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 
Abstract—Time-varying nonlinear systems widely exist in 

various fields of engineering and science. Effective identification 

and modeling of time-varying systems is a challenging problem 

due to the nonstationarity and nonlinearity of the associated 

processes. In this paper, a novel parametric modeling algorithm is 

proposed to deal with this problem based on a time-varying 

nonlinear autoregressive with exogenous input (TV-NARX) 

model. A new class of multiple beta wavelet (MBW) basis functions 

is introduced to represent the time-varying coefficients of the TV-

NARX model to enable the tracking of both smooth trends and 

sharp changes of the system behavior. To produce a parsimonious 

model structure, a locally regularized ultra-orthogonal forward 

regression (LRUOFR) algorithm aided by the adjustable 

prediction error sum of squares (APRESS) criterion is 

investigated for sparse model term selection and parameter 

estimation. Simulation studies and a real application to EEG data 

show that the proposed MBW-LRUOFR algorithm can effectively 

capture the global and local features of nonstationary systems and 

obtain an optimal model, even for signals contaminated with 

severe color noise.  

 
Index Terms—EEG, locally regularized ultra-orthogonal 

forward regression (LRUOFR), multiple beta wavelet (MBW), 

parametric estimation, system identification. 

I. INTRODUCTION 

OST processes in nature including biomedical signals 

exhibit nonstationary properties where numerous 

transient components are associated with the underlying 

psychological activities. Identification of nonstationary systems 

is a challenging problem and has been attracting widespread 

attention [1-3]. One common strategy to characterize such 

nonstationary processes is to establish a time-varying nonlinear 

autoregressive with exogenous input (TV-NARX) model [4]. 

The wide application and popularity of this model mainly stems 
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from its easy-to-compute parameters [5]. 

Many approaches have been proposed to identify TV-NARX 

models, which can be broadly classified into three categories: 

multi-model approach [6], adaptive estimation algorithm [7], 

and basis function expansion method [8, 9]. In the first strategy, 

a global system model is divided into a set of local models by a 

time shifting window, then the local model can be treated as a 

stationary process and identified by a time-invariant modeling 

approach [10]. However, many nonstationary signals, e.g. EEG, 

cannot simply be partitioned into stationary time series since it 

is difficult to determine the size of the window. For example, if 

the window is too large then it is not appropriate to treat the 

segments to be stationary; if, however, the window is too small, 

the segments turn out to be too short that the estimates may be 

unreliable. In the second strategy, the TV coefficients of the 

model are considered as random processes with certain 

stochastic model structure [11, 12]. The main limitation of this 

scheme is the possible tracking lag presented in the estimated 

parameters due to the slow convergence rate, which makes 

these approaches inaccurate for tracking abrupt changes of the 

underlying signals [13, 14]. Recently, the third strategy 

combining basis function expansion with linear regression 

approaches has been proposed to identify nonlinear TV 

systems, where TV parameters are approximated by a set of 

predefined basis functions [14, 15]. In this way, the unknown 

TV parameters can be converted into a set of constant 

coefficients of the basis functions [16]. Specifically, the 

implementation of this strategy can be briefly described in two 

steps: step 1, a basis function expansion approach is used to 

transform the original TV model to a time-invariant regression 

problem [8]; step 2, a model structure selection algorithm, such 

as the classical orthogonal forward regression (OFR) algorithm 

[17] or its variants [18, 19], is applied to obtain a parsimonious 
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model which includes a relatively small number of regression 

terms. 

In the first step, an over complete set of basis functions, with 

good presentation properties, is employed to approximate the 

TV coefficients. Hence, an appropriate selection of the basis 

functions is critical to guarantee the performance of the 

identified model if we want the model to be sparse [16]. For 

instance, numerical experiments showed that the Legendre 

polynomials are efficient for smoothly or slowly changing 

parameters, and Walsh functions generally work well for 

piecewise stationary TV parameters [20]. For a system with 

sharply or rapidly changing parameters, Li et al. introduced 

multi-wavelets formed by cardinal B-splines to approximate the 

TV coefficients, which has been verified in simulations and real 

biological signals [19, 21]. Although the multi-wavelets can be 

an appropriate choice in the expansion process, the simple 

waveform structure and few variants of cardinal B-splines limit 

its ability to capture local information of TV signals [22]. To 

overcome this limitation, a novel class of basis functions 

formed by multiple beta wavelets (MBWs) is proposed in this 

paper, where the beta wavelet is a compactly supported one-

cyclic wavelet introduced in the work of Oliveira et al. [23]. 

Beta wavelets have been widely used in some fields due to the 

excellent flexibility and good approximation characteristics, 

such as image processing and signal compression [24, 25]. 

However, to the best of our knowledge, not much work has been 

done in the existing literature on exploiting the attractive 

properties of beta wavelets and applying them to TV nonlinear 

system identification. Particularly, considering that the beta 

wavelet has a waveform similar to a neural pulse signal and 

possesses various variations controlled by two characteristic 

parameters [23], this study will explore its power in capturing 

the local information of the abrupt positions of TV coefficients. 

The main tasks of the second step in system identification are 

model structure detection and model reduction, which aims to 

remove redundant regression terms and produce a parsimonious 

model structure. Although the OFR algorithm is effective and 

commonly applied in the process of system identification, the 

determination of the optimal model structure is still a 

challenging work when the system is not persistently excited or 

data are severely contaminated by noise [26]. To improve the 

performance and accuracy of resulting model structure, Li et al. 

employed the advanced ultra-OFR (UOFR) algorithm to 

identify significant regressors and find a more accurate model 

compared to the classical OFR algorithm [19]. The UOFR 

algorithm detects the correlation among the data points of time 

series, and determines the model structure by using the hidden 

information that is not fully explored by the traditional least 

squares type algorithms. However, the UOFR method ignores 

the interference of overlapping information among candidate 

regressors, resulting in the inclusion of spurious or redundant 

model terms in some cases. In order to further improve the 

performance of the UOFR approach for dealing with 

overlapping information in signals, this paper introduces a 

locally regularized UOFR (LRUOFR) algorithm for system 

identification, which assigns an individual regularization 

parameter to each candidate term and iteratively updates the 

parameters to  achieve optimal estimates [27, 28]. In fact, 

LRUOFR not only considers the interconnections among the 

sample points of the signals [19], but also evaluates an 

individual influence of each candidate regressor in the OFR 

process [28]. As illustrated in the example presented in section 

III-A, the proposed LRUOFR approach takes into consideration 

more regressor information and is capable of selecting 

significant terms in the model identification process. 

