
 1

Abstract—Brillouin optical time domain analyzer (BOTDA)

fiber sensors have shown strong capability in static long haul

distributed temperature/strain sensing. However, in applications

such as structural health monitoring and leakage detection, real-

time measurement is quite necessary. The measurement time of

temperature/strain in a BOTDA system includes data acquisition

time and post-processing time. In this work, we propose to use

hardware accelerated support vector regression (SVR) for the

post-processing of the collected BOTDA data. Ideal Lorentzian

curves under different temperatures with different linewidths are

used to train the SVR model to determine the linear SVR decision

function. The performance of SVR is evaluated under different

signal-to-noise ratios (SNRs) experimentally. After the model

coefficients are determined, algorithm-specific hardware

accelerators based on field programmable gate arrays (FPGAs)

are used to realize SVR decision function. During the

implementation, hardware optimization techniques based on loop

dependence analysis and batch processing are proposed to reduce

the execution latency. Our FPGA implementations can achieve up

to 42x speedup compared with software implementation on an i7-

5960x computer. The post-processing time for 96,100 BGSs along

38.44-km FUT is only 0.46 seconds with FPGA board ZCU104,

making the post-processing time no longer a limiting factor for

dynamic sensing. Moreover, the energy efficiency of our FPGA

implementation can reach up to 226.1x higher than software

implementation based on CPU.

Index Terms—Brillouin optical time domain analyzer

(BOTDA), fiber optics sensors, digital signal processing, support

vector machine (SVM), field programmable gate arrays (FPGA),

hardware implementation.

I. INTRODUCTION

INCE the invention of Brillouin optical time domain

analyzer (BOTDA) in 1990 [1], it has attracted both

academic and industrial interests [2-4]. BOTDA sensors rely on

stimulated Brillouin scattering (SBS) of two counter-

propagating light waves, a continuous-wave (CW) signal and a

pulsed pump. The frequency offset between the pump and

probe is scanned around the Brillouin frequency shift (BFS) of

the fiber to reconstruct the Brillouin gain spectrum (BGS).

Since the change of BFS has a linear relationship with the

change of temperature and strain on the fiber, an important

operation in a BOTDA system is to find the BFS from the

measured BGS to determine temperature or strain information

along the fiber under test (FUT). In an ideal BGS, BFS is the

shift in peak gain frequency. However, acquired BGSs are

always contaminated by noises. Therefore, post-processing

algorithms are needed to accurately determine BFS from the

measured BGSs. The conventional wisdom to predict the BFS

information from the BGS is Levenberg-Marquardt algorithm

(LMA) curve fitting [5-6]. However, its complexity is often a

limiting factor in the sensing speed of a BOTDA system

especially for long sensing distance.

In recent years, the performances of BOTDA are improved

significantly due to the rapid developments of the technology.

The sensing distance of BOTDA can achieve hundreds of

kilometers [7], and the spatial resolution can be reduced to

millimeter level [8]. Longer sensing distance brings larger

amount of sensing data and finer resolution requires higher

sampling rate and smaller frequency scanning step which result

in denser sensing points. The sensing data volume keeps

increasing, which adds the computational load for post-

processing. In real scenario, to extract temperature/strain

information from the measured BGSs with low latency is quite

necessary. However, traditional LMA curve fitting technique is

time consuming due to its iterative nature. Several works have

mentioned the challenges of post-processing in real applications.

In [9], a non-curve fitting technique called cross-correlation

method (XCM) was proposed based on calculation of cross-

correlation between an ideal Lorentzian curve and the measured

BGS to determine BFS. In [10], a modified version of XCM

was implemented on FPGA to speed up the processing time.

Artificial neural network (ANN) is also proposed for BOTDA

system to improve the sensing accuracy and processing speed

[11]. However, the training of ANN is difficult due to numerous

hyperparameters. Recently, we reported a machine learning

method called support vector machine (SVM) to extract

temperature information from measured BGSs with simple

training strategy and fast processing speed [12-14].

SVM was first introduced by Vapnik in 1963 [15]. It is a

powerful and versatile machine learning algorithm, capable of

performing linear or nonlinear classification and regression.

SVM for classification is called support vector classification

(SVC) and for regression is called support vector regression

BOTDA Fiber Sensor System Based on FPGA

Accelerated Support Vector Regression

Huan Wu
†
, Hongda Wang

†
, Chiu-Sing Choy, Senior Member, IEEE, Chester Shu, Senior Member,

IEEE, and Chao Lu, Fellow, OSA

† These authors contribute equally to this work

S

This work was supported by CUHK Group Research Scheme, Research

Grants Council of Hong Kong (RGC) project: RGC GRF CUHK 14204918
and PolyU 152658/16.

