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Abstract—Brillouin optical time domain analyzer (BOTDA) 

fiber sensors have shown strong capability in static long haul 

distributed temperature/strain sensing. However, in applications 

such as structural health monitoring and leakage detection, real-

time measurement is quite necessary. The measurement time of 

temperature/strain in a BOTDA system includes data acquisition 

time and post-processing time. In this work, we propose to use 

hardware accelerated support vector regression (SVR) for the 

post-processing of the collected BOTDA data. Ideal Lorentzian 

curves under different temperatures with different linewidths are 

used to train the SVR model to determine the linear SVR decision 

function. The performance of SVR is evaluated under different 

signal-to-noise ratios (SNRs) experimentally. After the model 

coefficients are determined, algorithm-specific hardware 

accelerators based on field programmable gate arrays (FPGAs) 

are used to realize SVR decision function. During the 

implementation, hardware optimization techniques based on loop 

dependence analysis and batch processing are proposed to reduce 

the execution latency. Our FPGA implementations can achieve up 

to 42x speedup compared with software implementation on an i7-

5960x computer. The post-processing time for 96,100 BGSs along 

38.44-km FUT is only 0.46 seconds with FPGA board ZCU104, 

making the post-processing time no longer a limiting factor for 

dynamic sensing. Moreover, the energy efficiency of our FPGA 

implementation can reach up to 226.1x higher than software 

implementation based on CPU. 

Index Terms—Brillouin optical time domain analyzer 

(BOTDA), fiber optics sensors, digital signal processing, support 

vector machine (SVM), field programmable gate arrays (FPGA), 

hardware implementation. 

I. INTRODUCTION 

INCE the invention of Brillouin optical time domain 

analyzer (BOTDA) in 1990 [1], it has attracted both 

academic and industrial interests [2-4]. BOTDA sensors rely on 

stimulated Brillouin scattering (SBS) of two counter-

propagating light waves, a continuous-wave (CW) signal and a  

pulsed pump. The frequency offset between the pump and 

probe is scanned around the Brillouin frequency shift (BFS) of 

the fiber to reconstruct the Brillouin gain spectrum (BGS). 

Since the change of BFS has a linear relationship with the 

change of temperature and strain on the fiber, an important 

operation in a BOTDA system is to find the BFS from the 

measured BGS to determine temperature or strain information 

along the fiber under test (FUT). In an ideal BGS, BFS is the 

shift in peak gain frequency. However, acquired BGSs are 

always contaminated by noises. Therefore, post-processing 

algorithms are needed to accurately determine BFS from the 

measured BGSs. The conventional wisdom to predict the BFS 

information from the BGS is Levenberg-Marquardt algorithm 

(LMA) curve fitting [5-6]. However, its complexity is often a 

limiting factor in the sensing speed of a BOTDA system 

especially for long sensing distance. 

In recent years, the performances of BOTDA are improved 

significantly due to the rapid developments of the technology. 

The sensing distance of BOTDA can achieve hundreds of 

kilometers [7], and the spatial resolution can be reduced to 

millimeter level [8]. Longer sensing distance brings larger 

amount of sensing data and finer resolution requires higher 

sampling rate and smaller frequency scanning step which result 

in denser sensing points. The sensing data volume keeps 

increasing, which adds the computational load for post-

processing. In real scenario, to extract temperature/strain 

information from the measured BGSs with low latency is quite 

necessary. However, traditional LMA curve fitting technique is 

time consuming due to its iterative nature. Several works have 

mentioned the challenges of post-processing in real applications. 

In [9], a non-curve fitting technique called cross-correlation 

method (XCM) was proposed based on calculation of cross-

correlation between an ideal Lorentzian curve and the measured 

BGS to determine BFS. In [10], a modified version of XCM 

was implemented on FPGA to speed up the processing time. 

Artificial neural network (ANN) is also proposed for BOTDA 

system to improve the sensing accuracy and processing speed 

[11]. However, the training of ANN is difficult due to numerous 

hyperparameters.  Recently, we reported a machine learning 

method called support vector machine (SVM) to extract 

temperature information from measured BGSs with simple 

training strategy and fast processing speed [12-14].  

SVM was first introduced by Vapnik in 1963 [15]. It is a 

powerful and versatile machine learning algorithm, capable of 

performing linear or nonlinear classification and regression. 

SVM for classification is called support vector classification 

(SVC) and for regression is called support vector regression 

BOTDA Fiber Sensor System Based on FPGA 

Accelerated Support Vector Regression 

Huan Wu
†
, Hongda Wang

†
, Chiu-Sing Choy, Senior Member, IEEE, Chester Shu, Senior Member, 

IEEE, and Chao Lu, Fellow, OSA 

† These authors contribute equally to this work  

 

S 

 

This work was supported by CUHK Group Research Scheme, Research 

Grants Council of Hong Kong (RGC) project: RGC GRF CUHK 14204918 
and PolyU 152658/16. 

Huan Wu and Chao Lu are with Department of Electronic and 

Information Engineering, The Hong Kong Polytechnic University, 

Kowloon, Hong Kong. (email: nuaawuhuan@gmail.com) 

Hongda Wang, Chiu-Sing Choy and Chester Shu are with the 
Department of Electronic Engineering, The Chinese University of Hong 

Kong, Shatin, N.T., Hong Kong. (email: 1155039965@link.cuhk.edu.hk). 