In this paper, a novel MBW-LRUOFR algorithm is proposed 

for the identification of TV-NARX model, where a finite 

number of predefined MBW basis functions are used to 

approximate the TV coefficients, and the model structure is 

determined by using the LRUOFR algorithm together with the 

adjustable prediction error sum of squares (APRESS) criterion 

[26, 28, 29]. The MBW basis functions  are locally linearly 

independent and have many variations [23], which is capable of 

providing a powerful tool for representing TV signals. The local 

regularization-based method has been proven to enhance the 

sparsity of the resulting model and effectively avoid numerical 

ill-conditioned problems during the selection of significant 

terms [28]. With the incorporation of the APRESS cross-

validation criterion, the model size (i.e., the number of model 

terms to be included in the final model) can be well determined 

[29]. One of the main contributions of this study is that for the 

first time, the MBW basis function is adopted to approximate 

TV coefficients; it adds an effective choice to the existing basis 

function expansion approach and thus enhances the capability 

of the existing approach to model and track rapid changing 

signals. The main advantage of the proposed MBW-LRUOFR 

algorithm is that it is more efficient to select significant model 

terms under the condition that data are not persistent or highly 

noisy. In order to illustrate the effectiveness of this method for 

tracking time-varying signals, the identification performance is 

compared to other three methodologies: the classical recursive 

least squares (RLS) algorithm [30], the Bspline-UOFR method 

[19] and the MBW-UOFR algorithm. Simulation and 

application results have shown the effective identification 

performance of the proposed method for nonstationary systems 

and further illustrated that the new proposed framework is 

capable of tracking time-varying signals. 

The remainder of this paper is organized as follows. In 

section II, the identification methodology is introduced. More 

specifically, section II-A describes the construction process of 

a TV-NARX model; section II-B introduces the properties of 

beta wavelets and the implementation of MBW basis function 

expansion method; section II-C elaborates the theoretical 

framework of the LRUOFR algorithm with the APRESS cross-

validation criterion. In section III, three numerical simulations 

are given to illustrate the effectiveness of the proposed method. 

In section IV, an application based on EEG signals is 

implemented to verify the practicality of the proposed scheme 

for solving real data modelling problems. Finally, the 

conclusion of this paper is shown in section V. 
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II. METHODOLOGY  

A. The Time-Varying NARX Model 

A wide class of input-output nonstationary systems can be 

represented by a nonlinear autoregressive with exogenous 

inputs (NARX) model [31], which can be expressed by: 

     ( 1), , ( ), (t 1), , (t )
y u

y t f y t y t n u u n e t        (1) 

where  y t  and  u t  denote the output, input sequences, with 

maximum lags yn  and 
u

n , respectively;  f   is a nonlinear 

function characterizing the input and output relationship;  e t  

denotes an error term (noise, residual, etc.) which is assumed to 

be independent, bounded and uncorrelated with the input  u t

.  

The unknown nonlinear function f  can be expressed in 

various types of model structures, such as fuzzy logic-based 

models, rational models, and neural networks. The most 

common expression is the polynomial regressions, which has 

been used for a wide range of nonlinear systems. The NARX 

model can be further expressed in a linear-in-the-parameters 

form [32]: 

     T
y t t e t φ θ                               (2) 

where  tφ  is the regression vector which contains monomials 

of lagged output and input terms; θ  is the associated parameter 

vector, and  e t  is a zero mean noise sequence. 

When modelling a TV system, the parameter vector θ  in the 

NARX model can be replaced with a TV parameter vector 

 tθ  to obtain a polynomial TV-NARX model: 

1
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

 

 
φ θ

               (3) 

where G  is the degree of the nonlinearity; p  and q  are the 

numbers of output and input terms, respectively, which satisfy 

p q g  ; 
1 1, 1 1p q p q

K K K

k k k k  
   is a simple representation 

of multiple sums, with 1, ,
i

k K ;  tθ  indicates the TV 

parameter vector which can be expressed as 

          T

0,1 0,1 1,0 ,= 1, , , , , 1, , , , , ,p qt t K t t K K t     θ . 

The model (3) may consist of a large number of candidate 

terms and the number depends on the degree ( G ), the order of 

terms ( p  and q ), and the corresponding maximum lag ( K ). 

However, not all candidate terms are significant in general, 

those that are redundant or make no or little contribution can be 

removed from the initial model. The identification process of 

model (3) includes two main tasks: the selection of significant 

terms from a pre-specified candidate term dictionary and the 

estimation of corresponding parameters. However, the standard 

sparse model identification algorithm, such as the OFR 

algorithm [17, 18, 31] and principal component analysis (PCA) 

[33], cannot directly identify a TV model due to the assumption 

that the individual model parameters are constants.  

In order to effectively estimate the change of TV parameters, 

an effective identification procedure, which makes use of a new 

class of MBW basis functions, is introduced in this paper. The 

basic idea is that each of the time-varying coefficient is 

approximated by using the MBW basis functions, in this way, 

the identification of TV model is converted to a time-invariant 

regression model problem which can be solved by means of a 

conventional model structure detection algorithm, such as the 

OFR algorithm or its variants.  

B. Multiple Beta Wavelet Basis Functions 

From the work of [23], a new continuous beta wavelet is 

derived from the beta distribution by using ‘blur’ derivatives, 

which is defined as: 

     
 

1 1

, 1

1 1

,

t a b t
t

t a b tL

 

   

 
  

 

 

          
B           (4) 

where        ,           is the normalizing factor 

of beta distribution, and     denotes the generalized factorial 

function of Euler;  , 1 , 1a b                 is 

the support set of beta wavelet function; L b a   is the length 

of the support set; 2   and 2   are the characteristic 

parameters of the function. 

Beta wavelets generated by the function (4) have only one-

cycle which includes a positive half-cycle and a negative half-

cycle. In a sense, the waveforms of beta wavelets are similar to 

the neural active shapes, which give them good approximation 

characteristics and make them play a crucial role in the adaptive 

capacity of capturing the nonstationary signals [24]. The 

property of beta wavelets is determined by parameters   and 

 . For example, if   , the wavelets are asymmetrical, and 

if   , the wavelets are non-symmetrical. An example of the 

waveform with different parameters can be clearly observed in 

Fig. 1. Note that a bell-shaped half-cycle and a smooth half-

cycle appear due to the difference between   and   . The 

wavelets with a narrow bell-shaped half-cycle perform well on 

the sharp or abrupt change of signals, while the wavelets with a 

wide bell-shaped half-cycle or a smooth half-cycle tend to track 

slow changes of signals [5]. Different variants allow the 

capability to capture the overall and local information of TV 

coefficients; and the combination of multiple variants can 

effectively identify complex nonstationary systems. Another 

attractive feature of beta wavelets is the great properties of 

complete support, regularity, and orthogonality [34], which 

enable the operation of the multiresolution decomposition to be 

much more convenient.  

