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Fully Automated Annotation of Seismocardiogram
for Noninvasive Vital Sign Measurements

Niccolò Mora , Federico Cocconcelli, Guido Matrella, and Paolo Ciampolini

Abstract— This paper presents a fully automated procedure
for acquiring and analyzing seismocardiographic (SCG) traces
from an inertial measurement unit (IMU) placed over a subject’s
sternum. An automated calibration procedure allows for straight-
forward adaption to different subjects. Calibration is performed
once per subject, exploiting electrocardiogram (ECG) markers;
relevant patterns and parameters are automatically extracted
and used for successive SCG processing, which does not require
concurrent ECG information any longer. Annotation of SCG
traces is performed in two steps: in the first one, a suitably engi-
neered signal is derived from SCG and used as coarse heartbeat
detector; then, the annotation can be performed by comparing
the prototype extracted at calibration time with segments of SCG
data, near to the detected beats. The proposed methodology
is validated by direct comparison with ECG, adopted as gold
standard. In particular, three main metrics are taken into
account: sensitivity (i.e., the percentage of correctly identified
heartbeats, compared to ECG), precision (i.e., impact of false
positives on truly detected beats), and R2 (i.e., linearity between
beat-to-beat measurements as computed by ECG and SCG).
Results show satisfactory performance, more than adequate to
continuous, long-term monitoring: overall, approximately 90% of
heartbeats are correctly detected, on average, with minimal false
positives (≈ 1%). Linearity between ECG- and SCG-computed
beat-to-beat intervals is extremely high (R2 > 0.95, on average),
indicating good agreement between the two measurement meth-
ods. These results suggest that SCG can be used as a reliable,
contactless measure of heart-related parameters.

Index Terms— Accelerometry, active assisted living (AAL),
inertial measurement unit (IMU), seismocardiogram (SCG), vital
sign monitoring.

I. INTRODUCTION

INFORMATION and communication technologies (ICT) is
a key asset for active and healthy aging (A&HA). For

example, smart living environments may allow older persons
to stay longer and better in their own home, by providing home
automation [1] and collaborative services [2]. Smart environ-
ments may also improve personal safety: for example, envi-
ronmental sensors may be used to detect nighttime wandering
events in homes of older adults suffering from Alzheimer’s dis-
ease [3]. Further active and ambient assisted living (AAL [4])
techniques may help in making services more accessible by
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compensating physical impairments with new smart devices.
For examples, brain–computer interfaces have been integrated
within AAL systems to allow severely motor-impaired users
to achieve communication and home control [5], [6]. Smart
objects and Internet of Things (IoT) technology also enable
long-term behavioral monitoring, which analyzes behavioral
features for indirectly probing user’s wellbeing: for instance,
behavioral patterns can be discovered from common home
environmental sensors [7]. Behavioral changes over different
periods or subjects, or the emergence of new trends (possibly
correlated with health issues) can be detected and made
known to caregivers, significantly enhancing their insight.
Activities of daily living (ADL) can be recognized and
traced as well [8], providing useful information on subjects’
routines and self-sufficiency. To allow for effectiveness and
sustainability, supportive technologies need to be inexpensive
and accessible. They have to be perceived as noninvasive
and minimally intrusive, so that they do not interfere with
daily living habits. In a data fusion perspective, behavioral
monitoring can be effectively complemented by vital signs
monitoring as well, providing a more comprehensive and
accurate vision, with vital sign monitors being subject to the
same ergonomic and economic constraints just mentioned.
Within the wide spectrum of vital sign measurements, acquired
in daily-life scenarios, cardiovascular signals are by far the
most targeted. For example, continuous monitoring of heart
rate (HR) and HR variability (HRV, defined as the standard
deviation of beat-to-beat intervals) can be achieved exploiting
many different techniques: electrocardiography (ECG) is the
primary measurement method for such quantities [9]. Besides
clinical applications, such as automated heart condition clas-
sification [10], or full day recording of heart activity by
means of Holter devices, many consumer-grade HR monitors
(e.g., fitness chest strap) measure the electrical potentials from
a single ECG lead. However, prolonged contact of electrodes
with the skin may cause irritation and wear, causing discomfort
and hindering the possibility to carry out daily, contin-
uous monitoring. Another popular technique, exploited by
most wrist-worn monitors, is photoplethysmography (PPG).
PPG senses light absorption variations, in distal locations, due
to an increased/decreased presence of oxyhemoglobin carried
by a blood pulse. Thus, HR measurements are immediately
derived; by exploiting different wavelength light sources,
peripheral oxygen saturation (SpO2) can be measured as
well [11]. With PPG, prolonged use may cause skin irritation
due to heating from the light source. Besides HR, PPG has
also been used to derive measurements of respiration [12].
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Such measures can also be obtained remotely, without direct
body contact, by exploiting the Doppler radar measurement
systems [13], [14] or millimeter-wave antennas [15]; however,
these systems are not suitable for daily use, as they involve
complex setups. Finally, blood pressure measurements are
largely targeted within the realm of vital sign monitoring.
Besides automated sphygmomanometers, indirect measure-
ment techniques have been devised based on the measurement
of pulse transit time (PTT), i.e., the time that takes for the
blood pressure wave to travel from a proximal point to a distal
one in the arterial tree within the same cardiac cycle. Such
measurement can be performed, for example, by taking PPG
as distal location reference and ECG as proximal one [16].