 

mailto:nuaawuhuan@gmail.com
mailto:1155039965@link.cuhk.edu.hk


 2 

(SVR). SVC solves binary classification problems by 

formulating them as convex optimization problems, and the 

optimization aims to find the maximum margin separating the 

hyperplane while correctly classifying as many training points 

as possible. In [12-14], we treat extracting temperature 

information from BGSs as a supervised classification problem, 

the BGSs serving as feature vectors are classified into different 

temperature classes by the SVC model. SVM can also be used 

as regression method. As opposed to SVC which can only 

output a discrete value, SVR returns a continuous-valued output. 

Since temperature and strain on the fiber are continuous values, 

SVR is more suitable for BOTDA data. In this work, we use 

SVR to extract continuous temperature information from BGS 

and further improve the post-processing speed by introducing a 

hardware accelerator based on field-programmable gate array 

(FPGA). The main contributions of this work are as follows: 

1) A new temperature prediction method based on SVR is 

proposed. Unlike SVC, which can only output discrete 

temperatures, SVR can predict continuous temperature 

information from measured BGSs acquired from a BOTDA 

system. The experimental results prove that SVR can achieve 

comparable performance with SVC under different SNRs. 

However, SVR is more suitable for hardware implementations.  

2) Hardware implementations of SVR decision function are 

realized on two FPGA boards. Optimizations to linear SVR 

decision function through loop analysis and batch processing 

are proposed to take advantages of high flexibility and 

scalability of modern FPGA devices. These optimization 

methods transform the decision function into matrix-matrix 

multiplication and matrix-vector multiplication and parallelize 

these operations by tiling the large matrix into smaller ones. 

3) Post-processing time for 96,100 BGSs along 38.44-km FUT 

can be completed in 0.46 seconds with Xilinx ZCU104 using 

the proposed hardware optimization techniques. It achieves 42x 

speedup compared with the software implementation running 

on an i7-5960x computer. Meanwhile, the 26.5W power 

consumption of ZCU104 is also much lower than the 

conventional CPU, making the energy efficiency of our FPGA 

implementation 221.6x higher than software implementation 

based on LIBSVM [16].  

The paper is organized as follows. Section II describes the 

principle of SVR and its training process for temperature 

extraction in a BOTDA system. Section III introduces the 

experimental setup of BOTDA and evaluates the performance 

of SVR under different SNRs experimentally. FPGA 

optimizations and implementations of linear SVR decision 

function are given in Section IV. Section V concludes this work.  

II. PRINCIPLE OF SVR AND TRAINING PROCESS FOR 

TEMPERATURE EXTRACTION IN A BOTDA SYSTEM 

Suppose we have training data {(𝒙1, 𝑦1),… , (𝒙𝑙 , 𝑦𝑙)}, where 

𝒙𝑖 ∈ 𝑅
𝑛 is training sample and 𝑦𝑖 ∈ 𝑅 is label. In linear case, 

we construct a linear decision function to fit the training data: 

                                𝑓(𝒙) = ⟨𝒘, 𝒙⟩ + 𝑏                           (2.1) 

where ⟨⋅, ⋅⟩ denotes the dot product, 𝒘 is the norm vector of the 

linear function and 𝑏 is intercept. Traditional linear least-square 

error regression derives a decision function by minimizing the 

deviation between predicted value 𝑓(𝒙𝑖) and given value 𝑦𝑖  for 

all training data. Unlike linear least-square error fitting, SVR 

allows a tolerance degree to errors not greater than 𝜀 as shown 

in Fig. 1(a). Only the data points outside the shaded region 

contribute to the error and the deviations are penalized in a 

linear fashion as shown in Fig. 1(b). The goal of SVR is to find 

a function that fits current training data with a deviation no 

larger than 𝜀, and at the same time as flat as possible. One way 

to ensure this is to minimize the norm, i.e., ‖𝒘‖2 = ⟨𝒘,𝒘⟩. We 

can write this problem as a convex optimization problem as 

follows: 

minimize: 
1

2
‖𝒘‖2 

subject to {
𝑦𝑖 − ⟨𝒘, 𝑥⟩ − 𝑏 ≤ 𝜀
⟨𝒘, 𝑥⟩ + 𝑏 − 𝑦𝑖 ≤ 𝜀

                            (2.2) 

The above convex optimization problem is feasible in cases 

where 𝑓(𝒙) actually exists and all pairs (𝒙𝑖 , 𝑦𝑖) are within 𝜀 
precision. However, in most cases, not all (𝒙𝑖 , 𝑦𝑖) are within 𝜀 
precision, then we can introduce slack variables  ξ𝑖 , 𝜉𝑖

∗ to deal 

with this problem. Hence, we get the following formulation: 

  minimize: 
1

2
‖𝒘‖2 + 𝐶 ∑ (ξ𝑖 + 𝜉𝑖

∗)𝑙
𝑖=1  

                     subject to  {
𝑦𝑖 − ⟨𝒘, 𝒙⟩ − 𝑏 ≤ 𝜀 + ξ𝑖
⟨𝒘, 𝒙⟩ + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

∗          (2.3) 

where ξ𝑖 , 𝜉𝑖
∗ ≥ 0, the constant 𝐶 > 0 determines the trade-off 

between the flatness of 𝑓(𝑥)  and the amount up to which 

deviations larger than 𝜀 are tolerated. Equation (2.3) is known 

as the primal problem of SVR algorithm and it can be 

transformed to dual problem and solved by quadratic 

programming [17]. The solution is as follows: 

                                𝐰 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)(𝒙𝑖)

𝑙
𝑖=1                     (2.4) 

                       𝑓(𝒙) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)⟨𝒙𝑖 , 𝒙⟩

𝑙
𝑖=1 + 𝑏               (2.5) 

where 𝛼𝑖  and 𝛼𝑖
∗  are the dual variables, ⟨𝒙𝑖 , 𝒙⟩ represents the 

inner product between training sample 𝒙𝑖  and test sample 𝒙. 

