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Abstract— In this paper, we classify digits written in mid-air
using hand gestures. Impulse radio ultrawideband (IR-UWB)
radar sensors are used for data acquisition, with three radar
sensors placed in a triangular geometry. Conventional radar-
based gesture recognition methods use whole raw data matrices
or a group of features for gesture classification using convo-
lutional neural networks (CNNs) or other machine learning
algorithms. However, if the training and testing data differ in
distance, orientation, hand shape, hand size, or even gesture
speed or the radar setup environment, these methods become
less accurate. To develop a more robust gesture recognition
method, we propose not using raw data for the CNN classifier, but
instead employing the hand’s mid-air trajectory for classification.
The hand trajectory has a stereotypical shape for a given
digit, regardless of the hand’s orientation or speed, making its
classification easy and robust. Our proposed method consists of
three stages: signal preprocessing, hand motion localization, and
tracking and transforming the trajectory data into an image
to classify it using a CNN. Our proposed method outperforms
conventional approaches because it is robust to changes in
orientation, distance, and hand shape and size. Moreover, this
method does not require building a huge training database of
digits drawn by different users in different orientations; rather,
we can use training databases already available in the image
processing field. Overall, the proposed mid-air handwritten digit
recognition system provides a user-friendly and accurate mid-air
handwriting modality that does not place restrictions on users.

Index Terms— Convolutional neural network (CNN), gesture
recognition, human–computer interaction, image, impulse radio
ultrawideband (IR-UWB) radar, localization, mid-air handwrit-
ing, sensor.

I. INTRODUCTION

COMPARED to traditional touch-based interfaces,
gesture-based interfaces can provide a more intuitive and

convenient user experience. Camera-based gesture recognition
has been widely studied and commercialized [1]–[3] but it
is difficult to use in dark places and creates the possibility
of leaking personally identifying information about its users.
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In many studies of gesture recognition, Zhu and Sheng [4]
and Zhang and Harrison [5] attach sensors to the users’
body; the drawback of such methods is that the user may feel
uncomfortable wearing the related hardware.

Recently, research on gesture recognition using radar has
been pursued as an alternative for overcoming the problems
inherent in other methods. Radar operates in a noncontact
manner, provides a comfortable user experience, presents no
privacy issues, and is unaffected by light [6].

In previous studies, spectrograms obtained from reflected
signals using Doppler radar were analyzed using a convo-
lutional neural network (CNN) to recognize gestures [7]. In
addition, spectrograms obtained using low-power frequency-
modulated continuous wave (FMCW) radar have also been
analyzed using a CNN [8]. Although these studies showed
good accuracy at angles and distances at which the training
was performed, accuracy deteriorated drastically at distances
and angles at which training was not performed. In a study
of gesture recognition using impulse radio signals, a training
set including gestures at different angles was employed to
solve the problem of reduced accuracy due to angle changes
[9]. However, if gesture verification is performed at an angle
not used for training or the shape of the hand is different,
the accuracy of such methods may decrease, limiting these
methods’ real-world applications. Thus, existing studies that
use raw data—such as spectrograms—in their training sets
show lower accuracy at angles and distances that have not
been trained. Moreover, accuracy is also reduced for users
who are not part of the training set because the shapes of
their hands are different. Despite the improvements achieved
by the researchers in [9], the method reported is not completely
reliable for real-world scenarios.

In this paper, we propose a method to recognize digits
written by a hand moving through the air. Hand trajectories are
obtained using multiple radar sensors, and the CNN is trained
using handwritten numeric digit images already accumulated
by image processing researchers. This paper can be differen-
tiated from existing methods in several ways: First, a similar
pattern can be obtained by using trajectory information, instead
of raw data such as a spectrogram, even if direction, distance,
and hand shape are different. Second, since the gesture is
recognized by the CNN constructed using existing image data,
new users need not undergo a separate training process. These
two points make the proposed method more robust to distance
and angle changes and have equal recognition accuracy even
for new users. Conventional CNN methods that utilize raw
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data have lower accuracy when the distance, direction, or hand
shape that must be recognized changes because raw radar data
varies with changes in these parameters: even if the CNN
is trained on all these parameters, a slight change of angle
or environment will result in different patterns of raw data
because of clutter and the multiple paths associated with a
new setup. It is not possible to train all these parameters for
each user with unique setups at different locations that have
different clutter environments. Instead, we use three impulse
radio ultrawideband (IR-UWB) radar sensors in an indoor
environment to obtain trajectory patterns using the distance
information from each sensor. However, there is clutter in
indoor environments which can distort radar data. Average
filtering is used to remove clutter. Also, since the radar cross
section (RCS) of the hand is not uniform during the gesture,
outliers exist in the distance information obtained from each
sensor and in the trajectories obtained from this distance
information. A median filter and a Kalman filter (KF) were
applied to remove these outliers and smooth the trajectory data.
An image transforming algorithm was applied to the trajectory
matrix to obtain image data suitable for CNN input.