Recent improvements in performance and cost-effectiveness
of microelectro-mechanical systems (MEMS) devices have
opened new possibilities in continuous vital sign monitoring.
Accelerometers and inertial measurement units (IMUs) can be
leveraged to measure vibrations produced by the heart mechan-
ical activity. In particular, ballistocardiography (BCG) and
seismocardiography (SCG) are promising techniques to extract
information on cardiac events and phases, including mentioned
HR and HRV indicators. Compared to ECG and PPG, such
techniques have the advantage of not requiring any contact
electrode or detector: the sensing element can be secured in
place by a fixture, without direct access to exposed skin; this
may prevent irritations, allowing for much longer monitoring
sessions. With such a continuous monitoring perspective, it is
also important to mention the possibility of exploiting the
very same accelerometric device for multiple measurements
to jointly assess heart parameters and physical activity indi-
cators, thus providing contextualized and much more expres-
sive information. It could be possible to acquire information
such as step count, energy expenditure, quality of movement
(e.g., symmetry in gait), and many others. Also, accelerometer
features may be fused with home environment sensors to
achieve improved ADL detection, thus contributing to a more
general and ubiquitous AAL monitoring framework.

This paper focuses on the development of an automatic
procedure for acquiring SCG waveforms and identifying its
characteristic points, directly related to specific heart cycle
phases. The methodology is validated by direct comparison
with ECG information, adopted as gold standard. Note that,
except for a quick calibration phase (only required if detailed
SCG annotation is desired), the relevant measures can be
directly computed from the SCG traces alone; furthermore,
such phase is carried out just once per subject. The results
achieved, in terms of heartbeat detection, false-positive immu-
nity, and agreement with ECG-based reference intervals shows
that the proposed method reliably extracts HR information.

II. METHODS

A. Related Work
SCG [17] is the study of the precordial vibrations produced

by the cardiac contractions and by the mass of the blood
ejected from the ventricles. SCG has been known for decades,
but only the recent technological advancements in low-noise,
low-power IMU has allowed to perform precise, long-term
readings of such signal [18], [19]. At the same time, different

Fig. 1. Correlation between ECG and SCG waveforms, with their annotated
characteristic landmarks.

methodologies for cardiac events detection have been proposed
based on vibrational studies. For example, BCG measures
whole-body vibrations in response to cardiac activity and
blood ejection. It can be acquired noninvasively, for instance,
by means of load cells in weight scales [20] or piezoelectric
films between the subject and the bed [21]. On the other hand,
Gyrocardiography (GCG) [22] can provide similar informa-
tion to SCG, by capturing the rotational movement of the
chest wall. Finally, phonocardiography (PCG) records high-
definition heart sounds, which arise from the cardiac activity:
recently, deep-learning techniques have been devised to ana-
lyze and classify such signals [23], for detecting pathological
conditions. Also, PCG devices (similar to PPG mentioned ear-
lier) may act as proximal point detector [24], complementing
ECG in order to estimate PTTs during cuff-less blood pressure
monitoring measurements.