From Equation (2.5), we can see that once the model parameters 

are identified, SVR only depends on 𝒙𝑖  with corresponding  

(𝛼𝑖 − 𝛼𝑖
∗)  which are non-zero, these 𝒙𝑖  are called support 

vectors and they are subsets of training data. 

Fig. 1. (a) one-dimensional linear SVR, (b) linear loss function. 

 

In our case, to process measured BGSs collected from a 

BOTDA system, a high dimensional linear SVR is used, 

normalized gain value at every frequency on the BGS forms 

feature vector 𝒙𝑖 , and corresponding temperature of the BGS is 

label 𝑦𝑖 . The use of SVR includes two phases, the training phase 

and testing phase as shown in Fig. 2. During the training phase, 

the simulated ideal BGSs together with the corresponding 

temperature labels serving as the training samples are used to 

get linear decision function for temperature prediction. We 

design the simulated ideal BGSs by using ideal Lorentzian 

curve as the gain profile for the training of SVR:  
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                               g(ν) =
𝑔𝐵

1+[
(𝜈−𝜈𝐵)

Δ𝜈𝐵 2⁄
]
2                             (2.6) 

where 𝑔𝐵, 𝜈𝐵 and Δ𝜈𝐵 are the peak gain, BFS and bandwidth 

of the BGS. Peak gain is set as 1, BFSs of the ideal BGSs from 

a temperature range of  0℃  to 70℃  with 0.5℃  step are 

determined using the temperature coefficient of the fiber under 

test (FUT). The linewidth of ideal BGSs vary from 30MHz to 

100MHz at a step of 2MHz to accommodate BGS linewidth 

variation in experiment. Finally, we have 141 × 36 ideal BGSs 

to train the SVR. The frequency range of ν is from 10.78GHz 

to 11.0GHz with 1MHz step, therefore, we have 220 

frequencies. After training, we get 1,136 support vectors in the 

SVR model. In the testing phase, the fixed model predicts a 

continuous temperature value for each normalized measured 

BGS collected from a BOTDA system.  
 

 
Fig. 2. Training and testing phase of SVR. 

III. BOTDA SETUP AND EXPERIMENTAL RESULTS 

A. BOTDA Experimental Setup 

The experimental setup of the BOTDA system is shown in 

Fig. 3. The output of a tunable laser source is set around 

1550nm and is split into two branches using a coupler. The CW 

light in the upper branch is modulated by a Mach-Zehnder 

modulator (MZM) driven by a pulse pattern generator (PPG) to 

generate optical pump pulses. The bias controller after MZM is 

to stabilize the applied voltage. The pump is then amplified by 

an erbium-doped fiber amplifier (EDFA) and passes through a 

polarization scrambler (PS) to eliminate polarization dependent 

noise. In the lower branch, another high extinction ratio MZM 

is driven by a radio frequency (RF) generator. The bias 

controller is biased at Null point to generate a carrier suppressed 

double-sideband probe signal. An optical attenuator (ATT) is 

used to control the probe power followed by an isolator to block 

the signal from the pump branch. The probe signal is detected 

by a photodetector (PD) after the lower-frequency probe 

sideband is selected by using a fiber Bragg grating (FBG) filter. 

Local BGSs are reconstructed with RF scanned around the BFS 

of FUT. Ensemble average is commonly used in BOTDA to 

increase SNR at the expense of longer data acquisition time. 

Temperature/strain measurement time of the BOTDA system 

includes the data acquisition time 𝑇𝑎𝑐𝑞  and post-processing 

time 𝑇𝑝𝑝, and can be expressed as follows: 

          𝑇 = 𝑇𝑎𝑐𝑞 + 𝑇𝑝𝑝 = (𝑇𝑐 ∙ 𝑁𝑎𝑣𝑔 + 𝑇𝑠)𝑁𝑓𝑟𝑒𝑞 + 𝑇𝑝𝑝      (3.1) 

where 𝑇𝑐 = 2𝑛𝐿/𝑐 is time of flight, 𝐿 is the length of FUT, 𝑛 is 

the refractive index of the fiber and 𝑐 is light speed in vacuum. 

𝑁𝑎𝑣𝑔 is the number of averages, 𝑇𝑠 is the frequency switching 

time of RF which is around hundreds of milliseconds and 𝑁𝑓𝑟𝑒𝑞 

is the number of scanned frequencies. 

 
Fig. 3. BOTDA experimental setup. TLS: tunable laser source, PC: polarization 

controller, PPG: pulse pattern generator, RF: radio frequency, PS: polarization 

scrambler, MZM: Mach-Zehnder modulator, ATT: attenuator, FUT: fiber under 

test, FBG: fiber-Bragg grating, PD: photodetector. 

B. Experimental Results 

To evaluate the performance of SVR, we use the BOTDA 

setup in Fig. 3 to measure the BGS distribution along 38.44-km 

FUT. The last 400-m section of FUT is free from strain and put 

in a temperature oven heated to 50℃ as shown in Fig. 4(a). The 

sampling rate is 250MSample/s, corresponding to 96,100 

sampling points for 38.44-km FUT. Fig. 4(b) shows the BGSs 

distribution measured with 20ns pump pulse, 1024 times 

averaging, and the sweeping frequency is from 10.78GHz to 

11.0GHz with 1MHz frequency step.  