From the wavelet theory [21], a square integrable scalar 

function  2
h L  can be arbitrarily approximated using the 

multi-resolution wavelet decomposition below: 
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     
0 0

0

, , , ,j l j l j l j l

l j j l

h x c x d x 


              (5) 

where    2

, 2 2j j

j l x x l    and    2

, 2 2j j

j l x x l   , with 

,j l (  is a set consisting of whole integers), are the dilated 

and shifted derivations of the mother wavelet   and the 

associated scale function  ; 
0 ,j l

c  and ,j l
d  are the wavelet 

decomposition coefficients; 
0j  is an arbitrary integer 

representing the coarsest resolution or scale level. 

Simultaneously, based on the properties of multi-resolution 

analysis theory, any square integrable function h  can be 

arbitrarily approximated using the basic scale functions  ,j l
x  

by setting the resolution scale level to be sufficiently large, that 

means, there exists an integer j , such that: 

   , ,j l j l

l

h x c x                              (6) 

As the beta wavelet function , B  is completely supported 

and defined on the section  ,a b , the set of the functions 

   2

, ,2 2j j

j l
x x l   B , with the scale and shift indices j  

and l , should satisfy 2 j
a x l b   . Assume that the function 

 h x  approximated with decompositions (5) or (6) is defined 

within  0,1 , then the effective values for the shift index l  are 

restricted to the collection  , 2 j
l b l a         for 

any given scale index j . We can obtain a set of basis functions 

  ,

, ,, , ,
j l

j l
 

       by a shifted and dilated derivation 

of a beta wavelet function  , t B . 

The MBW basis functions 
        1 1 2 2, , ,

, , ,
n n

j l j l j l

         

composed of various groups of beta wavelet basis functions, 

obtained by different parameters       1 1 2 2, , , , , ,n n      , 

can effectively track complicated TV signals with both fast-

varying and slowly-varying features. For most nonlinear 

dynamical modelling problems, multiple appropriate variants 

with a narrow bell-shaped half-cycle, a wide bell-shaped half-

cycle, and a smooth half-cycle, such as the combination of 

different parameters   and         3,6 , 3,9 , 9,9 , are 

capable of capturing both abrupt and slow changes of 

nonstationary signals, simultaneously [34]. Therefore, the 

parameters   and   with       3,6 , 3,9 , 9,9  are adopted in 

the present of study. Additionally, theoretically, choosing a 

higher value of scale j , more basis functions will be involved 

in approximating the TV parameters, which may improve the 

resolution but would increase the computational cost. As a 

tradeoff, 3j   or 4 is generally an appropriate choice for many 

applications using MBW basis functions [8, 19]. 

Based on the wavelet theory, each TV parameter in (3) can 

be expanded into the following form by the MBW basis 

functions: 

     

,

,,

, 1 , , 1 ,, , , , , n nn n

n n

p q p q p q l p q j l

n l

t
k k t c k k

N
 

    


   
 

     (7) 

where 
  ,

,
n n

j l

   indicates a group of beta wavelet basis 

functions controlled by characteristic parameters  ,
n n

  , 

with the wavelet scale j  and the shift indices ,n n
l   , 

 , 2
n n

j
l b l a         ;  ,

, , 1, ,n n

p q l p q
c k k
 

 denotes the 

associated expansion parameter which is time-invariant; 𝑁 is 

the number of observations of the signal. 

Substituting (7) into (3) yields an expanded version of the 

TV-NARX model: 

 

1 ,

,

, , 1

1 0 , 1

,

,

1 1

T

( ) ( )

( ) ( ) ( )

( ) ( )

n n

p q n n
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gG K

p q l p+q

g p k k n l

p p q

j l i i

i i p

y t c k , ,k

t
y t - k u t k e t

N

t e t

 

 

 

   



  



      
  

 

   

 
Ψ Θ

     (8) 

where  tΨ  is the expanded regression vector at time t ; and 

T
, , ,

0,1, 1,0, , ,, , , , ,n n n n n n

l l p q lc c c
       Θ  is the corresponding expanded 

time-invariant parameter vector. 

The original TV-NARX model is now transformed into a 

time-invariant regression model which is linear-in-the- 

parameters. However, there might be a large number of 

redundant terms in the expanded regression vector  tΨ , 

especially when the group number of beta wavelets ( n ) , the 

maximum lag ( K ) and the degree ( G ) of the TV-NARX 

model are large. Therefore, reducing the number of terms in the 

expanded model and determining a parsimonious model 

structure become a crucial step in the identification of the 

original nonlinear TV problem. 

In this paper, we propose a LRUOFR algorithm to select the 

significant terms from an over-complete dictionary of the 

expanded candidate model terms, and estimate the 

corresponding time-invariant parameters, so as to obtain the 

desired parsimonious model. In order to achieve a tradeoff 

between the model complexity and the value of model error, a 

modified generalized APRESS criterion is incorporated in the 

LRUOFR algorithm to determine the appropriate number of the 

significant terms in the parsimonious model. The novel 

algorithm to deal with this identification problem will be 

introduced in next section. 

Fig. 1.  The beta functions with different parameters   and  , (a)   , 

(b)   . 
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C. LRUOFR Algorithm Incorporating APRESS Criterion 

The estimation of the parameters Θ  in (8) can be achieved 

by minimizing an ultra-least squares (ULS) criterion [26]: 

   

    
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 (9) 

where          ,,

, , 1 , 1 1
, , n nn n

p p q

p q l p q j l i ii i p
x k k t N y t k u t k

    

   
     

indicates an expanded term; 
z

y  and  ,

, ,
n n

z

p q l
x
 

  represent weak 

derivative expressions of the signal y and model term 
,

, ,
n n

p q l
x
 

, 

respectively; 0z  is the maximum degree of the weak derivative.  

