variety of graph cut-based methods based on graph cut have been developed to construct digital images in the fields of remote sensing [24, 25], medical science [26], and geophysics and geostatistical modeling [27, 28]. These reports show som e Ssimilarly, ECT ities to the idea of combining the images reconstructed by different image reconstruction algorithms may be combined by making use of graph cutin ECT. 
This paper presents To this end, a novel sa method trategy based on graph cut is proposed to combine the images reconstructed by two existing single-step algorithms, algorithms in this work. 
To show the effectiveness of the proposed strategy, this work focuses on two commonly used single-step algorithms for ECT, i.e., LBP and TR, which. These two algorithms are widely used for on-line image reconstructionmeasurement due to their simplicity and fast speed. However, the limitation of these two algorithms is that neither of them can provide satisfactory images. Many researches indicated that Iimages reconstructed by the LBP method show no artifacts in the near-wall region but are blurred in the central region [9, 14, 29]. While for the TR method, conversely, although good results can be obtained good results in the central region, but there are always artifacts in the near-wall region [9, 14, 23]. Therefore, these two algorithms are complimentary and can be combined together proposed strategy is hopeful to improve the image quality by combining the images reconstructed by these two algorithms to a new image. 
The organization of this article is as follows. First, ECT imaging model and LBP and TR reconstruction methods are briefly revisited. Then, the proposed graph cut-based combination strategy is introduced. Next, the proposed strategy is implemented on images reconstructed by the LBP and TR methods, and evaluation results based on numerical simulations and experiments are given and discussed. Finally, the paper ends with some conclusions.

2. Fundamentals of ECT imaging model and image reconstruction algorithms
2.1  ECT sensor imaging model
Peng et al. [29] investigated the effect of the number of measurement electrodes on the image quality and they recommended 12-electrode sensors for most applications. Therefore, a circular 12-electrode sensor with the electrode covering ratio of 0.9 iwas modeled. It has been confirmed by Ye et al. [30] that such an electrode covering ratio can achieve good image quality. Figure 1 shows the detailed dimensions of the modeled sensor with ?? distribution displayed. UsuallyIn a complete measurement procedure, one of the electrodes is selected in turn as the excitation electrode and others as detection electrodes to obtain the inter-electrode capacitance between all possible electrode pairs. With this measurement strategy, the number of independent capacitance measurements is 66.

[image: ]
Figure 1. Simulated 12-electrode ECT sensor.

There are two major computational problems in ECT model, i.e., the forward problem and the inverse problem [9, 14]. 
The forward problem is to determine the inter-electrode capacitance from a predefined sensor and permittivity distribution. The relationship between them is governed by 
the following equation:
	 	(1)

where ε0 is the permittivity of vacuum, V is the potential difference between two electrodes forming the capacitance, εr(x,y) and φ(x,y) are the relative permittivity and potential distributions in the sensing domain, respectively, and Γ is the electrode surface. 
[image: ]
Figure 1. Schematic representation of the simulated 12-electrode ECT sensor.
To simplify calculation, a linear equation in a normalized form is usually used to be approximation to replace equation (1)Eq.1.
:
	  	(2)

where g is the normalized permittivity and λ is the normalized capacitance defined as 

	  	(3)

where CM indicates the inter-electrode capacitance for an arbitrary permittivity distribution and CH and CL are the capacitances when the sensor is full of high- and low-permittivity materials, respectively.
In real measurement, the capacitance data contain noise. Therefore, equation (2)Eq.2 changes to:
	  	(4)

where e is the measurement noise. This equation can also be used to add Wwhite Ggaussian noise is usually assumed forto simulation data.	Comment by Wuqiang: conflict
[bookmark: OLE_LINK62][bookmark: OLE_LINK63][bookmark: OLE_LINK17][bookmark: OLE_LINK18]The parameter S in equationsEqs. (2) and (4) is the normalized sensitivity matrix, which represents the change in the normalized capacitance of each electrode pair in response to a perturbation in the normalized permittivity distribution. The construction of the sensitivity matrix requires discretization for implementation. In this work, a grid of 64 × 64 square elements is used, which results in 3228 effective pixels in the circular imaging area.
The sensitivity matrix is usually calculated by numerical simulation of potential distribution in a vacuum permittivity distribution based on the quasi-static field assumption and then by dot multiplying two potential distributions.