 
Fig. 4. (a) 38.44-km FUT with last 400m heated to 50℃. (b) Measured BGS 

distribution along FUT. Temperature distribution along FUT determined by (c1) 

SVR and (d1) SVC, insets: zoom-in view at the heated section. Absolute 

temperature error along 100-m FUT by (c2) SVR and (d2) SVC.  
 

Next, the measured BGSs are processed by SVR. For 

comparison, we also process the BGSs by SVC. The extracted 

temperature distributions by SVR and SVC are shown in Fig. 

4(c1) and (d1), respectively. Both the training data and testing 

data are same for SVR and SVC. The insets in Fig. 4(b), (c1) 

and (d1) depict the zoom-in view at the heated section. We can 

see that the temperature information along FUT has been 

successfully extracted by both SVR and SVC. SVR can achieve 

comparable performance as SVC, the temperature uncertainty 

at the last 400-m FUT are 0.608℃ for SVR and 0.549℃ for 
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SVC, respectively. Fig. 4(c2) and (d2) show the absolute error 

of the predicted temperature by SVR and SVC from 38.34 km 

to 38.44 km, we can clearly see that the predicted temperature 

from SVR are continuous values while that from SVC are 

discrete values, and they exhibit similar error fluctuation range 

and prediction capability. 

Then we investigate the tolerance of SVR to different level 

of SNRs, the pump pulse is fixed at 20ns and frequency 

scanning step is 1MHz. SNR is defined as the ratio between the 

mean amplitude of Brillouin peak and its standard deviation 

[18], which is proportional to the amplitude instead of power. 

We collect the BGSs from 4.5dB to 12dB by using 32 to 1024 

times of averaging. According to Equation (3.1), theoretical 

measurement time varies from 2.7 seconds to 88 seconds when 

averaging time increases from 32 to 1024. Fig. 5 shows the 

temperature uncertainty predicted by SVR and SVC under 

different SNRs. We can see that lower uncertainty can be 

achieved with higher SNR for both SVR and SVC at the 

expense of longer data acquisition time. While at a same SNR, 

SVR and SVC have comparable performance.  
 

 
Fig. 5. Temperature uncertainty around the last 400-m section by using SVC 

and SVR for temperature extraction. 

IV. FPGA OPTIMIZATIONS AND IMPLEMENTATIONS OF SVR 

FPGA can produce very strong computation capability 

through parallelizing the algorithm in an efficient manner. 

Moreover, compared with other hardware accelerators like 

application-specific integrated circuit (ASIC), FPGA also have 

the advantages of reconfigurability and fast deployment time 

especially with the help of high level synthesis (HLS) [19]. 

However, not all the algorithms can achieve real-time 

acceleration because of the inadaptability to fixed hardware 

structures. In [11], the authors use ANN to predict the 

temperature information and the performance improvement 

over LMA curve fitting technique is remarkable. However, 

from the hardware perspective, the sigmoid nonlinear activation 

function in each neuron is very expensive to realize, thus ANN 

is not very suitable for efficient hardware implementation. As 

shown in Section III, both SVC and SVR can be used to extract 

temperature information from BOTDA with excellent 

performance, however, n-class SVC is built upon n(n − 1)/2 

binary classifiers and each classifier has unique number of 

support vectors, the irregular computation pattern doesn’t fit a 

fixed hardware structure. While SVR predicts the result by 

regular matrix-vector multiplication and inner-product, which    

is very suitable to be parallelized and pipelined from the 

hardware perspective. With a dedicated FPGA accelerator, the 

processing speed of linear SVR can be significantly improved. 

In this section, a hardware architecture for the linear SVR 

decision function is presented. In the following subsections, 

part A introduces the direct implementation of linear SVR 

decision function and discusses its drawbacks. In part B, 

optimizations to direct implementation by loop analysis are 

proposed to reduce the latency. In part C, batch processing 

method is proposed to further speed up the running time. In part 

D, 96,100 measured BGSs from 38.44-km FUT are processed 

by two FPGA boards, experimental results and comparison with 

software implementation are described. In part E, we give an 

in-depth theoretical analysis and discussion for FPGA 

acceleration with the proposed optimization techniques. 

A. Direct Implementation of Linear SVR Decision Function 

If we simplify (𝛼𝑖 − 𝛼𝑖
∗) in decision function Equation (2.5) 

as 𝛽𝑖  and expand the inner product to a sum-of-product term, 

then we can have the reformulated decision function as follows:  

                  𝑓(𝒙) = ∑ 𝛽𝑖 ∑ 𝑆𝑉𝑖𝑗𝑥𝑗
𝑀
𝑗=1

𝑁𝑠
𝑖=1 + 𝑏                        (4.1) 

where 𝑆𝑉 represents support vectors obtained from the training 

process, 𝑁𝑠  is the number of support vectors and is 1136 as 

given in Section II,  𝑀 is the dimension of input feature vector 

and is equal to 220. The data path of Equation (4.1) can be 

illustrated in Fig. 6 and the corresponding pseudocode is shown 

in Algorithm 1. In Fig. 6, multiply-accumulate (MAC) 1 

corresponds to the inner summation of Equation (4.1) and is 

denoted as partial sum, while MAC 2 corresponds to the outer 

summation and is denoted as final sum. The total MAC 

operations in MAC 1 and MAC 2 are (𝑁𝑠𝑀+𝑁𝑠) ∗ 2 ∗ 𝑁𝐵𝐺𝑆 , 

where 𝑁𝐵𝐺𝑆  is the number of BGSs. To process 96,100 

measured BGSs from 38.44-km FUT, about 2.4 × 1010 

multiplications and 2.4 × 1010  summations are needed, 

resulting in a heavy computation burden for real-time 

processing.  
 