The weak derivative is a generalization of the commonly 

used classical derivative, which can be used to measure local 

correlation among the data points. Different from the 

derivatives defined for differentiable functions, the weak 

derivative can be calculated for all integrable functions. For a 

given  sample data set, a discrete-time representation of the 

weak derivatives 
z

y  and  ,

, ,
n n

z

p q l
x
 

 can be expressed as: 
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             (10) 

where 
   z

t  is the z-th derivative of a normalized test 

function, which can be calculated as 
     

2

z z z   ; 0  is 

the support of the test function and 0=1,2, ,N T   . In this 

paper, the spline function is used as the test function, and the 

sampled data are modulated by the first- and second-order 

derivatives of the spline function [26]. 

Then the extended model (8) can be further expressed as a 

ULS system with weak derivative information: 

  Y Φ Θ E                                   (11) 

where 
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Φ (13) 

and Θ  denotes the time-invariant parameter vector; E  

represents the noise of the system. 

Assume that the regression matrix Φ  is full rank in columns 

and can be orthogonally decomposed as Φ = WA , where W  is 

a matrix with M orthogonal columns, denoted as 

 1 2, , ,
M

W = w w w , which satisfy T 0
i j

w w , if i j ; A  is 

an upper triangular matrix, expressed as follows: 

1,2 1,

1,

1

0 1

0 0 1

M

M M

a a

a 

 
 

  
 
  

A                          (14) 

The model (11) can alternatively be expressed as: 

=    Y WA Θ E W E                        (15) 

where the orthogonal regression weight vector  T1 2, , , M    

satisfies the triangular system  A Θ , and we can determine 

the time-invariant parameter vector Θ  if knowing   and A . 

The objective of model identification is to produce an 

optimal model that can well capture the inherent dynamics of 

underlying system, which can be achieved by minimizing the 

square of the norm (9). However, the ULS criterion ignores the 

interference of overlapping information which may lead to an 

ill-conditioned problem during forward regression selection 

process. Actually, there is a lot of overlapping information 

among the candidate terms in model (8), which makes it 

difficult to select a correct parsimonious model structure. 

In order to avoid this problem, a stricter locally regularized 

ultra-least squares (LRULS) criterion is proposed in this study, 

which can be expressed as follow: 

2 T T

1

M

LRULS ULS i i

i

J J 


    ΛE E               (16) 

where  T1 2, , ,
M

    is the regularization parameter 

vector, and  1 2=diag , , ,
M

   . Obviously, the LRULS 

criterion includes three parts: the first part is same as the 

standard least squares criterion that emphases the overall 

agreement between two time series; the second part considers 

the consistency of weak derivative information; and the third 

part is the regularization error which associates each candidate 

term with an individual regularization parameter to avoid the 

ill-conditioned problem caused by the overlapping information. 

We can simplify the criterion (16) and obtain a 

comprehensible form [28]: 

 T 2T T

T T
1

=1
M

i i i i

i

 




Λ w wE E

Y Y Y Y

 
              (17) 

In order to measure the regularization error, the regularized 

error reduction ratio (RERR) is defined as: 

 T 2

T

i i i i

i
RERR

 


w w

Y Y
                         (18) 

Based on RERR, significant regressors can be selected by a 

forward-regression procedure. Note that, in the selection 

procedure, if 
T

i i
w w  is too small (near zero), this term will not 

be selected. Thus, any ill-conditioning or singular situations can 

automatically be avoided. 
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The Bayesian evidence procedure is a practical choice to 

optimize the regularization parameters [28]. From the Bayesian 

viewpoint, the following error criterion is equivalent to the 

criterion (16): 

  T 2 T T

B

1

, ,
M

i i

i

J     


   E E E E H          (19) 

where 𝜛 is the noise parameter (estimate of the inverse of noise 

variance),  T1 2= , , ,
M

    is the hyperparameter vector, 

and  1 2diag , , ,
M

  H . The relationship between a 

regularization parameter and its corresponding hyperparameter 

is obviously given by: 

i

i





                                       (20) 

Following Bayesian inference principle [35], it can be shown 

that the log evidence for   and   is: 
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      (21) 

where 
ULS

N  denotes the length of the ULS system signal; 
H

B  

represents the Hessian matrix which is diagonal and can be 

expressed as: 

 
T

T T

1 1 1diag , ,
M M M


   

 
  

H
B H W W

w w w w
        (22) 

Setting the derivatives of 
ev

L  with respect to   and   to 

zeroes yields the updating formulas for   and  , 

respectively. Substituting these updating formulas into (20) 

results in the updating formulas for the regularization 

parameters: 
T

2
, 1

old

new i

i old

ULS i

i M
N




 
  


E E

             (23) 

where 
i
   and   can be calculated by  T T

i i i i i i  w w w w  

and 
1

M

ii
 


    respectively  If   remains sufficiently 

unchanged in two successive iterations or a pre-set maximum 

iteration number is reached, this update can be stopped. 

Based on the above explanation, the implementation process 

of the LRUOFR algorithm is specifically presented in 

Appendix, where the test set 
CI  is used to avoid any ill-

conditioning or singular problem. After this selection process, 

ex
M  expanded model terms and the corresponding time-

invariant parameters can be obtained. These parameters are then 

used to reconstruct the TV coefficients, and recover the selected 

terms from model (3). To avoid overfitting and ameliorate the 

effectiveness of the LRUOFR algorithm, a modified leave-one 

out (LOO) type cross-validation criterion, APRESS, can be 

employed to determine the optimal number of selected terms. 

The APRESS statistic [29] expressed as follows can be used: 

       
  2

=
1 ,

s

s s s

s

MSE n
J n p n MSE n

C n 



           (24) 

where  ,
s s

C n n N  , with the adjustable parameter 1  , 

is the complexity cost function;     2

1 1 ,
s s

p n C n      is 

the penalty function;         2

1
ˆ1

N

s i
MSE n N y i y i


     

indicates the mean-squared-errors (residuals) calculated from 

the associated 
s

n -term model and   
1

ˆ N

i
y i


 is the one-step-

ahead prediction sequence from the identified model of 
s

n  

model terms. 

The criterion (24) consists of two parts: the mean-squared-

error of the fit to the data, and the penalty. The optimal number 

optimal
M  of reconstructed terms for the desired model can be 

determined by minimizing the APRESS values: 

  
1

arg min
s re

optimal s
n M

M J n
 

                      (25) 

where 
re

M is the number of recovered model terms. 

Practically, a distinct point of the APRESS statistic  with 

respect to the model length can be easily found through the 

change of adjustable parameter  (see section III-A).  

The new proposed algorithm for TV-NARX identification 

can be summarized as follows. 

1) Set up the TV-NARX model (1) to be identified, and 

expand all TV coefficients of model terms by using 

MBW basis functions to obtain the model (8). 