Huan Wu and Chao Lu are with Department of Electronic and

Information Engineering, The Hong Kong Polytechnic University,

Kowloon, Hong Kong. (email: nuaawuhuan@gmail.com)

Hongda Wang, Chiu-Sing Choy and Chester Shu are with the
Department of Electronic Engineering, The Chinese University of Hong

Kong, Shatin, N.T., Hong Kong. (email: 1155039965@link.cuhk.edu.hk).

mailto:nuaawuhuan@gmail.com
mailto:1155039965@link.cuhk.edu.hk

 2

(SVR). SVC solves binary classification problems by

formulating them as convex optimization problems, and the

optimization aims to find the maximum margin separating the

hyperplane while correctly classifying as many training points

as possible. In [12-14], we treat extracting temperature

information from BGSs as a supervised classification problem,

the BGSs serving as feature vectors are classified into different

temperature classes by the SVC model. SVM can also be used

as regression method. As opposed to SVC which can only

output a discrete value, SVR returns a continuous-valued output.

Since temperature and strain on the fiber are continuous values,

SVR is more suitable for BOTDA data. In this work, we use

SVR to extract continuous temperature information from BGS

and further improve the post-processing speed by introducing a

hardware accelerator based on field-programmable gate array

(FPGA). The main contributions of this work are as follows:

1) A new temperature prediction method based on SVR is

proposed. Unlike SVC, which can only output discrete

temperatures, SVR can predict continuous temperature

information from measured BGSs acquired from a BOTDA

system. The experimental results prove that SVR can achieve

comparable performance with SVC under different SNRs.

However, SVR is more suitable for hardware implementations.

2) Hardware implementations of SVR decision function are

realized on two FPGA boards. Optimizations to linear SVR

decision function through loop analysis and batch processing

are proposed to take advantages of high flexibility and

scalability of modern FPGA devices. These optimization

methods transform the decision function into matrix-matrix

multiplication and matrix-vector multiplication and parallelize

these operations by tiling the large matrix into smaller ones.

3) Post-processing time for 96,100 BGSs along 38.44-km FUT

can be completed in 0.46 seconds with Xilinx ZCU104 using

the proposed hardware optimization techniques. It achieves 42x

speedup compared with the software implementation running

on an i7-5960x computer. Meanwhile, the 26.5W power

consumption of ZCU104 is also much lower than the

conventional CPU, making the energy efficiency of our FPGA

implementation 221.6x higher than software implementation

based on LIBSVM [16].

The paper is organized as follows. Section II describes the

principle of SVR and its training process for temperature

extraction in a BOTDA system. Section III introduces the

experimental setup of BOTDA and evaluates the performance

of SVR under different SNRs experimentally. FPGA

optimizations and implementations of linear SVR decision

function are given in Section IV. Section V concludes this work.

II. PRINCIPLE OF SVR AND TRAINING PROCESS FOR

TEMPERATURE EXTRACTION IN A BOTDA SYSTEM

Suppose we have training data {(𝒙1, 𝑦1),… , (𝒙𝑙 , 𝑦𝑙)}, where

𝒙𝑖 ∈ 𝑅
𝑛 is training sample and 𝑦𝑖 ∈ 𝑅 is label. In linear case,

we construct a linear decision function to fit the training data:

 𝑓(𝒙) = ⟨𝒘, 𝒙⟩ + 𝑏 (2.1)

where ⟨⋅, ⋅⟩ denotes the dot product, 𝒘 is the norm vector of the

linear function and 𝑏 is intercept. Traditional linear least-square

error regression derives a decision function by minimizing the

deviation between predicted value 𝑓(𝒙𝑖) and given value 𝑦𝑖 for

all training data. Unlike linear least-square error fitting, SVR

allows a tolerance degree to errors not greater than 𝜀 as shown

in Fig. 1(a). Only the data points outside the shaded region

contribute to the error and the deviations are penalized in a

linear fashion as shown in Fig. 1(b). The goal of SVR is to find

a function that fits current training data with a deviation no

larger than 𝜀, and at the same time as flat as possible. One way

to ensure this is to minimize the norm, i.e., ‖𝒘‖2 = ⟨𝒘,𝒘⟩. We

can write this problem as a convex optimization problem as

follows:

minimize:
1

2
‖𝒘‖2

subject to {
𝑦𝑖 − ⟨𝒘, 𝑥⟩ − 𝑏 ≤ 𝜀
⟨𝒘, 𝑥⟩ + 𝑏 − 𝑦𝑖 ≤ 𝜀

 (2.2)