This paper makes the following major contributions. First,
to the best of our knowledge, this study is the first to use
radar to recognize digits from mid-air handwriting gestures.
Although previous studies [7]–[9] have addressed general
radar-based gesture recognition, none have focused on mid-air
digit writing using radar sensors. Second, because the tra-
jectory is used to recognize these gestures, the proposed
method is more robust against distance and angle changes
than those in previous studies [7]–[9]. Third, since the CNN
is trained independently using an image data set, the user
does not need to perform a separate training session using the
radar; thus, recognition accuracy is user-independent. In this
paper, we confirm the high recognition accuracy of using
multiple IR-UWB radar sensors and the CNN, finding that
the conventional method of using raw data and the CNN with
IR-UWB radar results in good accuracy only if the training and
testing take place at the same distance and with the same hand
orientation. Then, we prove that our proposed trajectory-based
method is more robust to changes in orientation, distance,
speed, and user than existing methods.

II. METHODOLOGY

The radar sensors are set up to form a virtual plane,
as shown in Fig. 1. The digits are written in mid-air in
the plane of the three radar sensors. Signals from the radar
sensors are reflected back and through the receiver antenna.
Our proposed mid-air handwriting recognition problem can
be divided into three stages: signal preprocessing, accurate
positioning and localization, and image transformation and
classification, as shown in Fig. 2.

The first stage involves preprocessing the raw data, includ-
ing removing clutter from the received signal and finding the
meaningful window that contains gesture data. An averaging
filter is used to remove the background signal from the
reflected signal. To differentiate the gesture interval from
random motion or stationary periods, we use the magnitude

Fig. 1. Three radar sensors configured in a plane.

Fig. 2. Three stages of our proposed gesture recognition method.

and slow time duration of the reflected signals. A magnitude
histogram is transformed into a log-normal function and the
resulting spread σ is compared to a threshold value to detect
any hand motion. If hand motion is detected for certain
duration, then it is considered to be a gesture; otherwise, it is
random motion.

The second stage is to localize and track hand motions dur-
ing the mid-air gesture. The hand-to-radar distance is estimated
using time of arrival (TOA) estimation. The deviation of each
sample TOA from the mean value is used to detect outliers.
Hand positioning is carried out through trilateration. Noise
due to delays and TOA measurement is reduced using least-
squares (LS) estimation. After getting the positioning data,
we use a median filter for outlier rejection and KF estimation
for hand tracking.

The third and final stage is the digit classification. We use
a digit database that is used in image processing to train the
CNN. First, the tracking data obtained in the second stage
are transformed into an image. The image obtained is then
resized and converted to grayscale so that it looks similar to the
database images. The final images obtained are then classified
using the CNN.

In Fig. 1, Ri shows the i th radar sensor and di represents
the distance of the hand from radar i , where i = 1, 2, 3.
The coordinates of the radar sensors are known and fixed; the
coordinates of the hand (x , y) are determined using trilatera-
tion. The requisite signal processing and image classification
techniques are detailed in Sections II-A–II-C.

A. Stage I: Preprocessing

1) Clutter Removal: The raw data received contains infor-
mation about the moving hand’s trajectory, as well as station-
ary clutter in the background. The raw signal is passed through
a clutter removal filter to remove this unwanted signal. The
background subtraction filter is explained in [10] in detail.
Reflected raw signal rm(n) contains details of each object. The
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Fig. 3. Received radio signal matrix Wm×n (a) before and (b) after clutter removal.

unwanted echoes, called clutter, are removed using a simple
loopback filter represented by the following equations:

cm(n) = αcm−1(n) + (1 − α)rm(n) (1)

ym(n) = rm(n) − cm(n) (2)

where m is the slow-time index, n is the fast-time index, α
is the estimated ratio of signal to clutter, cm(n) is the clutter
signal, and ym(n) is the background-subtracted signal from
which the clutter signal is removed. Here, α is the weighting
constant that controls the sensitivity of the clutter removal
process. We set this value to 0.8 for our experiments in order
to pass the signal due to hand motion and subtract the signal
reflected from the static background.

2) Meaningful Gesture Interval Determination: To find the
meaningful slow time duration for evaluating a gesture, it is
important to find the gesture’s starting and finishing time.
We use the spread of the log-normal distribution of the data
obtained from the three radar sensors as a parameter for
determining the hand motion in the plane of the radar sensors.
The data received from the radar sensors are stored in a matrix,
as shown in the following equation:

Wm×n =
⎡
⎢⎣

w11 . . . w1n
...

. . .
...

wm1 . . . wmn

⎤
⎥⎦. (3)

In (3), the matrix represents the combination of radar
waveforms, as shown in Fig. 3. Element Wmn of the matrix
represents background-subtracted signal ym(n), where m is
the slow-time index and n is the fast-time index. The mth
row of the matrix represents the background-subtracted signal
received at the mth slow time. Fig. 3(a) clearly shows that
the patterns in the raw signal are overshadowed by the heavy
clutter signal; Fig. 3(b) shows the clutter-subtracted signal and
has patterns from the three radar sensors due to the hand
movements. For clarification, in Fig. 3, we plotted dotted black
vertical lines to separate the data of the three radars.