 
Fig. 6. Data path of linear SVR. 

 
 

Algorithm 1: Original linear SVR without optimization 

Input: feature vector 𝑥[𝑀] 
Require: support vectors 𝑆𝑉[𝑁𝑠][𝑀], support vector corresponding 
multipliers 𝛽[𝑁𝑠], bias 

Output: regression result 𝑓(𝑥) 
Initialize: 𝑝_𝑠𝑢𝑚[𝑁𝑠] ←  0, f_sum ← 𝑏𝑖𝑎𝑠 
L1: for i=0 to 𝑁𝑠 − 1 do 

  L2: for j=0 to 𝑀 − 1 do 

          square ←  𝑆𝑉[𝑖][𝑗] ∗  𝑥[𝑗]; 
          𝑝_𝑠𝑢𝑚[𝑖] ← 𝑝_𝑠𝑢𝑚[𝑖] +square; 
       end for 
       𝑡𝑒𝑚𝑝[𝑖] ← 𝛽[𝑖] ∗ 𝑝_𝑠𝑢𝑚[𝑖]; 
       f_sum ←  f_sum+ 𝑡𝑒𝑚𝑝[𝑖]; 
end for 
𝑓(𝑥) ← f_𝑠𝑢𝑚; 

 

In hardware design, parallel and pipeline are two common 

techniques to reduce the latency. However, the loop-carried 

dependence in the inner loop L2 causes long pipeline initiation 

interval and inefficient hardware utilization efficiency. 

Moreover, due to the existed dependence, parallelism of this 
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direct implementation cannot be achieved without restructuring 

the code, thus the total latency is heavily restricted. To 

accelerate the decision function and enable real-time 

processing, optimizations must be performed to overcome the 

limitations. 

B. Loop Dependence Analysis and Optimizations 

To remove the loop-carried dependence and parallelize the 

partial sum computation, firstly, we need to perform loop 

dependence analysis [20]. In Algorithm 1, the statements inside 

L2 exhibit inter-dependence with respect to the iterator j, but 

show no inter-dependence on iterator i. Thus, we seek to change 

the execution order of L1 and L2 to remove the inter-

dependence. However, the nested loop is imperfect (perfect 

nested loops mean the statements only exist inside the 

innermost loop), we need to take a two-step optimization. 

⚫ Loop distribution: We find that the statements inside L2 

do not depend on the statements between L1 and L2, this 

means we can safely break loop L1 and distribute the 

statements between L1 and L2 outside. After loop 

distribution, a new loop L3 is formed which is only 

responsible for the accumulation of final sum, while L1 and 

L2 become a perfect nested loop and calculates the partial 

sum. 

⚫ Loop interchange: In the perfect nested loop L1 and L2, 

loop-carried dependence prevents efficient pipeline strategy 
to be applied because of the long execution latency of the 

accumulator. The pipeline initiation interval is restricted by 

the propagation delay of the adder, which is normally larger 

than one clock cycle for floating point numbers. When 

working in higher frequency, the propagation delay could 

further consume more clock cycles, resulting in longer 

pipeline initiation interval. In Algorithm 1, no inter-

dependence is observed between the statements inside L2 

and the iterator i, therefore, we can interchange L1 and L2 

to remove the dependence and make the nested loop 

executed consecutively in each clock cycle. After loop 

interchange, the partial sum is read and write 

simultaneously with no conflict on the access addresses, 

which indicates that the partial sum should be mapped to the 

dual port RAM on FPGA. 
 

 

Algorithm 2: Optimized linear SVR with loop distribution and loop 
interchange 

Input: feature vector 𝑥[𝑀] 
Require: support vectors 𝑆𝑉[𝑀][𝑁𝑠], support vector corresponding 
multipliers 𝛽[𝑁𝑠], bias 

Output: regression result 𝑓(𝑥) 
Initialize: 𝑝_𝑠𝑢𝑚[𝑁𝑠] ← 0, f_sum← 𝑏𝑖𝑎𝑠 
L1: for i=0 to 𝑀 − 1 do 
      L2: for j=0 to 𝑁𝑠 − 1 do                           ⊲ loop unroll 
           square←  𝑆𝑉[𝑖][𝑗] ∗  𝑥[𝑖]; 
           𝑝_𝑠𝑢𝑚[𝑗] ← 𝑝_𝑠𝑢𝑚[𝑗] + square; 
       end for 
end for 
L3: for i=0 to 𝑁𝑠 − 1 do                                  ⊲ loop unroll 
      𝑡𝑒𝑚𝑝[𝑖] ← 𝛽[𝑖] ∗ 𝑝_𝑠𝑢𝑚[𝑖]; 
       f_sum ←  f_sum+ 𝑡𝑒𝑚𝑝[𝑖]; 
end for 
𝑓(𝑥) ← f_𝑠𝑢𝑚; 

 

The pseudocode after loop distribution and loop interchange 

is in shown Algorithm 2. Since the execution order of L1 and 

L2 is changed, the support vector matrix also needs to be 

transposed accordingly. The total execution latency in clock 

cycles can be expressed as follows: 

Latency = 𝑁𝑠𝑀+𝑁𝑠𝑇𝑎                                (4.2) 

where 𝑇𝑎 is the propagation delay of the adder. 

