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 
Abstract— Monitoring voltage harmonics represents one of the 

most important tasks in power quality assessment. In particular, 
the employed instrument transformer plays a key role in the 
achieved accuracy. Its harmonic measurement performance is 
typically evaluated by measuring its frequency response function. 
However, nonlinearities may have a non-negligible impact on 
measurement uncertainty: for example, this occurs as far as 
inductive voltage transformers are considered. This paper 
proposes a simple technique allowing the compensation of the 
most significant nonlinear effect, which is the harmonic 
distortion produced by the large fundamental primary voltage. 
The method is firstly derived and introduced by means of 
numerical simulations, and then implemented through a proper 
experimental setup. Results highlight remarkable accuracy 
improvements when realistic voltage waveforms are measured. 
 

Index Terms—Error compensation, Harmonic distortion, 
Instrument transformers; Voltage transformers; Voltage 
measurement; Calibration; Nonlinear systems; Frequency 
response; Power system harmonics; Measurement uncertainty; 
Frequency-domain analysis 
 

I. INTRODUCTION 

HE continuously increasing penetration of power 
converters, high voltage dc systems, nonlinear loads and 

generation from renewable energy sources (e.g. wind farms 
and photovoltaic plants) we experienced in the last years have 
dramatically boosted the importance of power quality 
assessment at all voltage levels. In this scenario, one of the 
crucial tasks is represented by voltage harmonics monitoring 
[1]-[3]. It is well-known that the metrological performance of 
the employed voltage transformer (VT) has a major impact on 
the achieved accuracy. The relevance of the topic is also 
highlighted by a recent IEC technical report [4] discussing the 
employment of instrument transformers for power quality 
measurements. 

Thanks to their favorable mix in terms of performance, 
reliability and long-term stability, conventional inductive 
transformers are still widely employed as VTs in both 
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transmission and distribution grids. Therefore, their outputs 
are often used for harmonic monitoring, although it should be 
stressed that their metrological performance is guaranteed only 
at the rated frequency [5]. Many works discussing the 
suitability of inductive VTs to measure harmonic voltages can 
be found in the scientific literature [6]-[11]. Most of these 
papers model the transformer as a linear time invariant (LTI) 
system characterized by an uneven frequency response due to 
the windings leakage inductances, stray capacitances as well 
as the related resonances. Methods for extending their 
bandwidths by connecting external capacitors, by properly 
designing their windings [12] or by adding compensation 
filters [13], [14] have been proposed in the past. 

However, inductive VTs also suffer from a nonlinear 
behavior due to the ferromagnetic core which may jeopardize 
their accuracy when employed for harmonic measurements 
[4], [15]. One of the simplest approaches that allows taking 
into account nonlinearities without introducing a nonlinear 
representation, is that based on the measurement of the Best 
Linear Approximation (BLA) [18], [19]. The BLA is defined 
as the frequency response function (FRF) which, when applied 
to the secondary voltage, guarantees the most accurate 
measurement (in the least squares sense) for a given class of 
periodic input voltage signals. With respect to a small-signal 
FRF, the BLA ensures better accuracy since it is able to 
include some nonlinear effects produced by the VT excited by 
this specific class of signals. These nonlinearities biasing the 
BLA estimate are often known as “systematic” [20]. On the 
other hand, it should be noticed that most part of the 
nonlinearities in a VT cannot be merged into a linear model. 
Therefore, the FRF of the VT appears to change according to 
the primary voltage waveform: this is symptom of 
undermodeling. Nonlinearities causing such effect are 
generally called “stochastic”. From these considerations, it is 
clear that a better reconstruction of the primary voltage 
spectrum is viable only by using a more complex model than a 
FRF. Only in this way a larger amount of nonlinearity can be 
included. 