In our case, we combine the data from the three radar
sensors, resulting in a matrix of size m×3n. We then transform
this data matrix into a magnitude histogram. Then, we apply
log-normal fitting to the magnitude histogram, which returns
the σ value [11]. The magnitude of σ can be used to determine
if there is a meaningful hand motion gesture. As shown in

Fig. 4, a large value of σ means that the received signal
has a higher magnitude over a certain period, which means a
meaningful hand gesture has occurred inside the plane of the
three radar sensors. Algorithm 1 explains this method in detail.
In Algorithm 1, we have used two thresholds: Threshold1 and
movement_index_threshold. Threshold1 represents the level of
the signal below which a signal value is considered to be
noise. We have carefully chosen this level experimentally
with hands at different distances and selected the minimum
threshold value that can be created by the hand in the plane
created by the radar triangle. Hand motions were repeated
ten times each for a slow time window of 4 s; the average
lowest level was set to Threshold1. The other threshold, move-
ment_index_threshold, represents the overall magnitude of the
data collected from the three radar sensors over the whole ges-
ture interval. This value is the spread of σ and was also chosen
by experimentation. Detailed explanations and accuracy infor-
mation for different values of movement_index_threshold are
given in Table II in Section III-B2. After the motion is detected
using Algorithm 1, it is monitored for a duration equal to the
minimum duration required for a gesture motion. We have
chosen that minimum duration experimentally based on hand-
writing speed. If the motion is continuously detected for the
minimum duration required for a gesture, then it is regarded
as a meaningful gesture motion and the following steps in
Sections II-B and II-C for digit classification are applied.

B. Stage II: Accurate Localization and Tracking

1) Ranging and Outlier Rejection: The distance between
the hand and radar is measured using TOA estimation. After
removing clutter from the received signal, the absolute of the
signal is taken; then, the fast-time index n of the maximum
value of the signal in each slow-time index m is measured,
representing the location of the hand

R(m) = arg max
n

{W (m, n)}×rstep/2. (6)

where R(m) is the distance from the radar to the hand at the
slow-time index m and rstep is the distance corresponding to
one fast-time index of radar.

The reflected signal varies in magnitude with its location
due to the RCS of the hand, antenna characteristics, and the
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Algorithm 1 Meaningful Gesture Interval Detection Using Log-Normal Distribution
1: Procedure
2: Input:
3: Data matrix Wm×n

4: Time step k
5: Threshold for meaningful motion detection: movement_index_threshold
6: Output:
7: Hand_motion_detected (true or false)
8: Initialize:
9: Assi gn k = 1;

10: Wm×n = W(k:m)×(1:n)

11: Convert matrix Wm×n into a single vector Wl , where the size of l is m ×n.
12: Remove extremely small values to make the value of σ less dependent on small values in steps 13–17.
13: for l = 1: m × n
14: if (Wl < threshold1)
15: Assi gn Wl = [ ];
16: end if
17: end for
18: Find the magnitude histogram of vector Wl .
19: Fit the magnitude histogram to a log-normal (represented by X in (4)), as shown by the red line in Fig. 4.

X = e(μ+σ W ) (4)

where σ represents the movement_index.
20: Detect the meaningful hand motion duration by comparing σ with a predefined threshold value.
21: if (movement_index_threshold),
22: Hand_motion_detected = True;
23: end if
24: Update the motion sensing time window: k = k +10; (5)
25: Wm×n = W(k:k+m−1)×(1:n)

26: Go to step 11
27: end procedure

Fig. 4. Log-normal histogram fitting for the data set. (a) When there is no
motion activity in the plane of the radar sensors and σ is 0.34. (b) When
there is motion activity for a meaningful gesture and σ is 0.7.

influence of the multipath. In some cases, reflected waves due
to surrounding objects or multipath, rather than the position of
the hand, are detected with the largest magnitude. To eliminate

this error, if the magnitude of the reflected signal is smaller
than a certain threshold (set as 0.001 in this paper), the cor-
responding TOA is treated as “not a number” (NAN), and a
1-D median filter is applied to the TOA data to remove the
outlier [12], [13]

d(m) = med{R[m − K ], . . . , R[m − 1], R[m],
R[m + 1], . . . , R[m + K ]} (7)

where d(m) represents the value after applying the median
filter. The window length of the median filter is (2K + 1)
slow time samples. The median filter is used to eliminate
random impulse TOA errors. The window length of the median
filter is determined by the repetitions of the TOA error and
how long it occurs consecutively. This pattern of TOA error
varies depending on the multipath characteristics caused by
the clutter, the beam pattern of the antenna, and the RCS
variation of the moving hand. The shape and speed of the
hand also affect the TOA error pattern. In this paper, we have
selected the most optimal window length (2K + 1) through
experiments on all cases from various palm and finger shapes
of user hands, various orientations, and gesture speed changes.
If the window length is too short, outliers generate errors.
If we select too long a duration, the pattern is smoothed and
errors occur. Therefore, considering all experimental cases,
the window length that minimizes the error was experimentally
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Fig. 5. Target localization by the trilateration.

Fig. 6. Positioning result of the trilateration using LS for the digit “0”.

determined by trial and error. The same window length was
applied to all experiments. Even if some outliers remain, they
are corrected by the KF at a later stage.

2) Trilateration Technique for Hand Localization: Since we
have the distance of the hand from the three radar sensors
and we also know the location of the radar sensors, we use
trilateration for hand localization. The details of trilateration
are given in [14].