	  	(5)

[bookmark: OLE_LINK19]where  is the sensitivity between the ith and jth electrodes at the pixel p(x,y) and φi(x,y) and φj(x,y) are the potential distributions when the ith and jth electrodes are excited by applying voltages of Vi and Vj, respectively.
Then, S* is normalized as

	  	(6)

where Smn and S* mn are the elements in the mth row and nth column of S and S*, respectively, and N is the number of pixels in the imaging area.

2.2  Image reconstruction algorithms
The inverse problem of ECT is to reconstruct the permittivity distribution from the measured inter-electrode capacitance via a specific image reconstruction algorithm. In this section, two commonly used single-step algorithms, i.e., LBP and TR, are introduced.

2.2.1 LBP
LBP was the first developed algorithm for ECT [31]. Its principle is to replace the inverse of S, which does not is non-existent, with the transpose of S, as formulated by
:
	  	(7)

where  the reconstructed normalized permittivity and uλ is a vector of ones with the same dimension as λ.

2.2.2 TR
TR is a well-established technique to solve ill-posed problems and has been extensively used in ECT image reconstruction [9, 18, 23]. Its formula is
:
	  	(8)

where μ is a regularization parameter and I is an N × N identity matrix. In general, a small value of μ can give a reliable approximation to the solution, but a too small value of μ may lead to a singularity. As suggested by Guo et al. [9], μ takes the value of 0.0001 in this work.	Comment by Wuqiang: very small

3. Graph cut-based combination strategy
In animation movies and video games, a large number of new images showing similar features as the sampled or training images are needed to describe continuing movements or background landscapes. Image synthesis technique is usually used to generate these new images by assembling irregular pieces of the sampled images and adjust them to create seamless transitions [32]. From this point view, the computer graphics technology has the potential to combine images reconstructed by two algorithmsbe a good global ECT image reconstruction method by combining images obtained by two existing algorithms. The synthesized image can keep consists of good reconstruction pieces of these two images existing algorithms with the local artifacts in one image replaced by another images from the other algorithm.
Graph theory deconstructs a graph or digital image to nodes and edges that connect each node and its nearest nodes. A graph can be partitioned into two disjoint subsets by a cut, and the subsets are disjoint when they do not share any elements. As long as two images have an overlap, graph cut techniques can analysanalyzeis the similarity of the overlap and identify the optimal cut to seam the two images together along the most similar passage way. Consequently, the graph cut problem is also known as a min-cut problem. Figure 2 showsillustrates the theorem and process of the graph cut method. 

[image: ]
Figure 2. G Theorem and process of the graph cut method.

The gGraph cut combination (GCC) method considers the overlap region δ between images obtained by Aalgorithms A and B as a graph containing two terminals (denoted by T1 and T2, respectively), a set of nonterminal nodes (denoted by hollow circle), and edges connecting neighbor nodes (denoted by solid line). The terminal T1 denotes the nodes connecting to image reconstructed by Aalgorithm A and the terminal T2 denotes the nodes connecting to image reconstructed by Aalgorithm B. The values at nonterminal nodes (NT) are the absolute difference of the two images. For example, the value of node n1 is denoted as δ(n1):

	 	(13)

where  and  are the values at node n1 from images reconstructed by Aalgorithms A and B, respectively. The capacity of the edges connecting n1 and n2 denoted as e(n1, n2) is calculated by:

	 	(14)

Once an edge is cut, the cut cost is assigned as the capacity of the edge. Graph cut techniques, also known as the min-cut theorem, find the cut that has the minimum total cost among all possible cuts throughout the graph to separate the non-terminal nodes into two sets: one set attached to T1 and the other attached to T2. According to the attaching label, the new image is constructed by valuing the pieces from images reconstructed by Aalgorithms A and B together. The graph cut-based method combines images from different sources to a new image in a way as seamless as possible. Many algorithms have been developed for graph cut problems and the fast augmenting path algorithm proposed by Boykov and Kolmogorov [33] is used in this work.