2) Based on the ULS criterion, construct a new model (11) 

according to (10) by using a normalized test function 𝜔̅ 

to modulate the output vector and the regression matrix 

in the model (8). 

3) Perform the local regularization-based OFR process 

with the output Y  and regression matrix Φ  of model 

(11), and iteratively update the regularization parameter 

vector   using (23). 

4) Reselect significant expanded terms by returning to the 

OFR process with the updated  , and estimate 

corresponding time-invariant parameters according to 

the relationship 
1 Θ A   obtained by (15). 

5) Reconstruct the estimation of the TV coefficients using 

(7), and list the selected terms in order of the RERR 

values.  

6) Determine the number optimal
M  of parsimonious model 

terms by using the APRESS criterion (24), and achieve 

the identification result of a nonstationary system. 

III. SIMULATION EXAMPLES 

In this section, three numerical simulations are given to 

illustrate the efficiency of the proposed MBW-LRUOFR 

algorithm. Furthermore, we compare this approach with three 

other methodologies: a classical adaptive method (the RLS 

algorithm), a latest parameter expansion method (the Bspline-

UOFR algorithm), and a hybrid method (the MBW-UOFR 

algorithm) [19, 30, 36].  
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 All of the following examples are performed via Monte 

Carlo simulations involving 100 realizations, and the results are 

given in terms of mean values. The first example presents a 

nonlinear TV system disturbed by  severe colored noise. The 

second example is a discrete-time nonstationary system with 

non-continuously changing TV coefficients, and aims to verify 

the effectiveness of the MBW basis functions for capturing the 

local information around the abrupt change positions. 

Furthermore, the third example considers a more complex 

second-order TV nonlinear system with both smoothly and 

abruptly changing coefficients. Simultaneously, the 

identification accuracy of the TV coefficients at different noise 

levels (in term of SNRs) is given to verify the robustness and 

generalization property of the proposed approach. 

A. Example 1: Detection of the Model Structure 

Consider a TV nonlinear system of the form: 

             

     

2
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2

0,2 1

2 1 1

1
2

1 0.5

y t t y t t u t t y t

t u t t
z

  

 

     

  


 (26) 

where    2~ 0,0.05t N , and the input signal is generated by an 

autoregressive process: 

   
1 2

0.25

1 0.4 0.16
u t v t

z z
 

 
                      (27) 

where  v t  is a Gaussian distributed noise    ~ 0,1v t N . 

The TV coefficients in (26) are given as: 

   

 

  
 
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0,2

0.1 0.4cos 4 1000 , 1 1000

0.6, 1 300
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0.7, 700 1000

0.8, 1 500
0.4, 500 1000

0.6, 1 200
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0.4, 800 1000

t t t

t
t t

t

t
t

t

t
t t

t

 







    
    
  
    

    
 

         (28) 

Driven by the input signal (27), the system was simulated and 

a total of 1000 input-output data points were sampled. Note that 

the signal-to-noise ratio for the observed signal is SNR = 10 dB. 

To increase the difficulty of system structure identification, 

the candidate model inputs are purposely chosen in an incorrect 

maximum lag of 7, which is much larger than the correct 

maximum lag  2. There are totally 120 candidate model terms 

included in the term dictionary when the nonlinear degree of the 

polynomial model is 2. As mentioned above, the parameters   

and   are chosen to be       3,6 , 3,9 , 9,9 . The scale index 

involved in the beta wavelet (4) is 3j  . With these choices, 

the resulting MBW basis functions are used to expand TV 

coefficients. As a comparison, the Bspline-UOFR algorithm 

and the MBW-UOFR algorithm are also employed to identify 

the model structure, where B-spline functions of order 2 to 5 are 

adopted to generate basis functions. 

All the significant model terms selected in the OFR process 

are reconstructed via (8) and listed in order of the RERR 

values in each Monte Carlo realization. For example, the 

reconstructed result produced by the MBW-LRUOFR 

algorithm in one simulation  is presented in TABLE I. Notice 

that it still exists numerous redundant terms. The APRESS 

criterion is then used to determine the optimal number of model 

terms by setting the adjustable parameter  = 1, 3, ⋯ , 9, 

respectively. The corresponding curves of the statistic are 

shown in Fig. 2, where a distinct turning point suggests that 4 

is the optimal model length. The model structure for this 

simulation can be determined as the first four terms given in 

TABLE I, which are highlighted in bold. 

The percentage of the correctly selected model terms in each 

Monte Carlo realization is recorded, and the mean values for 

the three different algorithms are given in TABLE II. Obviously, 

the MBW-LRUOFR method with regularization parameters 

works better than the other two methods in determining the 

model structure from the given noisy simulation data. 