As shown in Fig. 5, the target location is in the blue area
that represents the cross section of the three distances between
the target and the radar sensors. The relationship between
the distances and the coordinates of the target and the radar
sensors is given by the following equation. LS was applied to
estimate the position of the hand [15]

di =
√

(x − xi )
2 + (y − yi )

2 i = 1, . . . , 3 (8)

where di is the distance from the i th radar to the hand and
(xi , yi ) is the position of the radar. The position of the hand
obtained through LS is Z(x, y).

Fig. 6 shows positioning data for the digit 0 that contain
many outlier values resulting from multipath signal reflection
or reflection from moving clutter in the surrounding
environment.

3) Outlier Rejection and KF for Tracking: After getting
hand position information Z(x, y) in the 2-D plane using
trilateration, we must find a smoother estimate of the trajectory

because the output of trilateration contains noise due to mea-
surement delays and multipath signals. Furthermore, we have
to eliminate outliers in the localization data. To this end,
we have implemented a median filter and a KF [16], [17]. For
outlier rejection, the median of recent observations and the
current observation with a deviation above some threshold is
discarded. The window size for the median filter is determined
using the same technique as employed in Section I-B1. The
equations for the KF are modeled as follows. The hand motion
in the x and y coordinates can be represented by the following
equations:

x(k) = x(k − 1) + vx ∗ �t + w (9)

y(k) = y(k − 1) + vy ∗ �t + w. (10)

In the above-mentioned equations, x and y are the hand
motion coordinates, vx and vy are the corresponding velocities,
w is the system noise, and �t represents the time update step,
which is calculated from the sampling frequency of the radar.
The state space representation of the 2-D hand motion, when
there is no input to the system, is given as follows:

Xk = AXk−1 + εk−1 (11)

Zk = H Xk + θk . (12)

In the above-mentioned equations, the matrices can be
defined as

X = [xe ye vx vy], A =

⎡
⎢⎢⎣

1
0

0
1

�t
0

0
�t

0
0

0
0

1
0

0
1

⎤
⎥⎥⎦,

and

H =
[

1 0 0 0
0 1 0 0

]
.

In the above-mentioned equations, k represents the discrete
time unit, X is the state vector, A is the state transition matrix,
and H is the output matrix. (x0, εk, θk) are the Gaussian,
uncorrelated white noise sequences with mean (x̄0, 0, 0) and
covariance (P0, Qk, Rk ), respectively. The initial velocity is
set to zero, whereas the current velocity is calculated from
the previous estimated samples. The estimated output position
values through KF are (xe, ye), whereas the input measured
values are Z(x, y). Fig. 7 shows the sequence of the outlier
rejection median filter and the classic KF for smoothing the
data received from the localization step in Section I-B2.

The classic KF [16], [17] is applied which returns the
estimated position and velocity as X = [xe ye vx vy],
the estimated hand position values, i.e., (xe, ye) at each time
step k, are stored to obtain the hand motion trajectory. The
trajectory after the KF is plotted in Fig. 8.

In Fig. 8, the tracking data is smoother than that shown
in Fig. 6 because of the KF filtering, median-filter-based
outlier detection techniques, and the proposed movement index
method.

C. Stage III: Image Classification

1) Transformation of Tracking Data Into Images: Since we
are using a large data set of images available in MATLAB,
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Fig. 7. Outlier detector and the KF block diagram for smoothing the trajectory.

Fig. 8. Tracking result for the digit “0” after applying the KF with outlier
rejection.

we need to do some image processing before applying the
CNN to those images. First, the points immediately adjacent
to each other in time are connected by a line, as shown
in Fig. 9(b). We change the background color to black and
digit color to white, as shown in Fig. 9(c). To remove the
image distortion caused by the discontinuity of the process of
connecting the points, a 2-D averaging filter, as given in the
following equation, is applied [18]:

g(x, y) =
∑a

s=−a
∑b

t=−b f (x + s, y + t)

(2a + 1) × (2b + 1)
(13)

where f (x, y) is the pixel value of the image before applying
the averaging filter and g(x, y) is the value after applying the
filter. Where (2a + 1) is the horizontal window length of the
filter and (2b + 1) is the vertical window length of the filter.
Fig. 9(d) shows the result of applying the averaging filter.

After applying the averaging filtering, the conditional equa-
tion (14) is applied to sharpen the blurred image. If the
intensity of the pixel is larger than a certain value, it is changed
to 255 (which is the color value for white). The threshold used
in this paper is 50. The results after applying the following
equations are shown in Fig. 9(e).

If (g(x, y) > threshold), then g(x, y) = 255. (14)

Finally, the image is centered by calculating the center of
mass of pixels and placing the image at the center point of the
image matrix, and we reduce the image size to fit the CNNs
input size 28 × 28, as shown in Fig. 9(f).