The effect of VT nonlinearities is magnified because of the 
typical spectral content of voltage waveforms in ac power 
systems, thus consisting of a largely prevailing fundamental 
component superimposed to harmonics that are much smaller 
in amplitude. As a result, the impact of nonlinearities is small 
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at the fundamental component, but it becomes quite noticeable 
when measuring low-order harmonics. This behavior can be 
accurately represented by using proper nonlinear models that 
have been specifically developed for power system devices 
[16], [17] starting from the frequency-domain Volterra 
approach. The proposed method has been applied to the 
characterization of medium voltage inductive VTs [21], and 
results highlight the remarkable accuracy achieved in 
predicting the secondary voltage spectrum. Furthermore, 
analyzing the experimental data [21] it can be noticed that the 
strongest nonlinear effect in VTs is represented by the 
harmonic distortion (HD) produced by the large fundamental 
component. In [22], for the first time the authors proposed a 
simple and computationally effective technique allowing 
compensating the impact of this phenomenon. In this work, 
the procedure has been experimentally implemented in order 
to enhance the harmonic measurement capability of an 
inductive VT. Results are reported and deeply discussed, and 
confirm that the proposed method allows a strong accuracy 
improvement. 

II. HARMONIC DISTORTION COMPENSATION MODEL 

Let us consider a VT operating in an ac power system 
characterized by the rated angular frequency ω0; let us 
introduce v1 as the primary voltage waveform, supposed to be 
periodic with fundamental angular frequency ω0 and 
containing harmonics up to the M-th order. In general, the 
voltage transformer can be considered as a (weakly) nonlinear 
time-invariant system. Excluding complex and chaotic 
behaviors (a typical example is ferroresonance in inductive 
VTs), the corresponding steady-state response is represented 
by a secondary voltage waveform v2 characterized by the same 
period. Under these assumptions, it is convenient to study the 
behavior of the VT in the frequency domain, thus introducing 
the primary and secondary voltage spectra V1(jmω0) and 
V2(jmω0), respectively; for the sake of brevity, in the 
following jmω0 will be replaced with the corresponding 
harmonic index m. The generic m-th order harmonic V2(m) 
(with m  2) appearing in the secondary voltage can be 
decomposed into the sum of three different contributions: 

 

        2 2, 2, 2L NLV m V m V m N m    (1) 

The first term V2,L(m) represents the linear contribution to 
the transformer output, and hence proportional to the primary 
voltage harmonic having the same frequency: 

 

      2, 1L LV m H m V m  (2) 

HL(m) is the FRF characterizing the underlying linear part of 
the VT. The second term, V2,NL(m) is produced by the 
nonlinear behavior of the VT; in general, it is a function of all 
the primary voltage spectral components. Finally, the third 
contribution N2(m) takes into account random measurement 
noise. 

Let us suppose that measurement noise is negligible. If the 

VT were a perfectly LTI system, a virtually exact 
reconstruction of the primary voltage spectrum could be 
performed from the secondary side by inverting the previously 
measured FRF HL(m), as proposed by several papers [6]-[8]. 

Voltage waveforms in ac power systems are quasi 
sinusoidal, namely made of a strong fundamental component 
superimposed to harmonics that are characterized by 
considerably smaller amplitudes. This peculiar spectral 
distribution makes that secondary voltage harmonics are 
considerably influenced by nonlinearity, while the 
fundamental component is much weakly affected in relative 
terms. For the same reason, the strongest nonlinear effect is 
represented by the harmonic distortion (HD) due the 
fundamental primary voltage [17], [21]. Under this 
assumption, other nonlinear phenomenon can be neglected; 
this means that it is possible to consider V2,NL(m) as dependent 
on the fundamental primary voltage only. Since nonlinearity 
has small impact on the fundamental term, V2,NL(m) can be 
written also as a function of the fundamental secondary 
voltage. Hence, substituting (2) into (1) it is possible to obtain 
an expression of the primary voltage components: 

 

        1 2 1,L HDV m K m V m V m   (3) 

where V1,HD(m) = -V2,NL(m)/HL(m) is a function of the 
fundamental secondary voltage only, while KL(m) is the 
inverse of HL(m). It is clear that an explicit expression of V1,HD 
would allow enhancing the accuracy of harmonic 
measurements: it permits to considerably reduce the 
definitional uncertainty which conventional frequency 
response compensation suffers from. In this respect, by 
adopting a frequency-domain polynomial approach to model 
the HD contributions [23], it can be written as: 