4. Implementation on images reconstructed by the LBP and TR algorithms
In this work, the proposed graph cut-based combination strategy is implemented on images reconstructed by the LBP and TR algorithms to show its availability to take advantages of both algorithms. Figure 3 shows the process of a graph cut implementation. The true distribution is shown in Figure 3a. Figures 3b and 3c show the corresponding images reconstructed by the LBP and TR algorithms, respectively. It is obvious that the image reconstructed by LBP shows a good result in the near-wall region with poor accuracy in the central region, while TR can perfectly present the central region with artifacts around the near-wall region. As a result, the overlap of these two images, as shown in Figure 3d, has several pieces with a relatively large difference. The large difference part can be identified with a user defined threshold. Figure 3e shows the difference pieces with a threshold of 0.85 (i.e. the value above 85% nodes). These pieces are divided into three kinds according to the location: (1) the pieces around the boundary are defined as terminal T1 attaching with the image reconstructed by the LBP algorithm, (2) the pieces in the center are defined as terminal T2 attaching with the image reconstructed by the TR algorithm, and (3) the pieces throughout the imaging area as long as other nodes are the NT nodes. The graph cut-based method labels these NT nodes as shown in Figure 3f and seam the corresponding images together to a new image as shown in Figure 3g. As can be seen, the combined image improves the results by taking advantages of the two algorithms.

[image: ]
Figure 3. Implementation of the graph cut method on images reconstructed by the LBP and TR.

Figure 3 illustrates the process of a graph cut implementation. The true distribution is shown in Figure 3a. Figures 3b and 3c show the corresponding images reconstructed by the LBP and TR algorithms, respectively. It is obvious that the image reconstructed by the LBP algorithm shows a good result in the near-wall region with poor accuracy in the central region, while the TR algorithm can perfectly present the central region with artifacts around the near-wall region. As a result, the overlap of these two images, as displayed in Figure 3d, has several pieces with a relatively large difference. The large difference part can be identified with a user defined threshold. Figure 3e displays the difference pieces with a threshold of 0.85 (the value above 85% nodes). These pieces are divided into three kinds according to the location, that is, the pieces around the boundary are defined as terminal T1 attaching with the image reconstructed by the LBP algorithm, the pieces in the center are defined as terminal T2 attaching with the image reconstructed by the TR algorithm, and the pieces throughout the imaging area as long as other nodes are the NT nodes. The graph cut-based method labels these NT nodes as shown in Figure 3f and seam the corresponding images together to a new image displayed in Figure 3g. As can be seen, the combined image observably improves the results by taking advantages of the two priori algorithms.
Note that the user defined threshold and the definition of terminals are the key for final results. The principle in determining the threshold is the identification of the most obvious difference of the overlap and a value of 0.85 is used in this work for the combination of images reconstructed by the LBP and TR algorithms.

5. Evaluation results and discussion
Both numerical simulations with and without noise and experiments were performed to evaluate the effectiveness of the graph cut-based combination method withhen implemented on images reconstructed by the LBP and TR algorithms (GC_comb for short in the following text).
The structure of the ECT sensor used in numerical simulations has been showndetailed in Figure 1. The flowchart of the simulation procedure is as follows. First, a specific permittivity distribution iwas defined in the imaging area. The low and high permittivity values of the materials used waares 1 and 3, respectively. Then, the forward problem iwas solved to obtain the inter-electrode capacitance. Finally, the obtained capacitance iwas converted to the reconstructed permittivity distribution using a specific image reconstruction algorithm. Such an arrangement allows it conveniently to calculate tThe correlation coefficient (CC) is calculated, which reflects the spatial similarity between the true and reconstructed distributions, to evaluate the performance of different algorithms in a quantitatively manner. The definition of CC is 
as
	  	(15)

where  and  are the mean values of  and , respectively. A larger CC indicates a better image quality [9, 14]. 
Figures 4a and 4b show respectively the axial and cross-sectional views of the ECT sensor used in experiments. 12 measurement electrodes made of self-adhesive copper sheet are stuck onto the outside wall of a quartz glass tube with the inner and outer diameter of 8 and 8.9 cm, respectively. The vertical height of the electrodes is 4 cm and the width is specified to keep the electrode covering ratio the same as that in the simulation. Two axial end screens located at both axial ends of the measurement electrodes and an outer screen wrapped around the tube are connected to ground to eliminate external interference. An AC-based ECT system [34] is used for capacitance measurement. Besides some simple distributions with stationary objects, the ECT sensor can also be installed on a fluidized bed, as shown in Figure 4c, to measure complex distributions in a highly dynamic system. The gas and particles used in experiments are gas and Al2O3 powder, which have the permittivity of 1 and 4, respectively. Considering the particle packing concentration is about 0.63, the high-permittivity used for calibration is 2.89 ().