2) CNN for Image Classification: In this section, we show
how images obtained through signal processing can be recog-
nized as numbers using a classifier. Research on recognition
of handwritten digits has been extensive in the computer

Fig. 9. Digit image after image transformation. (a) Raw tracking data.
(b) After connecting with line. (c) After changing color. (d) After averaging
filtering. (e) After applying (14). (f) After resizing.

vision field. Among the classifiers used, the CNN has had
the best recognition accuracy. Therefore, the CNN was used
as a classifier in this paper. The CNN consists of three
main components: a convolutional filter, an activation function,
and pooling. The convolutional filter extracts features by a
convolution operation while sliding the whole image. Each
filter acts as a feature detector and as many feature maps
as the number of filters are generated. The size and number
of filters are experimentally determined. The second compo-
nent is the activation function. Common activation functions
include sigmoid activation function, the tanh function, and
restricted linear units (ReLU). ReLU, f (x) = max(0, x), has
a faster convergence rate than the tanh and sigmoid activation
functions because it does not activate all neurons at the same
time. It also shows better results than other activation functions
experimentally [19]. Because of these advantages, it is widely
used in neural networks, including CNNs. Therefore, ReLU
is used as the activation function in these experiments. The
third CNN component is a pooling process that reduces the
size of data by downsampling. Pooling methods include max,
average, and min pooling. In CNN, max pooling is often used.
The max pooling process reduces the size of the data, reducing
the amount of computation required and making the network
more robust to noise. Thus, it is adopted here.

The structure and a description of the CNN used are shown
in Fig. 10. The CNN consists of four convolutional layers and
three max pooling layers. The classification layer consists of a
fully connected layer with ten outputs and a softmax function.
We have optimized the layers of the CNN for our radar image
classification problem using MATLAB functions [20]. The
number of CNN convolutional layers is an important parameter
that determines the performance and complexity of the entire
CNN. In this paper, we first experimented with two layers
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Fig. 10. Structure of the CNN for the proposed method.

Fig. 11. Experimental setup.

Fig. 12. Reflected waveform before and after clutter removal.

and increased the number of layers until satisfactory accuracy
was obtained. We used four convolutional layers, in this paper,
because recognition accuracy was 99.7% or greater when using
four layers and was similar even when using five layers.
We also optimized parameters such as convolutional filter size,
pooling size, and pooling stride by repeated trial and error.

Fig. 13. Motion index plot to differentiate between meaningful gesture
durations and idle time.

The CNN was trained for a large, already available data set
of digits written in different orientations and styles. However,
we did not use the entire Modified National Institute of
Standards and Technology (MNIST) database, which is mainly
used for handwriting recognition. The images produced in this
paper have almost the same line thickness and are written with
a fixed intensity by (14). MNIST data, on the other hand,
includes all cases—from bold to blurred characters—in con-
sideration of actual handwriting. It also contains nonnumeric
points and noise lines that can be eliminated by the outliner
rejection algorithm. For this reason, we constructed a data
set based on the characteristics of the images created using
radar signals without using the entire MNIST data. Using
1000 images for each number, we trained the CNN with a
total of 10 000 images. In the vision research field, there is
a highly optimized CNN that uses MNIST data; however,
in this paper, we use a simpler CNN structure that provides
satisfactory accuracy using a small data set containing images
similar to those made using radar sensors.

III. RESULTS AND DISCUSSION

In this section, we describe the experimental environment,
including the radio sensor placement and the radio sensor
used, and describe the experimental results of preprocessing
techniques such as clutter removal and gesture interval recog-
nition in an indoor environment. We also show the results
of trajectory extraction and image transformation algorithms.
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Fig. 14. Green dots show the result of LS estimation before KF; the black line shows the result after KF for (a) 0, (b) 2, (c) 4, (d) 5, (e) 6, and (f) 8 after
image transformation.

Fig. 15. Images showing (a) right tilted 1, (b) normal 3, (c) left tilted 4, (d)
right tilted 5, (e) right tilted 7, and (f) normal 9 after image transformation.

Finally, the accuracy of each gesture after applying the CNN
is shown in the confusion matrix form. The results of the
conventional CNN technique, which uses raw data for training
are shown, and accuracy results of the proposed method are
also described, ultimately demonstrating that the proposed
method is more robust to changes in orientation and hand
movement speed.

A. Experimental Setup

1) Hardware Setup: We used three IR-UWB radar sensors
for data acquisition. The data were taken in real time using
the setup shown in Fig. 11. The distance between two radar
sensors on the horizontal axis was 71.3 cm; the third radar
sensor was installed at the midpoint between the other two
at a height of 38.4 cm. The number of sensors was selected

considering the accuracy of hand position estimation. When
the hand moves, the received signal of the specific radar
becomes instantaneously smaller or distorted due to instanta-
neous decrease in the RCS and the multipath generated by
the clutter of the surrounding environment. This distortion
of the received signal causes an error in position estimation,
which is a factor that degrades recognition accuracy. To elim-
inate these errors, we applied median and KFs, as described
in Section II-B. However, when two sensors were used,
satisfactory results were not obtained. We used three sensors
to increase the diversity effect and we were able to obtain
satisfactory results under the given experimental conditions.
We used commercially available radar X4 sensors (Novelda,
Oslo, Norway). The specifications of the radar sensors are
detailed in Table I.

The center frequency of the radar is 7.29 GHz and its
bandwidth is 1.4 GHz. Range resolution is generally inversely
proportional to bandwidth and is 6.4 mm for the sensor used
in this experiment. This range resolution is much smaller than
the gesture motion range of tens of centimeters; therefore it
has little effect on this experiment. To recognize fine finger
movements, it would be necessary to use a frequency of several
tens of gigahertz. However, for the relatively large motion in
the present experiment, the frequency used is appropriate.