 

        *
1, 2 2

2

, 1 1p m
I

i i

HD p m
i

V m K i i V V


   (4) 

subject to the constraints: 
 

 
p m

p m

i i m

i i i

 
  

 (5) 

* denotes the complex conjugate operator, ip and im are 
nonnegative integers while I  2 is the maximum degree of the 
employed polynomial model. Therefore, HD affecting the m-
th order harmonic of the secondary voltage can be 
decomposed in up to I-1 contributions. Each of them is 
characterized by its order i, representing the number of 
interactions of the fundamental component (or its negative 
frequency image) with itself. These terms appearing in the 
summation (4) can be rewritten as: 
 

          *
2 2 2, 1 1 1p m ii i i jm

p mK i i V V K m V e   (6) 

where: 
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  2 1V   (7) 

(5) together with the definitions of ip and im, the bounds of 
the summation appearing in (4), results in the following system 
of equations: 

 
2

2 m

i I

i i m

 
  

 (8) 

This implies that an even harmonic m is affected only by 
contributions characterized by even orders i; the opposite 
happens for odd harmonics. Since m  2, imposing the 
constraints resulting from (8), the HD contribution (4) can be 
rewritten as: 

      
2

1, 2
0

1
m

I m

ii jm
HD

i

V m K m V e 

 
  



   (9) 

with     denoting the floor function. Therefore, it is trivial to 

find that the number of coefficients defining the HD for the 
generic m-th order harmonic is given by: 

 

   max 0, 1
2HD

I m
c m

        
 (10) 

It is also obvious to notice that I-th degree HD affects 
harmonics up to the order m = I. The overall number of terms 
(cHD plus the linear contribution) as a function of the harmonic 
index m and the maximum order of the polynomial model I is 
reported in Fig. 1. 

 

Fig. 1. Number of coefficients of the proposed compensation method as a 
function of the harmonic index m and the maximum order I. 

Using (9) in (3), the expression of V1(m) results: 
 

          
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Adopting vector notation, (11) can be rearranged as: 
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W K  (13)  

Once having defined the compensation model, the vector of 
coefficients K(m) has to be estimated for every considered 
harmonic order m. This mandates for at least L independent 
constraints, where L represents the maximum length of K(m), 
thus resulting: 

 

 
2

2
2

I
L

    
 (14) 

Therefore, identification requires measuring the steady-state 
response to a set of P  L periodic, independent and quasi-
sinusoidal primary voltage waveforms. The generic p-th 
observation allows writing an equation similar to (12) for each 
spectral component, thus relating the primary voltage 
harmonics V1,id

[p](m) with the corresponding column vector 
Wid

[p](m). Considering all the injected signals, the following 
vector equation can be written: 

      1,id idm m mV W K  (15) 

where: 
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W

W V

W

   (16) 

Assuming that Wid(m) is full-rank, it is possible to compute 
its Moore-Penrose pseudoinverse, and in turns obtaining the 
least-squares estimation of the coefficients: 

      †
1,id id idm m mK W V  (17) 

After the identification procedure, the primary voltage 
harmonics can be easily reconstructed from a given secondary 
voltage spectrum by using (12). 

III. NUMERICAL SIMULATIONS 

The proposed approach has been applied by means of 
numerical simulations for compensating nonlinearities in a 
low voltage, inductive VT having 50 Hz rated frequency and 
20 VA rated burden. Said VT has been modeled with the usual 
Steinmetz equivalent circuit shown in Fig. 2. The values of the 
resistances, of the leakage inductances and of the turn ratio are 
reported in TABLE I. The nonlinear magnetizing inductance 
Lm has been represented with the single-valued flux linkage-
current relation shown in Fig. 3; odd symmetry is assumed, 
hence the model produces purely odd nonlinearities. 
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Fig. 2. Equivalent circuit of the VT. 