[image: ]
Figure 4. Schematic representation of the ECT sensor used in experiments: (a) the axial view, (b) cross-sectional view, and (c) installed on a fluidized bed.
Figures 4a and 4b show respectively the axial and cross-sectional view of the ECT sensor used in experiments. 12 measurement electrodes made of self-adhesive copper conducting sheet were stuck onto the outside wall of a quartz glass tube with the inner and outer diameter of 8 and 8.9 cm, respectively. The vertical height of the electrodes was 4 cm and the width was specified to keep the electrode covering ratio the same as that in the simulation. Two axial end screens located at both axial ends of the measurement electrodes and an outer screen wrapped around the tube were connected to ground to eliminate external interference. An AC-based ECT system [34] was used for capacitance measurement. Besides some simple distributions with stationary objects, the sensor can also be installed on a fluidized bed, as shown in Figure 4c, to measure complex distributions in a highly dynamic system. The gas and particles used in experiments are gas and Al2O3 powder, which have the permittivity of 1 and 4, respectively. Considering the particle packing concentration is about 0.63, the high-permittivity used for calibration is 2.89 (). 
5.1 Evaluation by numerical simulations
Case 1
In Case 1, six simple permittivity distributions of 0 and 1, as shown in Figure 5, were used as the true normalized permittivity distributions to evaluate thee image qualitys reconstructed by different methods, in which cases 1a-1c represent bubble flows and cases 1d-1f represent stratified flows. 
[image: ]
Figure 5. Images reconstructed by different methods using simulation data and stationary objects.

QThe quantitative comparison associated with CC for different methods is shownplotted in Figure 6. As can be seen, for the three bubble flows, the images reconstructed by the LBP method are blurred in the central region and CC is also lowest in all algorithms, which make it difficultimpossible to identify the number of bubbles in the imaging area. ByWhile for the TR method, although there are artifacts are shown  in the near-wall region, the bubbles in the central region can all be well reconstructed. For the three stratified flows, the LBP method has the highest CC, which is in agreement with the conclusion by. Peng et al. [29] also found that the LBP method can generateprovide good images quality for stratified distributions. Even so, it is noted that the boundary between the high- and low-permittivity materials by the LBP method is very indistinct. In contrast, bywhen the TR method is used, a clear boundary can be obtainedgiven. But still, the artifacts in the near-wall region worsen the overall image quality, as indicated by the lowest CC for these three distributions in Figure 6. 
The GCC method proposed in this work can combine the advantages of both LBP and TR. Therefore, images reconstructed by the GCC method are all satisfied. As shown in Figure 5, the artifacts in the near-wall region are all removed and good images in the central region reconstructed by TR are obtained. 
Figure 6 also shows the average CC for all tested distributions with different methods. Clearly, the average CC obtained by the GCC method is higher than both LBP and TR.

[image: ]
Figure 6. Correlation coefficient of different methods using simulation data and stationary objects.
The GC_comb method proposed in this work can combine the advantages of both the LBP and TR methods, meantime, abandon their disadvantages. Therefore, images reconstructed by the GC_comb method are all satisfied, as shown in Figure 5 that the artifacts in the near-wall region are all well removed and good image quality in the central region reconstructed by the TR method is retained. Figure 6 also shows the average CC for all tested distributions with different methods. Clearly, the average CC obtained by the GC_comb method is higher than either the LBP and TR methods.
[image: ]
distributions.
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Figure 6. Correlation coefficient of different methods using simulation data with stationary object distributions.
Case 2
To evaluate the performance of different image reconstruction algorithms, it is a common practice to perform numerical simulations and/or experiments with stationary objects [35]. In this way, only some simple distributions with the 0-1 model like those shown in Figure 5 can be tested. However, real distributions in a two-phase flow system isare much more complex due to the so-called chaotic behavior [36]. Therefore, it is necessary to introduce the two-phase flow characteristics to the evaluation of an image reconstruction algorithm. Recently, Guo et al. [9] reported such a framework based on computational fluid dynamic (CFD) and electrostatic simulations, by which the reconstructed images can be compared to the material distributions extracted from CFD simulation results that are used to analog the true distributions in a two-phase system. 
Figure 7 shows six permittivity distributions following the framework of Guo et al. [9] for a gas-solids fluidized bed, alongside the reconstructed images by different image reconstruction algorithms. The corresponding quantitative comparison regarding CC is shown in Figure 8. Within the six distributions, Case 2a represents the appearance of single bubble, Cases 2b-2d represent multiple bubbles, and Cases 2e-2f represent stratified distributions. As can be seen, similar to the analysis in Case 1, the GCC method can retain the good image reconstructed by TR in the central region, and at the same time avoid artifacts in the near-wall region by combination with LBP. Therefore, satisfactory results can be obtained by the GCC method. It is noted that LBP gives the highest CC for the stratified distributions. However, the results for the single and multiple bubble distributions by LBP are bad. Therefore, the GCC method can be applied in general. 