Fig. 1 shows the relationship between the hearts electri-
cal activity, measured with ECG and the SCG signal. Five
landmarks are identified, strictly related to cardiac mechanics:
mitral valve closure (MC), isovolumic moment (IM), aortic
valve opening (AO), aortic valve closure (AC), and mitral
valve opening (MO). In order to acquire a stable SCG,
the IMU is usually placed on the subject’s chest, typically over
the sternum: this position allows to acquire good amplitude
signals; furthermore, it has the advantage of being along the
vertical symmetry axis, therefore, the sensing element can also
be repurposed to evaluate motion symmetry.

Many works in the literature [25]–[27] focused on auto-
mated recognition of relevant peaks and patterns, in order
to derive systolic time intervals measurements, such as HR,
HRV, preejection period (PEP), and left ventricle ejection
time (LVET). In most cases, such detection is performed by
exploiting the dorsoventral axis of the accelerometer data.
Some heart conditions can be monitored exploiting SCG:
for example, Salerno and Zanetti [28] were able to quanti-
tatively evaluate changes in left ventricular function during
an ischemic episode. Other works describe methodologies to
detect atrial fibrillation by means of joint time–frequency
analysis of SCG traces [29] or focus more on a portable
implementation, exploiting mobile phones [30].
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With respect to the literature work, this paper mostly focuses
on developing a fully automatic procedure for the acquisition
and annotation of the SCG traces. This is to be framed in
the development of a low-cost, wearable device, suitable for
multidimensional (i.e., heart and activity) monitoring and for
deployment in practical AAL environments [31], [32]. For
usability’s sake, fully automated calibration procedures are
introduced. Beat detection can be self-consistently calibrated,
by focusing on certain detection signal features. If a more
detailed annotation of further SCG signal features is needed,
concurrent ECG measurement can be exploited to provide
a reliable reference, according to the automated procedure
described in the following. Nonetheless, calibration needs to
be performed just once per subject, and after full calibra-
tion, user-specific assessment is carried out in an “unsuper-
vised” fashion, i.e., without further need of concurrent ECG
information.

B. Measurement Protocol and Data Acquisition
Fifteen acquisitions were performed for this paper, involving

healthy subjects without any documented history of cardiac
problems; all participants volunteered for this study, conducted
following the guidelines of the Helsinki declaration on ethical
principles. Each session, lasting about 3 min, consisted in
the simultaneous acquisition of the SCG and, for validation
purposes, of the ECG. Subjects were comfortably sitting on a
chair while measurements were being taken. The experimental
setup for data capture involved four main units: an SCG
acquisition device, an ECG analog front end (AFE), a micro-
controller unit (MCU) to synchronize and control field-data
acquisition, and a desktop PC to collect data and analyze them
at a later stage.

SCG signals were acquired by means of a MEMS IMU;
namely, an ST Microelectronics LSM6DS33 device was
exploited. In order to achieve electrical insulation and to allow
a more stable placement of the accelerometer sensor, the IMU
board was enclosed in a small plastic container (approximately
40 × 25 × 15 mm3). The fixture was then positioned over the
subject’s sternum and secured in place using a belt and medical
tape (ergonomic design of the wearable device will be taken
care of at a later stage). The orientation of the IMU device is
such that the {x , y} plane is parallel to the chest wall (with
the x-axis parallel to the right-to-left shoulder direction, and
the y-axis parallel to the foot-to-head direction), whereas the
z-axis is perpendicular to it (i.e., parallel to the dorsoventral
direction). For the present study, without any loss in generality,
analysis of the SCG is restricted just to the dorsoventral
direction. The experimental setup is sketched in Fig. 2. As far
as the IMU parameter setup is concerned, the device was set
to operate at a sensitivity of 61 μg/LSB (g ≈ 9.81 m/s2),
featuring a full dynamic range of ±2 g; antialias filtering
is performed on-chip, with a 50-Hz cutoff frequency. Data
reading and management of the IMU sensor is handled by
the MCU, exploiting the interintegrated circuit (I2C) serial
protocol for data transfer.

Besides SCG, the reference ECG signal is simultaneously
acquired, using standard Ag/AgCl electrodes. A standard
lead-I ECG is recorded from the right arm and left arm

Fig. 2. Positioning of IMU sensor and ECG electrodes. The IMU is
placed over the subject’s sternum, with the reference system as shown by the
{x, y, z}-axes. A standard ECG lead-I is formed by LA–RA electrodes,
whereas the DRL electrode provides attenuation of 50-Hz common mode
noise.