2) Experimental Design: Several experiments were con-
ducted to show that the proposed method is more robust than
existing methods. In the experimental design, we considered
mid-air writing at three different hand orientations—straight,
left-tilted, and right-tilted—to prove that the proposed algo-
rithm works even when the orientation of the hand changes.
We also used multiple volunteers to prove that the proposed
method is robust to differences in human hand shape and size.

The user was located 70 cm from the xy plane in the z-axis
direction and extended the hand to the sensing area, writing the
numbers using hand movements. First, to show the robustness
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Fig. 16. Structure of the CNN for the conventional method.

TABLE I

RADAR SENSOR SPECIFICATION

of orientation change, experiments were carried out when the
numbers were written with a clockwise or counterclockwise
tilt. To accomplish this, one user wrote a number 250 times
each with counterclockwise and clockwise tilts at an angle
of 10◦. To confirm the method’s accuracy when the distance
from the radar sensor to the hand was changed, the experiment
was carried out when digits were shifted in the positive or
negative direction of the x-axis. In this experiment, one user
moved the center of the number about 10 cm in the positive
x-axis direction from the center of the xy plane, wrote the
number 250 times, and moved the center of the number about
10 cm in the negative x-axis direction to write the number
250 more times. Raw radar data change with gesture speed.
Therefore, to confirm robustness to changes in gesture speed,
gesture accuracy was checked by changing speed. In this
experiment, one user wrote a number 500 times at normal
speed (7.52 cm/s) and 500 times at a speed of 13.5 cm/s
which is almost two times faster. Finally, we confirmed the
change of recognition accuracy for different users. To do
this, five users wrote numbers in the air in the same way.
The five users wrote a number 500 times with a vertical
orientation at normal speed at the center of the xy plane.
Using the data obtained from these experiments, we checked
the accuracy of the existing and proposed methods. By com-
paring the accuracy obtained by each method, we confirmed
how robust the proposed method is compared with existing
methods.

B. Preprocessing
1) Clutter Removal: In Fig. 12, we have shown an example

of a radar waveform before and after the clutter removal
as discussed (Section II-A.1). Because of the objects in the
indoor environment, the magnitude of the signal reflected by
clutter at fast-time index 18–65 before the clutter removal
is very large. As a result, the movement of the hand at
fast-time index 78–105 is not detected. After clutter removal,
the magnitude of the signal in the clutter area is greatly
reduced and the signal reflected by the hand is clearly visible.

2) Meaningful Gesture Interval: Meaningful interval sep-
aration was discussed in Algorithm 1 in Section II. The
movement index for the whole slow time is plotted in
Fig. 13.

Fig. 13 shows the graph of the movement_index values for
the entire duration, including gesture and nongesture time.
The threshold value (0.6) was selected by trial and error.
Fig. 13 clearly shows that the movement index was above
the threshold during gestures and was below the threshold
in nongesture and idle periods. Therefore, this method can
be used to estimate the gesture interval. When the detection
accuracy was experimentally measured for different values of
movement index values, then it gave different results. The
detection accuracy for finding the meaningful gesture duration
is shown in Table II, which demonstrates that the movement
index threshold should be carefully selected. Decreasing the
value of this threshold allows noise to be included as gestures.
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TABLE II

MEANINGFUL GESTURE DETECTION ACCURACY

TABLE III

RMSE FOR TRACKING DATA BEFORE AND AFTER APPLYING KF

In contrast, if the movement index threshold is very high,
then some parts of gestures will be discarded and considered
to be noise. The optimal values, however, give the correct
meaningful gesture duration.

C. Tracking Results

The tracking results for digits (0, 2, 4, 5, 6, and 8) with the
median and KF applied are shown in Fig. 14.

The average root-mean-square error (RMSE) values of the
error before and after the KF are shown in Table III.

D. Image Transformation

The 2-D matrix of the tracked hand position is con-
verted into an image suitable for CNN input. The results
of applying the image transformation algorithm described in
Section II-C1 are shown as follows. As shown in Fig. 15,
an image similar to that written on paper with a pen is
generated after applying the image transformation algorithm.
Even if the number was written with a rightward or leftward
tilt, an accurate undistorted image was produced.

E. CNN Accuracy Using Raw Data for Radar
Gesture Recognition

1) Conventional CNNs Using Raw Data for Radar Gesture
Recognition: The conventional CNN technique, which uses
raw data for training, can briefly be described as follows.

1) The signals received from the radar sensor are passed
through clutter removal for background subtraction.

2) The background-subtracted signals are then combined
into a matrix.

3) The matrix that contains the signals from the three radar
sensors is then converted into an image.

4) Using these images, the CNN is trained and evaluates
gestures in real time.

The structure of the CNN is shown in Fig. 16. Six convo-
lutional layers and five max pooling layers were used. The
classification layer consisted of a fully connected layer with
ten outputs and a softmax function. ReLU was used for the
activation function and major parameters such as convolutional
filter size, pooling size, and pooling stride were experimentally
optimized. Fig. 17 shows some of the images created for
some digits by combining the data from the three radar
sensors.
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Fig. 17. Colored images of radar data referring to digits (a) 0, (b) 1, and
(c) 5 after image transformation.