Parallelization is another advantage after eliminating loop-

carried dependence by loop distribution and interchange. In 

Algorithm 2 we know that 𝑝_𝑠𝑢𝑚[𝑗]  and 𝑝_𝑠𝑢𝑚[𝑗 + 1]  are 

calculated independently, thus we can unroll the loop L2 

directly to increase the parallelism without changing the code 

structure. After unrolling, massive parallelized MAC units can 

be mapped to DSP slices on FPGA easily. Meanwhile, same 

level of parallelism can also be applied to L3 to shorten the 

latency. Assume we unroll L2 and L3 with a factor of f and the 

delay of an adder is 𝑇𝑎, the total latency can be calculated as 

follows: 

         Latency =
𝑁𝑠𝑀

𝑓⏟
Partial sum

+ 𝑓𝑇𝑎 +
𝑁𝑠

𝑓
+ 𝐿𝑡𝑟𝑒𝑒(𝑓)⏟            

Final sum

          (4.3) 

𝐿𝑡𝑟𝑒𝑒(𝑓) ≈ {
𝑇𝑎 ⌈log2

𝑁𝑆

𝑓
⌉ ,                                    𝑓 >

𝑁𝑆

2𝑓

𝑇𝑎 ⌈log2
𝑁𝑆

𝑓
⌉ + 2 ⌈

𝑁𝑠

2𝑓2
⌉ − 2, 1 < 𝑓 <

𝑁𝑆

2𝑓

   

where 𝐿𝑡𝑟𝑒𝑒(𝑓) is the latency of the adder tree inside L3 after 

unrolling. 𝐿𝑡𝑟𝑒𝑒(𝑓)  has different expressions with small and 

large unroll factors, but in both cases it has little effect on total 

latency, therefore it can be dropped safely in later analysis. Note 

that the latency for 𝑓 = 1 is calculated separately as Equation 

(4.2). To study the effect of parallelization, we apply different 

unroll factors on Algorithm 2. The target platform is Xilinx 

ZCU104 and the working frequency is set to 200 MHz. All the 

input signals and intermediate values use single-precision 

floating point numbers. The execution latency and speedup 

factor are collected from Vivado HLS synthesis report, shown 

in Fig. 7(a). We can see that the latency for one regression 

decreases fast as the unroll factor increases, and the speedup 

almost scales linearly when the unroll factors are relatively 

small (≤ 36). But if we further increase the unroll factor, the 

linear scaling does not hold and the acceleration effect is 

weakened. When the unroll factor increases to 142, the real 

speedup is about 92x. This can be explained by the following 

equation:   

  Latency ≈ {

𝑁𝑠𝑀

𝑓
,                        for small 𝑓

𝑁𝑠𝑀

𝑓⏟
+ 𝑓𝑇𝑎 +

𝑁𝑠

𝑓⏟    
, for large 𝑓

              (4.4) 

For small unroll factor, the latency for final sum calculation 

is negligible compared with partial sum, therefore the total 

latency is approximately inversely proportional to f.  For large 

unroll factor, the latency of the adder chain within L3 is 

comparable to that of the partial sum, so the linear scaling does 

not hold anymore. The hardware consumption is shown in Fig. 

7(b), we can see the DSP consumption scales linearly with the 

unroll factor, while the block-RAM (BRAM) consumption 
doesn’t change much because the support vectors dominate 

most of the BRAM usage. The look-up table (LUT) and flip-

flop (FF) consumptions are also proportional to the unroll 

factor. The results prove that area-performance trade-off can be 

easily achieved with the proposed optimization method. 
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Fig. 7. (a) Speedup and latency versus unroll factor, (b) hardware utilization 

rate on ZCU104 versus unroll factor. 

C. Batch Processing Method 

From the experimental results in Fig. 7(a), we know that the 

latency can be greatly reduced with the proposed two-step 

optimization method and loop unroll, thus a notable speedup 

can be achieved. However, the linear scaling relationship is not 

valid for large unroll factor. If we want to achieve high 

parallelism with a large unroll factor, the latency of 𝑓𝑇𝑎 of the 

long adder chain becomes prominent, since it is proportional to 

the unroll factor f. Under this circumstance, very long pipeline 

stages of the adder chain in L3 will cause the MAC units under-

utilized.  

To further improve the hardware utilization efficiency of L3 

with large unroll factor, we propose a batch processing method 

to process a batch of input vectors at a time. With batch 

processing, the nested loop L1 and L2 in Algorithm 2 become 

a three-level nested loop L1, L2 and L3, while the original L3 

loop turns into a nested loop L4 and L5. The pseudocode for 

batch processing is shown in Algorithm 3. The total latency of 

Algorithm 3 can be calculated as follows: 

Latency ≈
𝐵𝑁𝑠𝑀

𝑓⏟
Partial sum

+ 𝑓𝑇𝑎 +
𝐵𝑁𝑠

𝑓⏟      
Final sum

              (4.5) 

where B is the batch size. If we divide the total latency by B, 

the average latency of the adder chain inside L3 is now shared 

by B inputs:  

Average Latency ≈
𝑁𝑠𝑀

𝑓
+
𝑓𝑇𝑎

𝐵
+
𝑁𝑠

𝑓
                      (4.6) 

When B increases, the average latency of the adder chain will 

decrease and finally we can have the approximate average 

latency as follows when B is large enough: 

                    Average Latency ≈
𝑁𝑠(𝑀+1)

𝑓
                        (4.7) 

In Equation (4.7), we can see the latency is only dependent on 

the unroll factor f, which exhibits an inversely proportional 

relationship and the linear scaling of speedup holds. 