The above convex optimization problem is feasible in cases

where 𝑓(𝒙) actually exists and all pairs (𝒙𝑖 , 𝑦𝑖) are within 𝜀
precision. However, in most cases, not all (𝒙𝑖 , 𝑦𝑖) are within 𝜀
precision, then we can introduce slack variables ξ𝑖 , 𝜉𝑖

∗ to deal

with this problem. Hence, we get the following formulation:

 minimize:
1

2
‖𝒘‖2 + 𝐶 ∑ (ξ𝑖 + 𝜉𝑖

∗)𝑙
𝑖=1

 subject to {
𝑦𝑖 − ⟨𝒘, 𝒙⟩ − 𝑏 ≤ 𝜀 + ξ𝑖
⟨𝒘, 𝒙⟩ + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

∗ (2.3)

where ξ𝑖 , 𝜉𝑖
∗ ≥ 0, the constant 𝐶 > 0 determines the trade-off

between the flatness of 𝑓(𝑥) and the amount up to which

deviations larger than 𝜀 are tolerated. Equation (2.3) is known

as the primal problem of SVR algorithm and it can be

transformed to dual problem and solved by quadratic

programming [17]. The solution is as follows:

 𝐰 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)(𝒙𝑖)

𝑙
𝑖=1 (2.4)

 𝑓(𝒙) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)⟨𝒙𝑖 , 𝒙⟩

𝑙
𝑖=1 + 𝑏 (2.5)

where 𝛼𝑖 and 𝛼𝑖
∗ are the dual variables, ⟨𝒙𝑖 , 𝒙⟩ represents the

inner product between training sample 𝒙𝑖 and test sample 𝒙.

From Equation (2.5), we can see that once the model parameters

are identified, SVR only depends on 𝒙𝑖 with corresponding

(𝛼𝑖 − 𝛼𝑖
∗) which are non-zero, these 𝒙𝑖 are called support

vectors and they are subsets of training data.

Fig. 1. (a) one-dimensional linear SVR, (b) linear loss function.

In our case, to process measured BGSs collected from a

BOTDA system, a high dimensional linear SVR is used,

normalized gain value at every frequency on the BGS forms

feature vector 𝒙𝑖 , and corresponding temperature of the BGS is

label 𝑦𝑖 . The use of SVR includes two phases, the training phase

and testing phase as shown in Fig. 2. During the training phase,

the simulated ideal BGSs together with the corresponding

temperature labels serving as the training samples are used to

get linear decision function for temperature prediction. We

design the simulated ideal BGSs by using ideal Lorentzian

curve as the gain profile for the training of SVR:

 3

 g(ν) =
𝑔𝐵

1+[
(𝜈−𝜈𝐵)

Δ𝜈𝐵 2⁄
]
2 (2.6)

where 𝑔𝐵, 𝜈𝐵 and Δ𝜈𝐵 are the peak gain, BFS and bandwidth

of the BGS. Peak gain is set as 1, BFSs of the ideal BGSs from

a temperature range of 0℃ to 70℃ with 0.5℃ step are

determined using the temperature coefficient of the fiber under

test (FUT). The linewidth of ideal BGSs vary from 30MHz to

100MHz at a step of 2MHz to accommodate BGS linewidth

variation in experiment. Finally, we have 141 × 36 ideal BGSs

to train the SVR. The frequency range of ν is from 10.78GHz

to 11.0GHz with 1MHz step, therefore, we have 220

frequencies. After training, we get 1,136 support vectors in the

SVR model. In the testing phase, the fixed model predicts a

continuous temperature value for each normalized measured

BGS collected from a BOTDA system.

Fig. 2. Training and testing phase of SVR.