Fig. 3. Block diagram of the synchronous SCG–ECG acquisition system,
handled by an MCU; measurement data are streamed via Wi-Fi, exploiting
TCP/IP protocol. A desktop PC is used for data logging and subsequent
processing.

electrode sites (or RA–LA in Fig. 2). The acquired signal is
amplified by means of an analog devices AD8232 IC, which
provides a low-noise, ac-coupled 40-dB gain instrumentation
amplifier (INA); a second-order Sallen–Key low-pass filter is
then cascaded to the INA, providing further 20 dB of dc gain
and a rolloff of −40 dB/dec from the cutoff frequency at
40 Hz onward. Furthermore, in order to reduce the effect
of electromagnetic interference coupling from mains (220 V,
50 Hz) through the body, a right leg driver feedback circuit
is added, providing up to 26-dB loop gain for the rejection
of 50-Hz common mode noise. Finally, the signal is digitalized
by exploiting a 12-bit analog-to-digital converter (ADC) on
the MCU.

Both SCG and ECG signals were sampled at 100 samples
per second (SPS). The acquisition is performed synchronously
by means of an ARM Cortex M0+ MCU. Incoming data are
buffered and sent into bursts, in order to maximally exploit
the Wi-Fi (IEEE 802.11 b/g/n) TCP/IP connectivity. Real-
time data logging is achieved at the receiving side by the
implementation of a Python TCP client, running on a standard
desktop PC. Data curation and analysis is carried out in the
same environment, exploiting NumPy and SciPy packages.
The complete measurement system is sketched as a block
diagram in Fig. 3.
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Before applying further analyses, data are preprocessed:
ECG signals are filtered over a (0.1–35 Hz) passband, whereas
IMU accelerometer data are bandpass filtered over a (4–20 Hz)
band. Filters were designed exploiting Kaiser window finite
impulse response (FIR) filter design. In order to maintain the
phase relationship between filtered SCG and ECG signals,
the zero-phase digital filtering mode is exploited. In addition,
to account for different, subject-specific, signal amplitudes,
data are scaled by means of z-scoring

xz = x − μx

σx
(1)

where x is the signal of interest, μx is its mean, and σx is the
standard deviation.

C. Data Analysis

The general workflow, adopted for complete annotation
of SCG waveforms, consists of two different phases as
follows.

1) Calibration: In this phase, prototypes and parameters
are extracted from calibration data, making use of both
ECG and SCG recordings. Calibration is, in general,
necessary in order to account for variations between
patterns and relative amplitudes for different users. After
calibration, the learned patterns and parameters may
be reused, for the same subject, to perform SCG data
annotation.

2) Annotation: This phase deals with identifying, in the
test SCG waveforms only, the previously extracted
patterns. Relevant feature points are recognized and
marked in this phase, with the annotation procedure
further breaking down to two stages. In the first stage,
detection of heartbeat events is coarsely performed,
exploiting a suitably defined signal (i.e., a detection
signal). In the second stage, actual annotation of SCG is
carried out, by trying to match the extracted prototype
to the waveform being considered, around each detected
heartbeat.

If only HR measurements are looked for, calibration can
be self-consistently performed by taking an initial, quiet
SCG period as a reference and by gathering statistics about
the detection signal’s local maxima: this provides a reliable
enough frame for discriminating among beat complexes. If a
more detailed annotation is needed, accounting for more
landmarks in the SCG waveform, calibration avails itself of
simultaneous acquisition of ECG potentials. This results in a
simple, fully automated procedure, to be carried out just once
per subject. In the following, for completeness’ sake, the full
methodology featuring extended calibration and annotation is
described, with the following notation:

1) xDET: the detection signal, used to coarsely locate heart-
beats in the SCG;

2) xSCG: the original SCG signal, to be annotated;
3) xPROTO: the prototype of SCG patterns, extracted during

the calibration phase.