Compared to the UOFR-based methods, the proposed MBW-

LRUOFR algorithm allocates an updated regularization 

parameter to each candidate regressor, this can effectively avoid 

the interference of overlapping information and assist the 

orthogonal regression process to produce a more accurate 

TABLE I 

RECONSTRUCTED RESULTS PRODUCED BY THE MBW-LRUOFR ALGORITHM 

IN ONE SIMULATION FOR EXAMPLE 1 

No. Terms 𝐑𝐄𝐑𝐑𝒊 × 𝟏𝟎𝟎%  
1 ∑𝝓𝒋,𝒍(𝜶𝒏,𝜷𝒏)(𝒕 𝑵⁄ ) × 𝒖(𝒕 − 𝟏)  64.8437 

2 ∑𝝓𝒋,𝒍(𝜶𝒏,𝜷𝒏)(𝒕 𝑵⁄ ) × 𝒚(𝒕 − 𝟐)  10.6934 

3 ∑𝝓𝒋,𝒍(𝜶𝒏,𝜷𝒏)(𝒕 𝑵⁄ ) × 𝒖𝟐(𝒕 − 𝟐)  7.0200 

4 ∑𝝓𝒋,𝒍(𝜶𝒏,𝜷𝒏)(𝒕 𝑵⁄ ) × 𝒚𝟐(𝒕 − 𝟏)  3.4173 

5 ∑𝜙𝑗,𝑙(𝛼𝑛,𝛽𝑛)(𝑡 𝑁⁄ ) × 𝑦(𝑡 − 1)  0 7955 

6 ∑𝜙𝑗,𝑙(𝛼𝑛,𝛽𝑛)(𝑡 𝑁⁄ ) × 𝑢(𝑡 − 2)  0 3605 

7 ∑𝜙𝑗,𝑙(𝛼𝑛,𝛽𝑛)(𝑡 𝑁⁄ ) × 𝑦(𝑡 − 3)𝑢(𝑡 − 1)  0 3136 

8 ∑𝜙𝑗,𝑙(𝛼𝑛,𝛽𝑛)(𝑡 𝑁⁄ ) × 𝑢(𝑡 − 3)  0 2939 

9 ∑𝜙𝑗,𝑙(𝛼𝑛,𝛽𝑛)(𝑡 𝑁⁄ ) × 𝑢2(𝑡 − 5)  0 2075 

10 ∑𝜙𝑗,𝑙(𝛼𝑛,𝛽𝑛)(𝑡 𝑁⁄ ) × 𝑦(𝑡 − 6)  0 1830 

11 ∑𝜙𝑗,𝑙(𝛼𝑛,𝛽𝑛)(𝑡 𝑁⁄ ) × 𝑦(𝑡 − 2)𝑢(𝑡 − 5)  0 1528 

12 ∑𝜙𝑗,𝑙(𝛼𝑛,𝛽𝑛)(𝑡 𝑁⁄ ) × 𝑦(𝑡 − 5)𝑦(𝑡 − 7)  0 1517 

Note: terms in bold indicate the correct model terms. 

Fig. 2.  The APRESS statistic versus the model length: the lines from bottom 

to the top correspond to σ = 1, 3, 5, 7, 9. 

TABLE II 

THE PERCENTAGES OF CORRECT TERMS SELECTED BY DIFFERENT 

ALGORITHMS FOR EXAMPLE 1 

Approach Bspline-UOFR MBW-UOFR MBW-LRUOFR 

Percentage 78 50% 81 25% 89 50% 
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model structure.  

B. Example 2: Estimation of Non-Continuously Changing 

Time-Varying Coefficients 

Consider the following TV-NARX model: 

         
       

0,1 1,0

1,1 1

1 2

1
2 2

1 0.32

y t t u t t y t

t y t u t t
z

 

 

   

   


       (29) 

where    2~ 0,0.02t N  which makes the SNR to be around 30 

dB; the input signal  u t  is a pseudo-random binary sequence   

(PRBS), which is a frequency rich signal; the TV coefficients 

are designed to change in an abruptly varying manner as: 

 

 

 
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1,1

0.3, 1 200
0.7, 200 400
0.2, 400 600
0.3, 600 800
0.6, 800 1000

0.4, 1 300
0.6, 300 500
0.7, 500 800
0.2, 800 1000

0.5, 1 200
0.3, 200 500
0.7, 500 700
0.6, 700 10

t
t

t t
t
t

t
t

t
t
t

t
t

t
t
t







 
    
  
  
  
       

 
    
   00







                   (30) 

The system was simulated and a total of 1000 input-output 

data points were sampled. Similar to Example 1, the parameters 

  and   are       3,6 , 3,9 , 9,9 , the scale index j  equals 3; 

with these choices, the resulting MBW basis functions are used 

to expand the TV coefficients. All significant terms selected by 

the LRUOFR algorithm are listed in order of the RERR values, 

and the APRESS criterion is similarly used to determine the 

optimal number of model terms. 

To verify the ability of the MBW basis functions in capturing 

the local information around the abrupt change positions, a 

comparison of the TV coefficients estimated by methods such 

as RLS (forgetting factor 𝜇  = 0.98), Bspline-UOFR, MBW-

UOFR and MBW-LRUOFR  is hown in Fig. 3. It can be 

observed that although the estimates produced by RLS 

algorithm can represent the actual TV coefficients to some 

extent, the approach cannot capture the transient properties of 

the jumps due to the limitation of the convergence speed. The 

Bspline-UOFR algorithm can estimate TV coefficients with a 

relatively higher accuracy than the RLS method, but the local 

information of the step position is missing. In contrast, the 

LRUOFR algorithm and UOFR algorithm, based on the MBW 

basis function expansion method, can not only recover the 

global features of the TV system, but also well capture the local 

information of the abrupt position of TV coefficients. In fact, 

Fig. 3 only shows those estimated results of the cases where all 

the model terms are correctly selected , this can facilitate the 

comparison between MBW-UOFR and MBW-LRUOFR 

algorithms. Fig. 3 shows that the MBW basis functions 

outperform these existing parametric modelling approaches for 

charactering local features of TV coefficients with sharp 

changes or jumps. 

In order to further compare the identification accuracy of the 

above four algorithms, two error assessment criteria, namely, 

mean absolute error (MAE) and normalized root mean squared 

error (RMSE), are used to measure the TV coefficient 

estimation performance. MAE and RMSE are respectively 

defined as: 

   
1

1 ˆMAE
N

i

i i
N

 


                              (31) 

   
 

2

2
1

ˆ
1

RMSE
N

i

i i

N i

 



                         (32) 

where ̂  represents the estimates of TV coefficients   in the 

TV-NARX model, and N  indicates the maximum sample 

index. 

The mean values of MAE and RMSE for the three TV 

coefficients in Monte Carlo simulations are presented in  

TABLE III. It is obvious that the MAE and RMSE values for 

the two MBW-based methods are smaller than that for the 

Bspline-UOFR and RLS methods,  this is consistent with the 

visual comparison shown in Fig. 3. This statistically indicates 

that even though the Bspline-based method possesses higher 

identification accuracy than RLS method, it still cannot achieve 

the performance of the MBW-based method. The comparison 

between Bspline-UOFR method and MBW-based methods 

further confirms that the MBW expansion method shows more 

attractive approximation characteristics than Bspline in 

tracking rapidly changing TV coefficients. Given the advantage 

of the LRUOFR algorithm in determining model structures, the 

Fig. 3.  Identification results of the TV coefficients using different approaches 

in example 2. 

TABLE III 

COMPARISON OF THE ESTIMATED RESULTS FOR EXAMPLE 2 

Approach 
Estimated 
coefficients 

Error assessment criteria 

MAE RMSE 

RLS 

(μ=0 98) 

𝜁0,1 0 1516 0 7878 𝜁1,0 0 1615 0 7289 𝜁1,1 0 1437 0 5507 

Bspline-
UOFR 

𝜁0,1 0 0611 0 3525 𝜁1,0 0 0819 0 2798 𝜁1,1 0 1068 0 3976 

MBW-
UOFR 

𝜁0,1 0 0315 0 2454 𝜁1,0 0 0449 0 1987 𝜁1,1 0 0576 0 2378 

MBW-
LRUOFR 

𝜁0,1 0.0309 0.2435 𝜁1,0 0.0433 0.1966 𝜁1,1 0.0546 0.2337 

Note: bold values indicate the best results. 
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proposed MBW-LRUOFR algorithm is more adaptive and 

performs better  for identifying model structures and capturing 

local information of TV signals in the presence of colored noise. 