TABLE I 
VOLTAGE TRANSFORMER PARAMETERS 

V1n [V] k R1 [Ω] R2 [Ω] Ll1 [mH] Ll2 [mH] RL [Ω] 

200 2 6 1.25 4.75 1.19 1600 

 

 

Fig. 3. Flux linkage – current characteristic of the magnetizing inductance Lm. 

The target of these simulations is comparing the accuracy 
achieved by employing three different approaches to 
reconstruct the primary voltage spectrum: 

 Using the ratio obtained from a conventional 
calibration at the rated frequency 

 Using the BLA of the VT to reconstruct the 
primary voltage  

 Using the proposed HD compensation of the VT 
to reconstruct the primary voltage. 

A. Design of the Excitation Signals 

In order to compare the performances achieved by the 
aforementioned methods, a proper set of primary test voltages 
has to be considered. As in the previous section, v1 is assumed 
to be a multisine waveform having 50 Hz fundamental 
frequency and realistic harmonic content. A possible choice is 
using the limits for fundamental and harmonic voltages in 
public distribution grids prescribed by standard EN 50160 
[24]. 

Limits up to the 25th harmonic order have been considered. 
[24] states that over a one week observation window, the ten 
minute average root mean square value of each voltage 
harmonic should remain below the corresponding limit for 
95% of the time. Furthermore, [24] requires that in the same 
observation period, the ten minute average root mean square 
of the voltage should be within 10% of its rated value for 

95% of the time. Hence, these limits can be considered as 95th 
percentile values of the probability density functions (PDFs) 
characterizing the amplitudes of both fundamental and 
harmonic voltages. On the other hand, the standard does not 
provide information about the shapes of these PDFs nor about 
the phases. 

Fundamental amplitude has been supposed to be normally 
distributed with mean equal to its rated voltage and a standard 
deviation so that it falls within ±10% of the rated value with 
95% probability. Instead, harmonic phasors are supposed to 
follow zero-mean, circular complex normal distributions, thus 
having uncorrelated, normally distributed real and imaginary 
parts. Therefore, harmonic amplitudes follow Rayleigh 
distributions characterized by parameters that can be 
computed from the limits reported in [24], while the phases 
are assumed to be uniformly distributed in the interval [-π, π]. 

B. Model Identification 

A set of P = 100 primary voltage waveforms has been 
generated by sampling the previous probability density 
functions. These excitation signals have been applied to the 
model of the voltage transformer, and the corresponding 
steady-state secondary voltages have been obtained. 

Firstly, the conventional ratio has been computed by using 
the mean values of primary and secondary fundamental 
voltages over the whole set of identification signals. Then, the 
Best Linear Approximation has been evaluated by following 
the procedure presented in [18], [19]. Finally, the proposed 
HD compensation technique has been considered. The 
identification is carried out according to the procedure 
explained in Section II for degrees ranging from two to eleven. 

C. Performance Comparison 

In [22] comparison has been performed by using the same 
set of identification signals. However, it is interesting to 
evaluate the accuracies of the different approaches by 
sampling a new set of P = 500 signals from the previously 
defined PDFs. For the generic p-th signal and m-th order 
harmonic, the Total Vector Error (TVE) has been computed. It 
represents the distance in the complex plane between the 
estimated primary voltage phasor, V1,e

[p](m), and the actual 
one, V1

[p](m), thus allowing to consider phase and ratio errors 
simultaneously. In measurement applications, it is significant 
to express it as percentage of the actual amplitude of V1

[p](m) 
 

    
   

 

[ ] [ ]
1, 1

[ ]
1

TVE
p p
ep

m p

V m V m
m

V m


   (18) 