1) Detection Signal: Detecting heartbeat events from SCG
signals can be a difficult task, given the complexity of the pat-
tern and superimposed noise: a simple thresholding approach
is not a reliable option. This also holds somehow true for
R peak detection within the ECG, where T waves may appear
comparable in amplitude. Usually, isolating R peaks implies
recognizing fast-varying signals, and methods based on deriva-
tives are commonly employed. For instance, Arzeno et al. [33]
compare several QRS-complex detection strategies exploiting
suitably defined difference operators (in FIR form); [34] indi-
cates second-derivative-based methods as a good compromise
of sensitivity and computational efficiency. Taking a closer
look at Fig. 1, several similarities can be noted between the
detection of the fast-varying QRS complex and that of the
MC–IM–AO one in the SCG. Therefore, the following signal
is defined as a good proxy to detect cardiac beats within the
SCG:

xDET,HF =
(

∂2xSCG

∂ t2

)3

(2)

where the HF subscript indicates that this signal empha-
sizes high-frequency oscillations. In order to simplify further
processing, a smoothed version of such signal is considered.
One possible way for achieving this is by extracting the
signal envelope by computing its analytic representation using
the Hilbert transform. Another quick method is to filter the
absolute value of xDET,HF

xDET = LPF
(∣∣xDET,HF

∣∣) (3)

where LPF is an FIR low-pass filter. Setting the cutoff
frequency around 4 Hz was found to yield a good tradeoff
between smoothness and preservation of temporal locality.

2) Calibration: Calibration is performed once per subject,
based on the comparison between ECG and SCG signals.
The former signal, in fact, is exploited to segment the lat-
ter one, in order to extract relevant information. As far
as the ECG is concerned, QRS complexes are detected by
exploiting second-order derivatives methods, as indicated in
[33] and [34]; then, R peaks are easily marked. Once the
R peaks locations are known, ensembles are constructed as
follows.

1) For the beat detection signal xDET, segments are
extracted from a window (tpre,DET − tpost,DET) with
respect to each R peak (for this application example,
tpre,DET = −100 ms, tpost,DET = 600 ms). Local maxima
of such windows are then marked and their values stored.
Summary statistics are derived over this population;
in particular, the 60th percentile is extracted as a thresh-
old for subsequent reference beats detection, from now
on named Amin,REF.

2) For the SCG signal, xSCG, segments are extracted from
a window of (tpre,SCG − tpost,SCG) with respect to each
R peak (in this application context, tpre,SCG = −50 ms,
tpost,SCG = 300 ms). The resulting ensemble has dimen-
sions (beats and timesteps). Median is then computed
across all time instants, yielding a prototype waveform,
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Fig. 4. Ensembles plot of SCG and detector signal. For clearer plotting,
detector signals are normalized by min–max scaling.

Fig. 5. Extraction of the prototype SCG signal, together with annotated
fiducial points.

xPROTO (whose length is timesteps), that will serve as
template for matching candidate waveforms. Contextu-
ally, a set of reference negative peaks is marked, which
will act as fiducial points in SCG annotation.

Fig. 4 shows an example of ensemble waveforms collected
from a subject. For readability’s sake, the detector signals were
normalized to a (0–1) range using a simple min–max scaling
approach: actual amplitudes are considered when computing
the descriptive statistics. From the SCG waveforms in such an
ensemble, the prototype is extracted and annotated, as shown
in Fig. 5.

3) Heartbeat Detection: Heartbeat detection from SCG is
performed by using the detector signal xDET [defined in (3)],
together with the statistical threshold Amin,REF determined
during calibration. At first, xDET is scanned for local max-
ima: all peaks greater than Amin,REF are taken as reference
peaks. Then, leveraging this knowledge, peak-to-peak time
intervals are computed, with the intent to discover possibly
missing heartbeats. In this example, beat-to-beat intervals
larger than 1.5 s (i.e., equivalent HR ≤ 40 bpm) are fur-
ther processed. In order to estimate the number of missed
beats (nMISS) between two reference peaks, the mean from last
five valid beat-to-beat intervals is used. Then, the top nMISS
peaks are found, imposing the following constraints.