The hardware structure for calculating the three-level nested 

loop in Algorithm 3 is shown in Fig. 8. To enable multiple 

access to the support vector matrix, array partition is performed 

to increase the memory bandwidth and the partition factor is 

equal to the unroll factor. Moreover, the partitioned partial sum 

matrix is mapped to the dual port RAM to enable simultaneous 

read and write operations. In every clock cycle, f support 

vectors and one element from input vectors are read to the 

parallel MAC array, the accumulation results are written to the 

dual port RAM concurrently. It takes totally 𝐵𝑁𝑠𝑀/𝑓 cycles to 

finish updating the partial sum matrix. After this, the partial 

sum matrix will be used to calculate the final sum. 

 
 

 
 

 

 
 

Algorithm 3: Optimized linear SVR with loop distribution, loop 
interchange and batch processing 

Input: multiple feature vectors 𝑥[𝐵][𝑀] 
Require: support vectors 𝑆𝑉[𝑀][𝑁𝑠],  support vector corresponding 
multipliers 𝛽[𝑁𝑠], bias 
Output: classification results 𝑓(𝑥[𝐵]) 
Initialize: 𝑝_𝑠𝑢𝑚[𝑁𝑠] ← 0, f_sum[𝐵] ← 𝑏𝑖𝑎𝑠 
L1: for k=0 to B−1 do 
      L2: for i=0 to 𝑀 − 1 do 
            L3: for j=0 to 𝑁𝑠 − 1 do                  ⊲ loop unroll 
                square[k]←  𝑆𝑉[𝑖][𝑗] ∗  𝑥[𝑘][𝑖]; 
                𝑝_𝑠𝑢𝑚[𝑘][𝑗] ← 𝑝_𝑠𝑢𝑚[𝑘][𝑗] + square[k]; 
            end for 
      end for 
end for 
L4: for k=0 to B−1 do 
      L5: for i=0 to 𝑁𝑠 − 1 do                        ⊲ loop unroll 
            𝑡𝑒𝑚𝑝[𝑘][𝑖] ← 𝛽[𝑖] ∗ 𝑝_𝑠𝑢𝑚[𝑘][𝑖]; 
            f_sum[k]←f_sum[k]+ 𝑡𝑒𝑚𝑝[𝑘][𝑖]; 
      end for 
end for 
𝑓(𝑥[𝐵]) ← f_𝑠𝑢𝑚[𝐵]; 

 

 
Fig. 8. Hardware structure for calculating the partial sum matrix with batch 

processing. 

 

 
Fig. 9. Hardware structure for calculating the final outputs with batch 

processing. 

 

The hardware structure of loop L4 and L5 is presented in Fig. 

9. Different from the structure in Fig. 8, the massive MAC units 

are reconstructed to a cascaded MAC array. In every clock 

cycle, f elements from partial sum matrix and coefficients 

vector are fetched to the MAC array, while only one output is 

generated to the intermediate auxiliary matrix at a time. The 

long adder chain inside the MAC array is heavily pipelined to 

ensure the initiation interval of 1 clock cycle. It takes 𝐵𝑁𝑠/𝑓 

cycles to feed all the inputs to the MAC array, however, the 

latency of the adder chain is not negligible since it is directly 

proportional to the unroll factor f. After the intermediate 

auxiliary matrix is completely updated, an optimized adder tree 

will generate the final outputs in serial, the time consumption 

of this adder tree is trivial since 𝑁𝑆/𝑓 is normally very small for 

large unroll factors. 

To verify the effectiveness of batch processing, we apply 

different batch sizes on Algorithm 3. The unroll factor of 284 is 

chosen to maximize the use of the available DSP resources on 

ZCU104. The latency and speedup versus batch size is depicted 

in Fig. 10(a). We can see that the latency decreases rapidly 
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along with the increase of batch size, and finally converges to 

about 900 clock cycles. Meanwhile, the speedup increases 

along with the batch size, and the maximum speedup achieved 

is 275x with batch size of 40. The hardware utilization is shown 

in Fig. 10(b). We can see that the DSP, BRAM and FF usage 

does not change much when the batch size increases. Only the 

LUT consumption slightly increases since the storage 

requirement for intermediate values like partial sum matrix and 

intermediate auxiliary matrix is proportional to batch size. The 

overall hardware utilization for large batch size does not impose 

heavy burden to the resources, which proves our proposed batch 

processing method is also area efficient for hardware 

implementation. 
 

 
Fig. 10. (a) Speedup and latency versus batch size, (b) hardware utilization 

rate on ZCU104 versus batch size. 

D. Implementation Results on ZC706 and ZCU104 

Next, we implement linear SVR decision function on two 

different FPGA platforms based on the proposed optimization 

methods. Two FPGA boards are Xilinx ZC706 and ZCU104 as 

shown in Fig. 11. The post-implementation resource utilization 

is shown in Table I, it can be observed that the resources are 

used adequately for both platforms. The performances of two 

FPGA boards are shown in Table II, which also includes a 

software implementation based on widely used LIBSVM 

running on a computer with i7-5960x CPU and 32 GB RAM. 