As synthetic performance index, TVEm
95(m) has been 

obtained as the 95th percentile value of TVEm
[p](m) for a given 

harmonic order and compensation method. 
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Fig. 4 reports the TVEm
95 values achieved by the different 

approaches. Since HD compensation works only when m ≤ I, 
harmonic indexes ranging from two to eleven are reported. 
When conventional calibration is employed, the highest error 
value (4.5%) occurs at the third harmonic, which is typically 
the most affected by nonlinearity, as shown in other works 
[15], [18], [19]. Error is significantly lower at the fourth one 
(clearly not affected by odd harmonic distortion), but it 
becomes to rise for higher-order components mainly because 
of the filtering behavior of the VT. When the BLA is 
employed to reconstruct the primary voltage, the 95th 
percentile value of TVEm at the third harmonic remains almost 
unchanged. On the contrary, considerable improvement is 
achieved at higher frequencies. For example, using 
conventional calibration, TVEm

95 exceeds 4.2% for the 
eleventh harmonic, but it can be reduced to 0.45% by using 
the BLA. According to what expected, HD compensation 
allows excellent results for low-order harmonic measurements. 
In particular, a reduction of the TVEm

95 of about an order of 
magnitude is obtained at the third (0.11 % vs 4.5%) and fifth 
harmonic (0.24% vs 2.48%) in spite of a slight increase in 
complexity (six coefficients for the third harmonic, five for the 
fifth). From another point of view, this remarkable accuracy 
improvement highlights the significant impact of HD on 
harmonic measurements. 

Although the TVE represents an effective synthetic index of 
harmonic measurement performance, the accuracy of 
instrument transformers is conventionally expressed by ratio 
and phase errors, which can be employed both for 
fundamental [25] and harmonic components [26]. Therefore, 
for each measurement method, m-th order harmonic and p-th 
test signal, ratio error can be computed as: 

 

    
   

 

[ ] [ ]
1, 1

[ ]
1

p p
ep

abs p

V m V m
e m

V m


   (19) 

 
while phase error is defined as: 
 

          [ ] [ ]
1, 1

p p p
ee m V m V m      (20) 

For each method and harmonic order, the average values of 
ratio and phase errors have been computed over the P test 
signals, together with their 2.5th and 97.5th percentile values as 
dispersion indicators. Fig. 5 and Fig. 6 report average errors 
(continuous lines) as well as 2.5th and 97.5th percentiles values 
(dash-dot lines) when the primary voltage is reconstructed by 
using a constant ratio obtained by conventional calibration, 
BLA compensation and eleventh order HD compensation. 
When looking at the ratio errors (Fig. 5), it can be noticed that 
average values are small, namely they are virtually unbiased. 
However, there are very significant differences in terms of 
spread. When considering the conventional calibration and the 
BLA compensation, percentile bounds are very similar. The 
broadest dispersions occur for the third and the fifth order 
harmonics, resulting in 95th percentile error bands of 6.7% and 
1.6%. Instead, by using the proposed eleventh order HD 
compensation, these values decrease to about 0.17% and 
0.32%, respectively. Conversely, HD compensation is not able 
to increase the accuracy reached by using the BLA for even 
harmonics, since they are not affected by the purely odd 
nonlinearity produced by the modeled VT. 
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Fig. 5. Numerical simulations: ratio errors achieved by conventional 
calibration, BLA compensation and 11th order HD compensation. 

Different considerations arise when looking at the phase 
errors, depicted in Fig. 6. In this case, using conventional 
calibration results in a biased phase error showing an almost 
linear increase with frequency. The reason is directly related 
with the filtering behavior of the VT, which can be 

 
Fig. 4. Numerical simulations: TVEm 95th percentile values achieved by conventional calibration (first bar), BLA compensation (second bar) and HD 
compensation of different orders (last five bars). 
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compensated by using the BLA approach. In fact, both BLA 
and HD compensations result in unbiased phase errors. 
However, thanks to the capability of HD models to take into 
account nonlinearity, the dispersions of the phase errors are 
reduced considerably, in particular for low-order, odd 
harmonics. As an example, when the third harmonic is 
considered, the 95th percentile interval is reduced from 5.9 
crad (BLA compensation) to 0.17 crad (eleventh order HD 
compensation). 

 
Fig. 6. Numerical simulations: phase errors achieved by conventional 
calibration, BLA compesnation and 11th order HD compensation. 