Algorithm 1 Coarse Detection of Heartbeat Events
Inputs:

• xDET: signal for heartbeat detection (on SCG data)
• Amin,REF: minimum amplitude for reference peaks

Begin:
Find reference peaks p such that xDET(p) ≥ Amin,REF

Compute beat intervals, detect too-long ones
(H R ≤ H RL F bpm)
ForEach interval in too-long intervals:

Estimate number of missing beats (nM I SS)
Find nM I SS top peaks, such that:

- H RL F ≤ H R ≤ H RH F bpm
- amplitude ≥ Amin,REF/4
- if peaks are closer than TM I N , choose first

Add interpolated peak to reference ones

Return index of possible heartbeats

1) Time between beats should fall within [THF − TLF]
interval or in terms of HR between the equivalent
[HRLF − H RHF] range. In this application example
(with no loss of generality), let us set THF = 333 ms,
TLF = 1.5 s, and consequently, H RLF = 40 bpm,
H RHF = 180 bpm.

2) Beats should have an amplitude of at least
Amin,REF/4.

3) If two comparable peaks are closer than TMIN (in this
example, 200 ms), choose the first one.

If no candidates are found, suitable for interpolation,
the process gracefully logs the potential error and carries on
the waveform analysis. On the other hand, each time new beats
are found, they become knowledge base for future beats to
be interpolated. The process of beat detection is reported as
pseudocode in Algorithm 1.

4) SCG Waves Annotation: Once the heartbeat events are
discovered, SCG annotation is performed. In order to do so,
a window is extracted from xSCG around each beat (in this
application context, the window length is set to 500 ms).
Within such window, the template xPROTO (extracted at calibra-
tion phase) is best aligned to the signal xSCG by maximizing
a cross correlation metric. Finally, annotation of SCG local
minima is performed on a basis of the minimum distance
from the prototype’s fiducial points. During annotation, it is
possible that the algorithm is not able to match all reference
points: nonetheless, the best guesses are logged, and infor-
mation of such a partial match is stored too. In this way,
the algorithm is more resilient and gracefully handles nonideal
matches. The process of annotation is reported as pseudocode
in Algorithm 2.

III. RESULTS AND DISCUSSION

Before discussing the results in detail, it is worth delineating
the scope of this paper, which aims at designing and testing
specific solutions suitable for supporting A&HA policies.
More specifically, this paper is framed into a more general
vision, aimed at integrating into current prevention practices
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Algorithm 2 SCG Waveform Annotation
Inputs:

• detected beats: array of beats indexes from Alg. 1
• xSCG: SCG signal to annotate
• xPROTO: SCG signal prototype, with fiducial points

Begin:
ForEach beat in detected beats:

Extract window xSCG,W from xSCG, centered around
current beat
Align xSCG,W to xPROTO by maximizing cross corre-
lation metric
Match xPROTO and xSCG,W local minima

Return indexes of matched points

tools for continuous monitoring of behavioral and clinical
signs. Within this context, inexpensiveness, usability, and low
intrusivity are of the utmost importance. Suitable tradeoffs
should, therefore, be sought for, possibly differing from high-
performance, fully featured clinical instruments. In particular,
the current implementation looks forward to an embedded
solution, in which multiple indicators will be assessed through
the very same hardware device: eventually, the accelerometer
sensor will be shared between heart and physical activity mon-
itoring, carried out through a low-cost microcontroller plat-
form. Constraints in power consumption and computational
resources have therefore been taken into account in devis-
ing the overall strategy. For instance, a relatively low sam-
pling frequency (100 Hz, namely) has been considered. This,
of course, limits the accuracy when measuring short-time inter-
vals, e.g., when evaluating PPT for blood pressure monitoring
or when investigating specific, punctual rhythm anomalies.
Nevertheless, the tool is not meant to substitute clinical-grade
diagnostic instruments, but instead to discover trends and
anomalies evaluated over a much longer time scale, which
makes instant defects less significant. For the same reason,
testing has been carried out on a healthy population, to address
prevention strategies. Of course, evaluating the effectiveness
of the proposed approach in terms of health outcomes would
have required a much larger and longer trial: here, a functional,
proof-of-concept validation is only given. The procedures
for SCG annotation was applied in a completely automated
framework, without any need for user intervention in setting
parameters.

An example of output that the system produces is shown
in Fig. 6. The top panel represents the filtered ECG signal,
whose R peaks have been annotated (right-pointing yellow
triangles). Immediately below, the detection signal xDET is
plotted: as a reference, the R peaks are also reported. It can be
noted that the proposed method detects three reference beats
(downward-pointing green triangles) and is able to correctly
interpolate a missing one (the third, marked with an upward-
pointing green triangle). Such information is then used to
annotate the original SCG signal, shown in the bottom panel.
Fiducial points are correctly identified (gray bullets), according
to the extracted prototype in Fig 5.