III. BOTDA SETUP AND EXPERIMENTAL RESULTS

A. BOTDA Experimental Setup

The experimental setup of the BOTDA system is shown in

Fig. 3. The output of a tunable laser source is set around

1550nm and is split into two branches using a coupler. The CW

light in the upper branch is modulated by a Mach-Zehnder

modulator (MZM) driven by a pulse pattern generator (PPG) to

generate optical pump pulses. The bias controller after MZM is

to stabilize the applied voltage. The pump is then amplified by

an erbium-doped fiber amplifier (EDFA) and passes through a

polarization scrambler (PS) to eliminate polarization dependent

noise. In the lower branch, another high extinction ratio MZM

is driven by a radio frequency (RF) generator. The bias

controller is biased at Null point to generate a carrier suppressed

double-sideband probe signal. An optical attenuator (ATT) is

used to control the probe power followed by an isolator to block

the signal from the pump branch. The probe signal is detected

by a photodetector (PD) after the lower-frequency probe

sideband is selected by using a fiber Bragg grating (FBG) filter.

Local BGSs are reconstructed with RF scanned around the BFS

of FUT. Ensemble average is commonly used in BOTDA to

increase SNR at the expense of longer data acquisition time.

Temperature/strain measurement time of the BOTDA system

includes the data acquisition time 𝑇𝑎𝑐𝑞 and post-processing

time 𝑇𝑝𝑝, and can be expressed as follows:

 𝑇 = 𝑇𝑎𝑐𝑞 + 𝑇𝑝𝑝 = (𝑇𝑐 ∙ 𝑁𝑎𝑣𝑔 + 𝑇𝑠)𝑁𝑓𝑟𝑒𝑞 + 𝑇𝑝𝑝 (3.1)

where 𝑇𝑐 = 2𝑛𝐿/𝑐 is time of flight, 𝐿 is the length of FUT, 𝑛 is

the refractive index of the fiber and 𝑐 is light speed in vacuum.

𝑁𝑎𝑣𝑔 is the number of averages, 𝑇𝑠 is the frequency switching

time of RF which is around hundreds of milliseconds and 𝑁𝑓𝑟𝑒𝑞

is the number of scanned frequencies.

Fig. 3. BOTDA experimental setup. TLS: tunable laser source, PC: polarization

controller, PPG: pulse pattern generator, RF: radio frequency, PS: polarization

scrambler, MZM: Mach-Zehnder modulator, ATT: attenuator, FUT: fiber under

test, FBG: fiber-Bragg grating, PD: photodetector.

B. Experimental Results

To evaluate the performance of SVR, we use the BOTDA

setup in Fig. 3 to measure the BGS distribution along 38.44-km

FUT. The last 400-m section of FUT is free from strain and put

in a temperature oven heated to 50℃ as shown in Fig. 4(a). The

sampling rate is 250MSample/s, corresponding to 96,100

sampling points for 38.44-km FUT. Fig. 4(b) shows the BGSs

distribution measured with 20ns pump pulse, 1024 times

averaging, and the sweeping frequency is from 10.78GHz to

11.0GHz with 1MHz frequency step.

Fig. 4. (a) 38.44-km FUT with last 400m heated to 50℃. (b) Measured BGS

distribution along FUT. Temperature distribution along FUT determined by (c1)

SVR and (d1) SVC, insets: zoom-in view at the heated section. Absolute

temperature error along 100-m FUT by (c2) SVR and (d2) SVC.

Next, the measured BGSs are processed by SVR. For

comparison, we also process the BGSs by SVC. The extracted

temperature distributions by SVR and SVC are shown in Fig.

4(c1) and (d1), respectively. Both the training data and testing

data are same for SVR and SVC. The insets in Fig. 4(b), (c1)

and (d1) depict the zoom-in view at the heated section. We can

see that the temperature information along FUT has been

successfully extracted by both SVR and SVC. SVR can achieve

comparable performance as SVC, the temperature uncertainty

at the last 400-m FUT are 0.608℃ for SVR and 0.549℃ for

 4

SVC, respectively. Fig. 4(c2) and (d2) show the absolute error

of the predicted temperature by SVR and SVC from 38.34 km

to 38.44 km, we can clearly see that the predicted temperature

from SVR are continuous values while that from SVC are

discrete values, and they exhibit similar error fluctuation range

and prediction capability.

Then we investigate the tolerance of SVR to different level

of SNRs, the pump pulse is fixed at 20ns and frequency

scanning step is 1MHz. SNR is defined as the ratio between the

mean amplitude of Brillouin peak and its standard deviation

[18], which is proportional to the amplitude instead of power.

We collect the BGSs from 4.5dB to 12dB by using 32 to 1024

times of averaging. According to Equation (3.1), theoretical

measurement time varies from 2.7 seconds to 88 seconds when

averaging time increases from 32 to 1024. Fig. 5 shows the

temperature uncertainty predicted by SVR and SVC under

different SNRs. We can see that lower uncertainty can be

achieved with higher SNR for both SVR and SVC at the

expense of longer data acquisition time. While at a same SNR,

SVR and SVC have comparable performance.