IV. EXPERIMENTAL SETUP 

The proposed nonlinear compensation method has been 
experimentally applied to a conventional 50 Hz inductive VT, 
whose characteristics are reported in TABLE II. The 
experimental setup developed in [27] for the characterization 
of voltage transformers has been employed; its block diagram 
is depicted in Fig. 7. 
 

TABLE II 
VOLTAGE TRANSFORMER SPECIFICATIONS 

V1 [V]  V2 [V] BURDEN [VA] CLASS 

200 100 20 0.5 

 

 

 

Fig. 7.  Experimental setup. 

A PC manages both generation and data acquisition by 
means of a National Instruments NI USB-6356 board 
characterized by 16-bit resolution and simultaneous sampling 
with maximum rate of 1.25 Msamples/s per channel. Its 
synchronized sampling and generation capability allows 
obtaining negligible spectral leakage. Input channels introduce 
a total harmonic distortion which is lower than -80dB, namely 
negligible with respect to that expected from the VT under 

test. An analog output of the board is connected to an 
AETechron 7548 industrial power amplifier, whose 
specifications are listed in TABLE III. 

 
TABLE III 

POWER AMPLIFIER SPECIFICATIONS 

VMAX [V] IMAX [A] BANDWIDTH THD SNR GAIN 

200 43 
DC–30 kHz, 

(+0.1, –0.5 dB) 
below 0.1% >120dB 20 

Since the amplifier output voltage is not high enough to 
drive the VT under test above its rated voltage, a 100 V/400 V 
step up transformer has been employed. The secondary 
winding of the VT under test has been connected to its rated 
burden. 

Both primary and secondary voltages have been acquired by 
means of calibrated resistive dividers which have been 
connected to the data acquisition board through Analog 
Devices AD215BY isolation amplifiers operating as voltage 
followers; their FRFs have been measured and compensated. 
After calibration, the two voltage measurement channels are 
characterized by gain uncertainty below 10-4 and phase 
uncertainty lower than 0.2 mrad in the frequency range 
50÷1250 Hz. 

V. EXPERIMENTAL RESULTS 

The target of the experimental activity is assessing the 
harmonic measurement performance that can be achieved by 
using the proposed HD compensation method considering 
different orders I, ranging from two to eleven. As for the 
simulations, results have been compared to those obtained by 
using conventional calibration or BLA compensation. 

The input voltage v1(t) that has to be applied to the VT 
under test may be significantly different from a scaled replica 
of vg(t) because of the response of the power amplifier and, 
mostly, of the step up transformer. In order to compensate at 
least for linear effects (uneven frequency response in the 
considered range), the small-signal FRF between v1(t) and 
vg(t) has been estimated by injecting a random phase multisine 
signal [20]. Afterwards, the obtained FRF has been employed 
to prefilter the desired excitation signals. Of course, nonlinear 
artifacts cannot be cancelled with this approach. However, 
when both the power amplifier and the step-up transformer 
operate within their rated capabilities, these nonlinearities can 
be neglected since they just produce a minor change in the 
actual class of excitation signal. Therefore, their impact on the 
overall performance of the methods is negligible. 

As for the numerical simulations, P = 100 quasi-sinusoidal 
multisine signals with 50 Hz fundamental frequency have 
been sampled from the PDFs defined in Section III.A. These 
signals have been injected to the VT under test while 
measuring primary and secondary steady-state voltages. A 2 s 
observation interval been chosen, and each channel has been 
acquired with 200 kHz sampling rate. Discrete Fourier 
Transform (DFT) has been used to compute input and output 
spectra and frequency-domain averaging has been employed 
in order to reduce the impact of measurement noise. For each 
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generic m-th order harmonic, Wid(m) has been obtained and 
the different models coefficients can be estimated as 
previously explained. 

Once having identified the different models, they have been 
employed to compensate the response of the VT under test 
when supplied with a different set of P = 1000 multisine 
signals belonging to the same class. Achieved harmonic 
measurement performances have been compared in terms of 
TVEm, as well as by using conventional magnitude and phase 
errors. 