From Table II, we can see that the software implementation 

with LIBSVM needs 19.41 seconds for the post-processing of 

96,100 BGSs from 38.44-km FUT when it works at 3GHz, 

taking up 18~87.8% of total measurement time. On the contrast, 

our implementation with ZC706 can complete the post-

processing in 1.98 second, while the power consumption of the 

FPGA development board is only 14.43W when it works at 

100MHz, taking up 2.2~42.3% of measurement time. 

Furthermore, the implementation with ZCU104 completes the 

post-processing in 0.46 seconds when it works at 200MHz, 

taking up 0.52~14.5% of measurement time. The power 

consumption is 26.5W. The working frequency difference 

between ZC706 and ZCU104 is due to the different 

manufacturing technology by the two FPGAs, and advanced 

technology can enable higher working frequency. The 

equivalent performance of the three platforms are 

2.48GFLOPS, 24.3GFLOPS and 104GFLOPS, respectively. 

The results prove that the hardware accelerators can achieve 

real-time post-processing for the BOTDA data, which are 9.8x 

and 42x faster than the software implementation. Meanwhile, 

two implementations also achieve 95.1x and 226.1x energy 

efficiency compared with i7-5960x, which could save plenty of 

energy in all-day monitoring environments. 
 

 
Fig. 11. FPGA boards of (a) Xilinx ZC706, (b) ZCU104. 

 
TABLE I POST-IMPLEMENTATION RESOURCE UTILIZATION OF 

ZC706 AND ZCU104 

 
Xilinx ZC706 Xilinx ZCU104 

Used Available 
Utilization 

rate 
Used Available 

Utilization 
rate 

BRAM 290.5 545 53.30 286 312 91.67 
DSP 710 900 78.89 1421 1728 82.23 
LUT 111415 218600 50.97 149623 230400 64.94 
FF 73213 437200 16.75 199529 460800 43.30 

 

 

TABLE II PERFORMANCE COMPARISON BETWEEN SOFTWARE 

IMPLEMENTATION AND TWO FPGA PLATFORMS      
Platform Intel i7-5960x Xilinx ZC706 Xilinx ZCU104 

Technology 22nm 28nm 16nm 
Frequency 3.0 GHz 100 MHz 200 MHz 

Power 140 W 14.43 W 26.50 W 
Latency(sec) 19.41 1.98 0.46 
𝑇𝑝𝑝 𝑇⁄  18~87.8% 2.2~42.3% 0.52~14.5% 

Performance 
(GFLOPS) 

2.48 24.3 104 

Energy 
efficiency 

1x 95.1x 221.6x 
 

E. Theoretical Analysis and Discussions 

In Part B and C, we have systematically optimized the 

original linear SVR decision function for hardware 

implementation. Loop distribution and loop interchange enable 

efficient pipeline strategy to be used for partial sum calculation, 

loop unroll further greatly reduces the latency through 

parallelizing the MAC operations. Furthermore, the batch 

processing method makes the latency of the long adder chain 

shared by multiple inputs, which makes the linear scaling of 

speedup holds approximately. These optimization techniques 

make the SVR decision function very suitable to be mapped to 

FPGA, which are also reflected in the hardware structures in 

Fig. 8 and Fig. 9. If we further analyze Algorithm 3, we find 

that we have actually transformed the partial sum matrix 

calculation and final sum vector calculation to matrix-matrix 

multiplication and matrix-vector multiplication as follows: 

   (4.8) 
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(4.9) 
For matrix-matrix multiplication in Equation (4.8), we tile the 

support vector matrix into small blocks and the input vectors 

multiply each block in serial. The partial sum matrix is also tiled 

accordingly. For the matrix-vector multiplication in Equation 

(4.9), the coefficients vector for support vectors also needs to 

be partitioned to maintain same level of parallelism. As a result, 

the two operations are both heavily parallelized, which could 

take the advantage of massive DSP resources and dual port 

RAMs on FPGA. To be more specific, the parallel MAC array 

for matrix-matrix multiplication and cascaded MAC array for 

matrix-vector multiplication are based on same amount of DSP 

resources, making our implementation achieve very high 

hardware utilization efficiency since almost no DSP resources 

are idle during the computation. 

V. CONCLUSION 

In this paper, a new temperature prediction method for 

BOTDA system based on SVR is proposed. Unlike SVC which 

can only predict discrete temperatures, SVR can output 

continuous values from the measured BOTDA data. We 

experimentally verify that SVR can achieve comparable 

performance as SVC under different SNRs. From the hardware 

perspective, SVR is more hardware friendly than SVC. To 

accelerate the processing speed of SVR, linear SVR decision 

function is optimized systematically. The loop-carried 

dependence in the loop iterations is eliminated by loop 

distribution and loop interchange. Therefore, the pipeline 

efficiency of the nested loop is improved. We also propose a 

batch processing method to further decrease the latency. Using 

the proposed optimization methods, linear SVR decision 

function is implemented on two FPGA boards Xilinx ZC706 

and ZCU104 to process 96,100 BGSs from 38.44-km FUT 

acquired from a BOTDA system. Our hardware accelerator can 

achieve up to 42x speedup compared with the software 

implementation on an i7-5960x computer. The post-processing 

time for 96,100 BGSs along 38.44-km FUT is only 0.46 

seconds with ZCU104, which makes our implementation 

capable of real-time prediction. Meanwhile, the power 

consumption of FPGA is also much lower than a high-end CPU, 

making the energy efficiency of our FPGA implementation up 

to 226.1x higher than the software implementation based on 

LIBSVM. 
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