Fig. 5. Temperature uncertainty around the last 400-m section by using SVC

and SVR for temperature extraction.

IV. FPGA OPTIMIZATIONS AND IMPLEMENTATIONS OF SVR

FPGA can produce very strong computation capability

through parallelizing the algorithm in an efficient manner.

Moreover, compared with other hardware accelerators like

application-specific integrated circuit (ASIC), FPGA also have

the advantages of reconfigurability and fast deployment time

especially with the help of high level synthesis (HLS) [19].

However, not all the algorithms can achieve real-time

acceleration because of the inadaptability to fixed hardware

structures. In [11], the authors use ANN to predict the

temperature information and the performance improvement

over LMA curve fitting technique is remarkable. However,

from the hardware perspective, the sigmoid nonlinear activation

function in each neuron is very expensive to realize, thus ANN

is not very suitable for efficient hardware implementation. As

shown in Section III, both SVC and SVR can be used to extract

temperature information from BOTDA with excellent

performance, however, n-class SVC is built upon n(n − 1)/2

binary classifiers and each classifier has unique number of

support vectors, the irregular computation pattern doesn’t fit a

fixed hardware structure. While SVR predicts the result by

regular matrix-vector multiplication and inner-product, which

is very suitable to be parallelized and pipelined from the

hardware perspective. With a dedicated FPGA accelerator, the

processing speed of linear SVR can be significantly improved.

In this section, a hardware architecture for the linear SVR

decision function is presented. In the following subsections,

part A introduces the direct implementation of linear SVR

decision function and discusses its drawbacks. In part B,

optimizations to direct implementation by loop analysis are

proposed to reduce the latency. In part C, batch processing

method is proposed to further speed up the running time. In part

D, 96,100 measured BGSs from 38.44-km FUT are processed

by two FPGA boards, experimental results and comparison with

software implementation are described. In part E, we give an

in-depth theoretical analysis and discussion for FPGA

acceleration with the proposed optimization techniques.

A. Direct Implementation of Linear SVR Decision Function

If we simplify (𝛼𝑖 − 𝛼𝑖
∗) in decision function Equation (2.5)

as 𝛽𝑖 and expand the inner product to a sum-of-product term,

then we can have the reformulated decision function as follows:

 𝑓(𝒙) = ∑ 𝛽𝑖 ∑ 𝑆𝑉𝑖𝑗𝑥𝑗
𝑀
𝑗=1

𝑁𝑠
𝑖=1 + 𝑏 (4.1)

where 𝑆𝑉 represents support vectors obtained from the training

process, 𝑁𝑠 is the number of support vectors and is 1136 as

given in Section II, 𝑀 is the dimension of input feature vector

and is equal to 220. The data path of Equation (4.1) can be

illustrated in Fig. 6 and the corresponding pseudocode is shown

in Algorithm 1. In Fig. 6, multiply-accumulate (MAC) 1

corresponds to the inner summation of Equation (4.1) and is

denoted as partial sum, while MAC 2 corresponds to the outer

summation and is denoted as final sum. The total MAC

operations in MAC 1 and MAC 2 are (𝑁𝑠𝑀+𝑁𝑠) ∗ 2 ∗ 𝑁𝐵𝐺𝑆 ,

where 𝑁𝐵𝐺𝑆 is the number of BGSs. To process 96,100

measured BGSs from 38.44-km FUT, about 2.4 × 1010

multiplications and 2.4 × 1010 summations are needed,

resulting in a heavy computation burden for real-time

processing.

Fig. 6. Data path of linear SVR.

Algorithm 1: Original linear SVR without optimization

Input: feature vector 𝑥[𝑀]
Require: support vectors 𝑆𝑉[𝑁𝑠][𝑀], support vector corresponding
multipliers 𝛽[𝑁𝑠], bias

Output: regression result 𝑓(𝑥)
Initialize: 𝑝_𝑠𝑢𝑚[𝑁𝑠] ← 0, f_sum ← 𝑏𝑖𝑎𝑠
L1: for i=0 to 𝑁𝑠 − 1 do

 L2: for j=0 to 𝑀 − 1 do

 square ← 𝑆𝑉[𝑖][𝑗] ∗ 𝑥[𝑗];
 𝑝_𝑠𝑢𝑚[𝑖] ← 𝑝_𝑠𝑢𝑚[𝑖] +square;
 end for
 𝑡𝑒𝑚𝑝[𝑖] ← 𝛽[𝑖] ∗ 𝑝_𝑠𝑢𝑚[𝑖];
 f_sum ← f_sum+ 𝑡𝑒𝑚𝑝[𝑖];
end for
𝑓(𝑥) ← f_𝑠𝑢𝑚;

In hardware design, parallel and pipeline are two common

techniques to reduce the latency. However, the loop-carried

dependence in the inner loop L2 causes long pipeline initiation

interval and inefficient hardware utilization efficiency.