Figures 7 and 8 show the results by the Landweber iteration algorithm [20], which is the most popular iterative algorithm for ECT, to assess the GCC method. Clearly, the image quality obtained by the GCC method is similar to that by the Landweber iteration algorithm (see Figure 8). In the cases of stratified distributions shown in Cases 2e-2f, the results by the GCC method are even better. To obtain similar image quality, the time needed for the Landweber iteration algorithm on a PC with an Intel Core i5 3.30 GHz is about 0.3 s, while the time cost by the GCC method is only 8 ms. Note that one of the most attractive advantages of ECT is its high temporal resolution and the typical measuring speed of an ECT system is about 100 frames per second [8]. Therefore, an algorithm that can reconstruct images at a speed faster than 100 frames per second is desirable to achieve on-line real-time measurement. Obviously, the reconstruction time by the GCC method can meet such requirement, i.e. reconstruct images at a speed faster than 100 frames per second, which is fast enough to characterize the hydrodynamic behavior in most two-phase flow systems, such as gas-solids fluidized beds [11]. 
[image: ]
Figure 7. Images reconstructed by different methods using CFD simulation dataresults as the input permittivity distributions.
[image: ]
Figure 8. Correlation coefficient of different methods using CFD simulation dataresults as the input permittivity distributions.

Figure 7 shows six permittivity distributions obtained following the framework of Guo et al. [9] for a gas-solid fluidized bed, alongside the reconstructed images by different image reconstruction algorithms. The corresponding quantitative comparison regarding CC is shown in Figure 8. Within the six distributions, case 2a represents the appearance of single bubble, cases 2b-2d represent multiple bubbles, and cases 2e-2f represent stratified distributions. As can be seen, similar to the analysis in Case 1, the GC_comb method can retain the good image quality reconstructed by the TR method in the central region, and at the same time avoid the appearance of artifacts in the near-wall region by the combination with the LBP method. Therefore, very satisfactory results can be obtained by the GC_comb method. Again, it is noted that the LBP method give the highest CC for the stratified distributions. However, the results for the single and multiple bubble distributions by the LBP method are very bad. Therefore, the GC_comb method can be applied in a more general sense.
In Figures 7 and 8, the reconstructed results by the Landweber iteration algorithm [20], which is the most popular iterative algorithm for ECT, are also plotted as a reference to assess the proposed GC_comb method. Clearly, the average image quality obtained by the GC_comb method approaches that by the Landweber iteration algorithm (see Figure 8). In the cases of stratified distributions shown in cases 2e-2f, the results by the GC_comb method are even better. To approach the similar image quality, the time needed for the Landweber iteration algorithm on a PC with an Intel Core i5 3.30 GHz is about 0.3 s, while the time cost by the GC_comb method is only 8 ms. Note that one of the most attractive advantages of ECT is its high temporal resolution and the typical measuring speed of the commercial ECT systems is about 100 frames per second [8]. Therefore, an image reconstruction algorithm that can reconstruct images at a speed faster than 100 frames per second is necessary to take full use of the commercial ECT systems to achieve the goal of on-line measurement. Obviously, the reconstruction time by the GC_comb method can meet the requirement to reconstruct images at a speed faster than 100 frames per second and is enough to characterize the hydrodynamic behavior in two-phase flow systems such as gas-solid fluidized beds [11]. 
Case 3
Image reconstruction with ECT is a typical ill-posed problem, and whose results areis sensitive to measurement noise. The typical signal-to-noise ratio (SNR) of an ECT system is usually higher than 50 dB [37, 38]. Therefore, to evaluate the noise immunity of the proposed method, 50 and 60 dB white Gaussian noise were added to the inter-electrode capacitance for distributions shown in Case 1 and Case 2. Figures 9 shows some examples reconstructed by different image reconstruction algorithms using the data withcontaining noise. The average CC for all 12the twelve distributions in Case 1 and Case 2 is shown in Figure 10.
As can be seen, the added noise has no significant effect on image quality by LBP for all distributions, which is consist with previous study [35]. For other methods, with the increase in the noise level, image quality becomes worse. Nevertheless, the GCC method is always superior to LBP and TR, indicating that the GCC method can be effectively used in noisy environments.