C. Example 3: Identification of a Second-Order TV 

Nonlinear System 

The third example is designed to test the performance of the 

proposed algorithm for dealing with a system with both smooth 

and sharp changes in system model parameters. The system is 

described by the model: 

 

         
     
       

1,0 0,1

2,0

0,2 1

2 1

1 2

1 2
1 0.25

y t t y t t u t

t y t y t
t

t u t u t
z

 



 

   
  

   


        (33) 

where    2~ 0,0.08t N  is zero-mean Gaussian white noise; 

the input  u t  is a PRBS;  1,0 t ,  0,1 t ,  2,0 t , and 

 0,2 t  are TV coefficients of this system, expressed as: 

 
  

  
  

 

   
 

1,0

0,1

2,0

0,2

0.32cos 1.5 cos 4 , 1 4

0.32cos 3 cos 4 2 , 4 1 3 4

0.32cos 1.5 cos 4 , 3 4 1

0.54, 1 4
0.65, 4 1 2

0.54, 2 1 3 4
0.65, 3 4 1

0.43cos 4 , 1

0.5, 1

t N t N

t t N N t N

t N N t N

t N
N t N

t
N t N

N t N

t t N t N

t

 
  

 



 


    
     
     

 
         
  
 t N

(34) 

where N = 512 is the length of sampled data. 

The parameters of MBW are the same as in Example 1. The 

LRUOFR algorithm is applied to select significant model terms 

from the candidate terms expanded by the MBW basis 

functions, and the APRESS criterion is similarly employed to 

determine the number of optimal model terms.  

For a comparison, the four model coefficients reconstructed 

by the following 4 methods are shown in Fig. 4: RLS with 

forgetting factor 𝜇 = 0.95 (purple curve), Bspline-UOFR (blue 

curve), MBW-UOFR (green curve) and MBW-LRUOFR (red 

curve). Notice that the estimated results are compared based on 

the premise of all the model terms are correctly selected, to 

facilitate the comparison of the MBW-UOFR algorithm with 

the proposed MBW-LRUOFR algorithm. Based on this premise, 

it can be seen that the proposed MBW-LRUOFR algorithm 

performs better than the other methods in tracking the variations 

of the TV coefficients, especially in the abrupt positions. These 

results show that MBW-LRUOFR can effectively track the 

variation of different waveforms: the constant value, smooth 

changes, and abrupt changes.  

In order to verify the robustness and noise immunity of the 

proposed scheme, colored noise of the following three cases are 

added to the original system by adjusting the standard deviation 

of  t , where the SNR is 20, 15, and 10 dB, respectively. The 

mean values of MAE and RMSE for estimated TV coefficients 

are given in TABLE IV, where it can be noted that the MAE 

and RMSE values given by MBW-LRUOFR are smaller than 

those by the RLS method and the Bspline-UOFR method for all 

the three cases. Specifically, the MBW-LRUOFR algorithm 

Fig. 4.  Identification results of the TV coefficients using different approaches 

in example 3. 

TABLE IV 

COMPARISON OF THE ESTIMATED RESULTS IN DIFFERENT CASES FOR EXAMPLE 3 (SNR = 20, 15, AND 10 dB) 

Approach 
Estimated 

coefficients 

SNR=20 SNR=15 SNR=10 

MAE RMSE MAE RMSE MAE RMSE 

RLS 

(𝜇 = 0.95) 

𝜁1,0 0 1241 1 8281 0 1279 1 8761 0 1331 1 9402 𝜁0,1 0 1888 0 5492 0 1700 0 5029 0 2006 0 5838 𝜁2,0 0 1658 3 0457 0 1817 2 8946 0 1740 2 6793 𝜁0,2 0 0305 0 1373 0 0508 0 1710 0 0726 0 2312 

Bspline-UOFR 

𝜁1,0 0 0521 0 9072 0 0724 1 3676 0 0956 1 7393 𝜁0,1 0 0607 0 1872 0 0726 0 2037 0 0918 0 2333 𝜁2,0 0 0640 1 1595 0 0978 1 9009 0 1344 2 2924 𝜁0,2 0 0296 0 0812 0 0462 0 1255 0 0652 0 1811 

MBW-UOFR 

𝜁1,0 0 0371 0 4294 0 0585 0 8044 0 0923 1 4094 𝜁0,1 0 0338 0 1334 0 0507 0 1586 0 0809 0 2159 𝜁2,0 0 0356 0 5594 0 0616 0 9914 0 1093 1 6222 𝜁0,2 0 0222 0 0618 0 0385 0 1048 0 0624 0 1624 

MBW-LRUOFR 

𝜁1,0 0.0362 0.4246 0.0565 0.7207 0.0871 1.2605 𝜁0,1 0.0322 0.1259 0.0497 0.1511 0.0768 0.2092 𝜁2,0 0.0346 0.5573 0.0582 0.9561 0.1090 1.5809 𝜁0,2 0.0216 0.0617 0.0376 0.1078 0.0613 0.1613 

where bold values indicate the best results. 
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based on the local regularization method can effectively capture 

the major and local information of the TV coefficients when the 

noise level increases. These numerical results show that the 

MBW-LRUOFR method has better performance for noise 

immunity.  

IV. APPLICATION TO EEG DATA 

In this section, the proposed MBW-LRUOFR algorithm is 

applied to scalp EEG data to illustrate its ability for solving real-

world TV modelling problem. In fact, the brain is a complicated 

black box system where the true model structure is unknown, 

thus it is necessary to identify a parsimonious model from 

available experimental data, and produce an accurate 

description of recording regions during brain activity [16]. The 

central objective of this section is to propose an effective data-

based model for single-channel EEG recordings by using the 

MBW-LRUOFR algorithm.  

The EEG recordings used in this study are available from 

Physionet [37], and created by the BCI2000 instrumentation 

system [38]. We choose two snapshots of EEG recordings 

sampled from the same channel of a same subject at different 

states, as shown in Fig. 5, where EEG1 (Fig. 5(a)) was recorded 

during a hand-moving motor imagery (MI) task and EEG2 (Fig. 