The 95th percentile values of TVEm are reported in Fig. 8, 
showing that experimental results confirms the trends already 
observed in numerical simulations. Focusing on the third 
harmonic, the error decreases from 4.8% to 0.2% by using the 
third order HD model, consisting of only two coefficients in 
this case. It can be noticed that experimental results denote 
even a better improvement with respect to simulations. On the 
other hand, no improvement is achieved by further increasing 
the degree of nonlinearity. The proposed model allows a slight 
error reduction for second and fourth harmonics; this means 
that the VT also suffers from very weak even nonlinearity. 

The trend highlighted by TVEm
95 is very similar to what can 

be noticed when analyzing ratio and phase errors; results are 
shown in Fig. 9 and Fig. 10, respectively. 

 
Fig. 9. Experimental results: ratio errors achieved by conventional calibration, 
BLA compensation and 11th order HD compensation. 

The shapes of the ratio error versus harmonic order plots 
resemble what observed from simulation results. Constant 
ratio and BLA achieve unbiased ratio errors, but the dispersion 

is rather broad. As an example, the 95th percentile band is 
about 7.1% for the third harmonic. HD compensation permits 
to reduce this interval below 0.28%, hence more than 25 
times. Conversely, HD models result in marginal 
improvements at even harmonics with respect to the BLA, 
since the VT suffers mostly from odd nonlinearity. 

Conversely, phase errors show a different trend with respect 
to what previously observed from simulations results. In fact, 
while in simulations using a constant ratio results in a 
significantly biased phase error, this is not so evident from 
experimental results. This means that the modeled VT has a 
filtering behavior due to a rather large leakage inductance that, 
on the contrary, is just barely noticeable in the VT under test. 
As a consequence, the BLA compensation results in similar 
performance as that achieved by using a constant ratio. 
However, as in numerical simulations, harmonic distortion 
compensation allow a strong reduction of the 95th percentile 
band for low-order, odd harmonics. As examples, when third 
and fifth harmonics are considered, the corresponding 95th 
percentile bands are reduced from 6.8 crad to 0.28 crad, and 
from 1.8 crad to 0.35 crad, respectively. 
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Fig. 10. Experimental results: phase errors achieved by conventional 
calibration, BLA compesnation and 11th order HD compensation. 

VI. CONCLUSION 

Conventional inductive VTs are often employed to measure 
voltage harmonics even if their metrological performances are 
guaranteed only at their rated frequency. Therefore, primary 
voltage spectrum may be measured with unsatisfactory 
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Fig. 8. Experimental results: TVEm 95th percentile values achieved by conventional calibration (first bar), BLA compensation (second bar) and HD 
compensations of different orders (last five bars). 
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accuracy if a constant turn ratio is applied to the secondary 
voltage harmonics. The reason is related to the complex 
behavior of the VT; dynamics and nonlinear effects interact 
with each other and can be hardly separated. In order to 
enhance the measurement performance of inductive VTs 
devoted to power quality applications, the employment of 
linear compensating filters has been proposed for a long time. 
This work introduces an innovative method capable of 
drastically reducing also the strongest nonlinear effect, which 
is the harmonic distortion produced by the large fundamental 
component, a typical feature of electrical quantities in ac 
power systems. The technique has been firstly validated 
through numerical simulations by considering a large set of 
realistic primary voltage waveforms; the achieved accuracy is 
compared with that obtained with a conventional calibration or 
by using the best FRF compensation (BLA approach). 
Afterwards, an experimental activity performed on a low 
voltage inductive VT has been carried out. Results confirm the 
remarkable performance of the method: errors at the third and 
fifth harmonics are reduced by almost an order of magnitude 
in spite of the simplicity and the small set of coefficients to be 
estimated. It is worth noticing that the proposed method is 
general, so it can be applied for compensating the effects of 
harmonic distortion occurring in other types of voltage 
transformers, even including low-power instrument 
transformers. The reduced computational cost makes it 
suitable to be implemented in instruments allowing harmonic 
measurements as well as in merging units. 
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