As can be seen, the added noise has no significant effect on the image quality by the LBP method for all distributions, which is consist with previous study [35]. While for other methods, with the increase in the noise level, the image quality gets worse. Nevertheless, the GC_comb method is always superior to the LBP and TR methods, indicating that the GC_comb method can be effectively used in the noisy environments.
[image: ]
Figure 9. Images reconstructed by different methods using simulation data withcontaining different noise levels.
[image: ]
Figure 10. Correlation coefficient of different methods using simulation data withcontaining different noise levels.


5.2 Evaluation by experiments
Case 4
To validate the simulation results and further verify the feasibility as well as the noise immunity of the GCC methodproposed GC_comb method, experiments work with both stationary object distributions and typical gas-solids flow patterns in a gas-solids fluidized bed were performed. In this case, the reconstructed images with stationary object distributions by different methods are shown, as seen in Figure 11. The SNR of the used ECT system is about 58 dB, which is between the two SNR levels used in numerical simulations. It can be clearly seen in Figure 11 that the images reconstructed using the LBP and TR methods show similar features to those in numerical simulations, i.e.say the images by the LBP method are blurred in the central region and the images by the TR method show many artifacts in the near-wall region. After the combination using the GC_comb method, the disadvantages of both the LBP and TR methods are kept off. Finally, satisfactory image quality can be obtained by the GCC method GC_comb method with respect to the number and shape of the objects in the imaging area. 
[image: ]
Figure 11. Images reconstructed by different methods using experimental data with stationary object distributions.

Case 5
[image: ]
Figure 12. Images reconstructed by different methods using experimental data from a gas-solid fluidized bed.
In this case, the reconstructed images from a real gas-solid fluidized bed by different methods are shown, as seen in Figure 12. Although true distributions are unknown, it is still clear in Figure 12 that the GC_comb method can extract the distribution reconstructed by the TR method in the central region and the distribution reconstructed by the LBP method in the near-wall region to form a new image. Such results provide a powerful proof for the feasibility of the GC_comb method in reconstructing material distributions in a gas–solid two-phase flow system.
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Figure 12. Images reconstructed by different methods using experimental data from a gas-solids fluidized bed.

In Case 5, the reconstructed images from a real gas-solids fluidized bed by different methods are shown in Figure 12. Although true distributions are unknown, it is still clear in Figure 12 that the GCC method can extract the distribution reconstructed by TR in the central region and the distribution reconstructed by LBP in the near-wall region to form a new image. The results confirm the feasibility of the GCC method in reconstructing material distributions in a gas–solids two-phase flow system. 


6. Conclusions
AIn this work, beyond the idea to develop a new image reconstruction algorithm, a newovel graph cut-based combination methodstrategy iwas proposed to combine the images reconstructed by two existing image reconstruction algorithms for ECT. As an example, the methodproposed strategy iwas implemented on images reconstructed by two single-step algorithms, i.e., LBP and TR. Both numerical simulations and experiments associated with stationary object distributions and gas-solids flow patterns in a gas-solids fluidized bed were performed to show the effectiveness of the proposed GC_comb method. The results demonstrate that the GC_comb new method can retain the good image quality in the central region reconstructed by the TR method and at the same time avoid the artifacts by taking advantages of the LBP method in the near-wall region. InBy this way, very satisfactory results can be obtained by the graph cut-based combination methodGC_comb method. Numerical simulations data with noise-added data and experiments show that the overall performance obtained by the graph cut-based combination method GC_comb method is always superior to the LBP and TR methods, indicating that the graph cut-based combination method GC_comb method has good noise immunity. In addition, the typical reconstruction time cost by the graph cut-based combination method GC_comb method is about 8 ms, which can achievegive an image reconstruction speed faster than 100 frames per second. Therefore, the graph cut-based combination method GC_comb has the potential to be used effectively forin the on-line measurement. 
Due to the difficulty in image reconstruction with ECT, it ismay be difficult to obtain satisfactory images in all imaging regions by a single algorithm. Although only somethe examples of the combination of the LBP and TR algorithms arewere presented, this work opens a new promising way offor combining different image reconstruction algorithms to make use of integrate the advantages and abandon the disadvantages of the combined methods of different algorithms. Therefore, the strategy proposed method in this work may also be used to the combineation of other image reconstruction algorithms following a similar framework if they when two studied algorithms are complementary. Moreover, with the ability to remove artifacts and integrate training patterns with any dimensionality, the proposed method hasshows tremendous potential for 3D ECT image reconstruction which has many gaps and limitations up to now. 
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