Fig. 17(a)–(c) shows the data images for digits 0, 1,
and 5, respectively. Each image consists of three regions (left,
center, and right), which contain the data obtained from radar
sensors R1, R2, and R3, respectively. Although there are
clear differences among the three patterns, there are further
distinctions that are not clearly visible. Note that the starting
samples of the digit 0 have higher values compared with the
digit 1. Similarly, the right side of the digit 5 is denser than
that of 1.

2) Results of Conventional CNN Using Raw Data for Digit
Classification: Since our aim was to overcome the problem of
decreased accuracy when the orientation or speed of a gesture
changed, we present the result of conventional CNN-based
gesture recognition for four different cases. In the first case,

Fig. 18. Colored images of radar data referring to the digit 2 with (a) slow
speed and straight orientation, (b) different users with varied shape/size of
the hand, (c) slow speed and left-tilted orientation, (d) slow speed, straight
orientation, and shifted on the right side (distance shift), and (e) fast speed
and straight orientation.

the trained and tested gestures have the same orientation
and the same volunteer was used for training and testing.
In the second case, different volunteers were used for testing
to show dependence on users’ hand shape and size. In the third
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TABLE IV

ACCURACY OF DIGIT RECOGNITION WHEN TRAINING AND TESTING PERFORMED ON THE SAME INDIVIDUAL

TABLE V

ACCURACY OF DIGIT RECOGNITION WHEN TRAINING AND TESTING DATA WERE PERFORMED ON DIFFERENT PERSONS

case, the testing gestures are tilted left or right or shifted to
the left or right as compared with the trained gestures. In the
fourth case, there is a change in gesture speed between the
training and testing data. For all the cases, we have used five
volunteers to collect the gesture classification data, for a total
of 400 repetitions of each digit. During CNN training and
evaluation, 75% of the data were used for training and 25%
were used for evaluation.

a) Results when trained and tested gestures have the same
orientation and speed:

(i) When the training and testing are performed for
the same individual: We trained the digits from 0 to 9 for
different volunteers using the conventional CNN technique.
However, the testing was performed on the same individuals
involved in training. The CNN that we employed in the
above case has epochs of 60, 1 iteration per epoch, and a
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TABLE VI

ACCURACY OF DIGIT RECOGNITION WHEN TRAINING AND TESTING DATA HAVE DIFFERENT ORIENTATIONS AND DISTANCES

TABLE VII

ACCURACY OF DIGIT RECOGNITION WHEN TRAINING AND TESTING DATA HAVE DIFFERENT SPEEDS

learning rate of 0.01. The average elapsed training time was
5 min and 57 s.

Table IV shows almost perfect accuracy when the mid-air
hand gestures are performed with the same speed and in the
same orientation.

(ii) When the testing is performed for different indi-
viduals: When we tested classification accuracy on different

volunteers from those who produced the training data,
the results changed considerably and classification accuracy
was degraded due to the dependence of the raw data on the
shape and size of the human hand; thus, the conventional
method performed poorly when the volunteers were changed
for testing the trained system. Five different volunteers were
used for experiments and the size of data set was 500.



LEEM et al.: DETECTING MID-AIR GESTURES FOR DIGIT WRITING WITH RADIO SENSORS AND A CNN 1079

TABLE VIII

ACCURACY OF DIGIT RECOGNITION BY MULTIPLE USERS (VERTICAL CASE)

TABLE IX

ACCURACY OF DIGIT RECOGNITION WITH DIFFERENT ORIENTATIONS AND DISTANCES

Table V shows the accuracy decrease that occurs if training
and testing are performed with different subjects, which means
that the conventional algorithm is not robust against the shape
and size of the users’ hands.

b) Results when trained and tested gestures have different
orientations and distances: In this case, the digits were trained
in one orientation (straight) and the test was performed at
different orientations. The total gesture set for testing com-
prised of 1000 gestures. Of these gestures, 25% gestures
were left-tilted, 25% were right-tilted, 25% were shifted to
the left from the center of the plane, and 25% were right
shifted. The accuracy results of this experiment are presented
in Table VI.

The overall accuracy decreased to 44.5% because when the
image is tilted, the raw data is completely different from the
original version of the trained data.

c) Results when trained and tested gestures have different
speeds: To find the effect of gesture speed on the accuracy of
the conventional CNN algorithm, we trained gestures at normal
speed (an average speed of 7.52 cm/s) and tested them on
higher hand motion speeds (an average speed of 13.5 cm/s).
The total gesture set for testing contained 500 gestures.
Table VII shows the confusion matrix of the result of each
gesture.