5(b)) was recorded during an eyes-closed resting state. A 

second-order TV-NARX model without exogenous inputs is 

constructed with the maximum lag 10K  , which is sufficient 

to reveal the underlying changes of EEG signals [19]. Thus 

totally 66 candidate model terms are involved in the initial full 

model: 

       

     
1 2

1

10 10

0 1 2 1 2

1 1

10

1,0 1 1 0,0

1

, ,

,

k k

k

y t k k t y t k y t k

k t y t k e t



 

 



  

   





2,

           (35) 

To obtain a compact model structure, the MBW-LRUOFR 

algorithm is used to select significant terms and estimate 

corresponding TV coefficients. The scale index of MBW 

function is chosen to be 3, and the APRESS criterion is adapted 

to determine the number of model terms. With the estimated TV 

coefficients presented in Fig. 6, the parsimonious model of 

EEG1 can be described as: 

         

     
1

3
2

1,0 1 1 0

1

2

0

, 1,1, 1

2,2, 2

k

y t k t y t k t y t

t y t e t

 




   

  

 2,

2,

      (36) 

 

 
Similarly, with the estimated TV coefficients presented in 

Fig. 7, the identified model of EEG2 can be described as: 

       
1

5

1,0 1 1

1

,
k

y t k t y t k e t


                  (37) 

Note that the identified model (36) obtained from the MI 

EEG recordings is more complex than model (37) which 

contains only linear terms.  

From the estimated TV coefficients depicted in Fig. 6 and 

Fig. 7, some interesting observations of the underlying  

changing behavior of EEG1 and EEG2 signals can be  obtained. 

For example, during the MI task of EEG1, the coefficients 

corresponding to the first-order model terms change relatively 

smoothly, while the coefficients of the second-order model 

terms change relatively more violently, especially in the period 

of 1 to 3 seconds. In addition, a significant turning point occurs 

around 2.5 second in the estimated TV coefficients, which can 

be understood as the characteristic change of the sampled 

signal. However, all the TV coefficients of model (37) 

estimated from EEG2 recordings are smooth during this 

experimental time, which is consistent with the fact that the 

subject was in a resting state. 

Furthermore, the recovered signals obtained by model (36) 

and model (37) are compared with the original EEG recordings 

(see Fig. 8), to verify the effectiveness of the identified models. 

For a clear visualization, only the data points in the period of 

2.5 to 3.5 seconds are displayed. By comparing the estimated 

signals with the real signals, it can be seen that the models 

constructed by the proposed method can well follow the 

changing process of the scalp EEG signal. The identification 

performance indicates that the MBW-LRUOFR algorithm is 

effective for modeling the real EEG data. 

 
Fig. 5.  EEG signals recorded during 4s with a sampling rate of 160 Hz. (a) 

EEG from a hand-moving MI task, (b) EEG from an eyes-closed resting state. 

Fig. 6.  The estimated TV coefficients of NARX model (36) for EEG1. 

Fig. 7.  The estimated TV coefficients of NARX model (37) for the EEG2. 
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V. CONCLUSIONS 

A novel MBW-LRUOFR algorithm incorporating the 

modified generalized APRESS criterion has been proposed for 

the identification of nonstationary systems, where time-

dependent coefficients of a TV-NARX model were 

approximated by a set of MBW basis functions. Three 

numerical simulation examples have been used to test the 

performance of the proposed scheme. Many typical TV 

coefficients, including both smooth and abrupt changes, were 

considered in the three simulation case studies. The 

identification results indicated that the proposed method can 

effectively determine the optimal model structure and 

accurately estimate the TV coefficients. Furthermore, an 

application to scalp EEG data showed that the proposed scheme 

performed well in tracking quickly changing nonstationary 

systems and revealing the underlying mechanism of EEG 

signals. 

An advantage of the MBW-LRUOFR algorithm over the 

previous methods is that it can effectively capture the overall 

and local information of a nonstationary system. However, the 

computational load of the proposed method is much higher than 

existing functional series expansion methods due to the 

existence of an iterative process of regularization parameters. 

Actually, the number of regressors decreases dramatically 

within the first few iterations, and typically about 10 iterations 

in total suffice to construct desired parsimonious model [28]. 

So that, compared to the improvement of identification 

accuracy, this computational issue becomes less critical when a 

high performance PC is available.  

A major application of the proposed method in our study is 

to investigate the TV model of nonstationary systems including 

EEG signals. Actually, the works of Li et al. have shown that 

an effective model can assist reveal the underlying mechanisms 

of biological signals, for example, the studies of the causality 

between signals in different channels [30, 39]. Thus, a 

promising research direction is the further applications in time-

frequency distribution and causality detection of biomedical 

signals. These work will be presented in our future separate 

publication. 

APPENDIX 

Algorithm 1: Pseudocode for LRUOFR algorithm 

Input:  

ULS system output    0
T

01 , ,
z

y y N    Y  

regression matrix  1 2, , ,
M

Φ = Φ Φ Φ  

Initialize: 
predetermined thresholds 1010  , 310   

initial regularization parameters   310 1i i M     

Local regularization-based OFR process: 
Let  1 Y Y ;  1 Φ Φ ; 
For 1   to M 

     
1 1, , , , , M

  
 

   Φ w w Φ Φ ; 

   
 1T

-1 1
1T

1 1 1

=


  


  





  




w Y
Y Y w

w w
; 

    T
1 1

,C i ii i M
         

 
I Φ Φ ; 

For i   to M 

    

    

T

, T

i

ia

 



 
 


Φ Φ

Φ Φ
;  

    

    

T

T
=

i

i

i i i

 



 




Φ Y

Φ Φ
; 

       2 T

T

i i i i

irerr

      
Φ Φ

Y Y
; 

end for 

 arg max
i C

rerr i M and i     I ; 

RERR rerr
  ;  




 w Φ ;    



 
 Φ Φ ; 

   1

, , 1
i i i

a i M
 

       Φ Φ w ; 

1

i

i

sum RERR




 ; 

If 1 sum    

exM  ; break; 
end if 

end for 

Update regularization parameters   
T

2

old

new i

i old

ULS i
N




 



E E ; 

new old new

i i i

ex

Dev
M

  

 ; 

If 0.1Dev  (for example) 
stop updating; 

else 

return to the OFR process with updated  ; 
end if 

Estimate time-invariant parameters: 
1 Θ A  ; 

Output:  
time-invariant parameters: Θ  

selected model terms: 
1 2
, , ,

Mex
  

   Φ Φ Φ  

Fig. 8. A comparison of the recovered signals and the original EEG recordings. 

(a) EEG from a hand-moving MI task, (b) EEG from an eyes-closed resting 

state. For a clear visualization, only the data points in the period of 2.5 to 3.5 

seconds are displayed. 
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