Fig. 6. Output of the annotation process. ECG and R peaks (left-pointing
yellow triangles) (top). Beat detector signal, xDET, with annotated reference
and interpolated peaks (downward-pointing and upward-pointing green trian-
gles, respectively) (center). SCG and annotated reference peaks (gray bullets)
(bottom).

In order to assess the performance of the proposed method-
ology, three different metrics are monitored:

1) Sensitivity (or True Positive Rate), i.e., percentage of
correctly identified heartbeats (compared to ECG)

Sens. = TruePositives

TruePositives + FalseNegatives
. (4)

2) Precision, defined as

Prec. = TruePositives

TruePositives + FalsePositives
. (5)

3) Coefficient of variation (R2 score) between beat-to-beat
intervals computed from ECG and SCG (taking one of
its fiducial points as reference)

R2 = 1 −
∑

i

(
tECGi − tECG

)2

∑
i

(
tECGi − tSCGi

)2 (6)

where tECGi is the ith beat-to-beat interval computed
from ECG, tSCGi is the SCG analogous, and tECG is
the average ECG beat-to-beat interval.

The R2 metric, in particular, allows to assess the agreement
between measures performed using SCG and the ECG gold
standard, under the assumption of normal, nonaberrant beats:
the good agreement shown allows for functionally validating
the approach with reference to the aimed application target
(namely, long-term monitoring in A&HA). Individual R2,
precision, and sensitivity scores, achieved in each session, are
reported, for completeness’ sake, in Table I; results are shown
in two different split conditions:

1) ALL: all matched SCG patterns, i.e., partial and full
matches;
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TABLE I

RESULTS OF FULLY AUTOMATED SCG ANNOTATION

2) FULL: only fully matched SCG patterns.

On average, sensitivity scores of 88.7% and 91.4% were
observed, for the FULL and ALL conditions, respectively: such
difference in performance, due to more stringent requirements
for a full match, is statistically significant (p ≈ 0.02),
as highlighted by a paired single-sided student test. Such
scores are fairly comparable with other studies: in [35], for
instance, a higher sensitivity figure (99%) is reported from
measurements taken in lying positions and discarding approx-
imately 6.6% of data, affected from motion artifacts, that is,
such sensitivity is achieved on 93.4% of data, therefore, miss-
ing some beats as well. In this paper, instead, measurement is
taken in sitting position (again to match the aimed application
scenario), which is known to yield more contaminations than
lying position [36]. Furthermore, no data are actually discarded
at all, so that missing beats are mostly correlated with minor
motion artifacts coming from sitting position. Taking into
account such metric differences, performance figures well
compares indeed. Furthermore, even though the annotation
algorithm misses a beat, it logs such information: the pre-
vious beat-to-beat intervals are used to recognize anomalous
values, due to a beat being skipped. Missing a beat every
now and then does not jeopardize HR and HRV long-term
monitoring: nevertheless, if missing a beat may imply losing
relevant information (due to specific medical conditions) an
increase in missing beat rate can be detected to trigger the
caregiver attention and call for more accurate medical analysis.
On the other hand, in terms of precision, the proposed method
achieves high scores for both ALL and FULL conditions
(without significant differences). Approximately, just 1% of
identified peaks is, indeed, false positives: this may imply
that detected ectopic (premature) beats are, indeed, actual
beats.

Fig. 7 shows Bland–Altman plots relative to SCG–ECG
beat-to-beat interval comparison. In such plot, the difference
between two measures is displayed, with respect to their
average: ideal agreement should look like all observations

Fig. 7. Bland–Altman plot of all acquisitions. Mean difference (μdiff) and
standard deviation (σdiff) are reported, along with the 95% confidence interval
of the mean μdiff. Note the different scales in the x- and y-axes.