For illustration, we show image data for the digit 2 when
it was written in a straight orientation at slow speed, by a
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TABLE X

ACCURACY OF DIGIT RECOGNITION WITH DIFFERENT SPEEDS

different user, left-tilted at a slow speed, shifted on the left
side, and with a straight orientation but a high speed in Fig. 18.
Comparing Fig. 18(a) with Fig. 18(b)–(e), the original digit 2
pattern shown in Fig. 18(a) changes; the classification algo-
rithm classified it as 9, 1, 5, and 7 which are false negatives.
The pattern of the straight but quickly written 2 is very
different from the one written at regular speed. Similarly,
the signal pattern in all regions of Fig. 18(b) and (c) is
distorted as compared with Fig. 18(a). The main reason why
a conventional CNN using raw input data fails to produce
accurate results when testing and training were performed on
different users, or at different orientations or speeds, is that the
raw radar data do not maintain spatial information when these
parameters are changed. Hence, the results have too many false
detections. On the contrary, localization-based handwriting
only depends on the hand’s trajectory, which has a stereotyped
shape across orientations, speeds, and hand shapes.

F. Accuracy of Our Proposed Mid-Air
Gesture Recognition

In our proposed algorithm, using hand tracking data for
image creation to match text writing data, we have improved
classification accuracy in cases in which the orientation and
speed of the hand motions change. We collected a total
of 2500 images for all digits. Of the total data set, 20% of the
data were collected when the handwriting was performed in a
straight orientation and tested on the same user, 20% gesture
were tested on different volunteers, 10% of the gestures were
tilted left, 10% of the gestures were tilted right, 10% were
shifted to the left of the center, and 10% were shifted to the
right. The remaining 20% were performed twice as fast as the
other gestures.

1) Accuracy of Gestures Performed by Multiple Users (Ver-
tical Case): To show the heterogeneity of the proposed
algorithm, we obtained gesture data from five volunteers. The
gestures were made in a vertical direction. The total gesture set
comprised of 1000 gestures. The confusion matrix that shows
the accuracy of these experiments is given in Table VIII.

2) Accuracy of Gestures With Different Orientations and at
Different Distance Shifts: In this section of the experiment,
we performed gestures in different orientations and at different
locations inside the plane of the radar sensors. The total
gesture set comprised 1000 gestures. Of these, 25% were
made in a left-tilted orientation and 25% were performed in
a right-tilted orientation. These gestures were centered in the
sensing plane of the radar sensors. However, to prove that
the proposed algorithm also works if the center is shifted at
different distances, we translated 25% gestures to the right and
25% to the left. The results showed that the orientation change
did not significantly change the accuracy of our proposed
algorithm, as shown by the confusion matrix in Table IX.

3) Accuracy of Gestures With Variable Speed: To show the
effect of gesture speed on the proposed algorithm’s perfor-
mance, we made gestures with different speeds. Some gestures
were slow, with an average speed of 7.46 cm/s, whereas others
were fast, at an average speed of 12.92 cm/s. The total gesture
set was composed of 500 gestures. The accuracy results of
recognizing gestures with different hand motion speeds are
given in Table X.

Table X shows that even changes in hand motion speed do
not change the accuracy results, proving that gesture recogni-
tion based on trajectory data is robust against orientation, user,
and gesture speed changes.

4) Processing Time for Proposed and Conventional Algo-
rithms: Finally, we have calculated the average process-
ing time for both the conventional and proposed algorithm.
We processed and classified gestures in real time. Performance
was evaluated on a PC with an Intel Core i5-4460 processor
with a 3.2-GHz cycle frequency and 8 GB of RAM. We used
MATLAB to evaluate both algorithms. The average processing
time for the conventional algorithm was found to be 0.0364 s,
whereas that of our proposed method was 0.0522 s. The time
taken by the preprocessing step was 0.0007 s, the time for the
localization and tracking step was 0.0068 s, and image trans-
formation and classification took 0.0447 s. This processing
time was fast enough for making real-time inferences.



LEEM et al.: DETECTING MID-AIR GESTURES FOR DIGIT WRITING WITH RADIO SENSORS AND A CNN 1081

IV. CONCLUSION

In this paper, we presented a technique for mid-air digit
writing using radio sensors. Our proposed method uses hand
tracking information to generate an image of the intended
digit. After getting the tracking data, we used a CNN for
digit classification, a method that proved to be highly accurate.
We also checked the accuracy of digit recognition using raw
data as input to the CNN. The accuracy obtained using the
raw data and the CNN was high when the training and testing
data had the same orientation and distance; however, after
changing the orientation during the evaluation, the resulting
accuracy was much lower. In contrast, using our proposed
method, which uses the CNN to transform the tracking data
into an image for classification, even when we wrote the digits
in mid-air in different orientations, the resulting accuracy was
still very high. Another main advantage of our algorithm was
that we did not use any special training data, simply a huge
already available database for image-based digit recognition,
which yielded high gesture recognition accuracy for different
users. Since that database had thousands of examples for
digits in different styles, orientations, and shapes, orientation
changes had almost no effect on the recognition accuracy of
our proposed technique. In this paper, we studied single digit
writing in mid-air. However, because radar sensors with a
narrow beam pattern were used, the sensing area does not
cover a 3-D space, so this paper has focused on 2-D gesture
recognition. If gesture recognition was performed using a sen-
sor with an omnidirectional antenna, the sensing area could be
expanded to 3-D. When using such sensor hardware, it would
be possible to recognize a number in 3-D space by simply
adding the z-axis to the proposed algorithm. In the future
work, we would like to perform mid-air alphabet character
recognition and combine character streams into words.
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