Fig. 8. Distribution of errors, normalized to the sampling period TS . Over
92% of errors lies within ±1 TS , and the 95% HDPI is ±2 TS .

falling onto a straight horizontal line (the geometrical locus
of the average of measures). The observed mean in difference
μdiff is approximately 0.3 ms, whereas its standard deviation
σdiff is 19.9 ms). These results were statistically analyzed; in
particular, by applying student-t statistics, it is estimated that
the 95% confidence interval of E{μdiff} is (−1.4–0.7 ms):
this implies a negligible bias error between the ECG and
SCG measurements. As far as σdiff is concerned, it is worth
remarking that, in terms of sampling period (i.e., TS = 10 ms),
its value corresponds to approximately two samples; further-
more, analysis of the distribution of such errors highlighted the
presence of heavy tails that slightly inflate the σdiff observed
values. In particular, over 92% of errors lies within ±1 TS ,
whereas the 95% highest probability density interval (HDPI)
is ±2 TS . This finding is shown in Fig. 8, reporting a histogram
approximation of such errors �t , normalized to TS (and
zoomed within ±6 TS for clarity’s sake). Therefore, errors are,
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Fig. 9. Population-wide correlation plot between ECG (x-axis) and
SCG (y-axis) beat-to-beat intervals. Red: ideal line representing perfect match.
Blue: actual observed values.

in the vast majority, quite contained in terms of normalized
time units.

Finally, a good average R2 score is achieved in both
ALL and FULL conditions (0.951 and 0.977, respectively,
by averaging all different acquisitions). Despite slightly better
results for the FULL condition, statistical analysis (paired,
single-sided student test) does not highlight any significant
difference between the two ( p ≈ 0.12), indicating good
overall performance. High R2 scores mean good agreement
and linearity between the two measures performed with ECG
and SCG. A population-wide correlation plot, obtained by
considering all interbeat intervals, is shown in Fig. 9 (for
the FULL condition): a value of 0.986 is observed. Such
results are in line with recent works on public data sets [37].
In this case too, it is worth remarking that, with respect to
mentioned studies, similar quality is attained in a somehow
more challenging condition, due to: 1) the limitations coming
from the low-cost and low-power constraints perspectively
accounted for and 2) the test condition here referring to a
sitting position, which is more prone to artifacts than supine
lying case.

IV. CONCLUSION

This paper presented a fully automated procedure for acquir-
ing SCG traces and for recognizing relevant heart patterns. The
approach targets long-term monitoring in A&HA scenarios:
inherent inexpensiveness, usability, and low intrusivity con-
straints are accounted for, while the approach is not meant to
replace established medical devices, but to complement them
instead. The procedure adapts itself to different users, by per-
forming a preliminary calibration step, where information from
ECG and SCG can be merged to derive detailed annotation
parameters, if needed. Apart from such an optional, initial cal-
ibration phase, the system is fully self-consistent and no con-
current ECG acquisition is further needed. Analysis of SCG
waveforms is broken down into two distinct phases. In the

first one, a suitably engineered signal, based on second-order
derivatives of the SCG, is exploited to coarsely locate heartbeat
events. The second phase makes use of such information and
performs actual annotation of SCG data, by comparing instants
close to the detected heartbeats to a prototype, extracted during
calibration.

The reliability of this annotation was assessed over dif-
ferent acquisition sessions by inspecting three main metrics:
sensitivity (i.e., percentage of correctly identified heartbeats,
compared to ECG), precision (i.e., the impact of false positives
on truly detected beats), and R2 (i.e., linearity between beat-to-
beat measurements as computed by ECG and SCG). Results
show very good performance: overall, nearly 90% of heart-
beats are correctly detected, on average, with minimal false
positives. Linearity between ECG and SCG-computed beat-
to-beat intervals is extremely high (R2 > 0.95, on average,
and R2 > 0.97, by considering fully matched samples only),
indicating good agreement between the two measurement
methods. SCG can thus be used as a reliable HR alternative,
and favorably compares with other methods, such as PPG
in [38]. Furthermore, SCG information can be profitably fused
with other sources: if used in combination with ECG (as in the
calibration setup) the system is able to measure other relevant
quantities, including PEP and LVET: all such quantities are
not measurable by other complementary techniques, such
as PPG.

Another perspective advantage of monitoring SCG is that
the same accelerometer sensor can be exploited for different
purposes, with no further acquisition burden: for instance,
physical activity intensity could be assessed [39], or gait qual-
ity parameters could be estimated. The approach is therefore
quite promising, in view of more comprehensive, multidimen-
sional behavioral monitoring in AAL environments.
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