Moreover, due to the existed dependence, parallelism of this

 5

direct implementation cannot be achieved without restructuring

the code, thus the total latency is heavily restricted. To

accelerate the decision function and enable real-time

processing, optimizations must be performed to overcome the

limitations.

B. Loop Dependence Analysis and Optimizations

To remove the loop-carried dependence and parallelize the

partial sum computation, firstly, we need to perform loop

dependence analysis [20]. In Algorithm 1, the statements inside

L2 exhibit inter-dependence with respect to the iterator j, but

show no inter-dependence on iterator i. Thus, we seek to change

the execution order of L1 and L2 to remove the inter-

dependence. However, the nested loop is imperfect (perfect

nested loops mean the statements only exist inside the

innermost loop), we need to take a two-step optimization.

⚫ Loop distribution: We find that the statements inside L2

do not depend on the statements between L1 and L2, this

means we can safely break loop L1 and distribute the

statements between L1 and L2 outside. After loop

distribution, a new loop L3 is formed which is only

responsible for the accumulation of final sum, while L1 and

L2 become a perfect nested loop and calculates the partial

sum.

⚫ Loop interchange: In the perfect nested loop L1 and L2,

loop-carried dependence prevents efficient pipeline strategy
to be applied because of the long execution latency of the

accumulator. The pipeline initiation interval is restricted by

the propagation delay of the adder, which is normally larger

than one clock cycle for floating point numbers. When

working in higher frequency, the propagation delay could

further consume more clock cycles, resulting in longer

pipeline initiation interval. In Algorithm 1, no inter-

dependence is observed between the statements inside L2

and the iterator i, therefore, we can interchange L1 and L2

to remove the dependence and make the nested loop

executed consecutively in each clock cycle. After loop

interchange, the partial sum is read and write

simultaneously with no conflict on the access addresses,

which indicates that the partial sum should be mapped to the

dual port RAM on FPGA.

Algorithm 2: Optimized linear SVR with loop distribution and loop
interchange

Input: feature vector 𝑥[𝑀]
Require: support vectors 𝑆𝑉[𝑀][𝑁𝑠], support vector corresponding
multipliers 𝛽[𝑁𝑠], bias

Output: regression result 𝑓(𝑥)
Initialize: 𝑝_𝑠𝑢𝑚[𝑁𝑠] ← 0, f_sum← 𝑏𝑖𝑎𝑠
L1: for i=0 to 𝑀 − 1 do
 L2: for j=0 to 𝑁𝑠 − 1 do ⊲ loop unroll
 square← 𝑆𝑉[𝑖][𝑗] ∗ 𝑥[𝑖];
 𝑝_𝑠𝑢𝑚[𝑗] ← 𝑝_𝑠𝑢𝑚[𝑗] + square;
 end for
end for
L3: for i=0 to 𝑁𝑠 − 1 do ⊲ loop unroll
 𝑡𝑒𝑚𝑝[𝑖] ← 𝛽[𝑖] ∗ 𝑝_𝑠𝑢𝑚[𝑖];
 f_sum ← f_sum+ 𝑡𝑒𝑚𝑝[𝑖];
end for
𝑓(𝑥) ← f_𝑠𝑢𝑚;

The pseudocode after loop distribution and loop interchange

is in shown Algorithm 2. Since the execution order of L1 and

L2 is changed, the support vector matrix also needs to be

transposed accordingly. The total execution latency in clock

cycles can be expressed as follows:

Latency = 𝑁𝑠𝑀+𝑁𝑠𝑇𝑎 (4.2)

where 𝑇𝑎 is the propagation delay of the adder.

Parallelization is another advantage after eliminating loop-

carried dependence by loop distribution and interchange. In

Algorithm 2 we know that 𝑝_𝑠𝑢𝑚[𝑗] and 𝑝_𝑠𝑢𝑚[𝑗 + 1] are

calculated independently, thus we can unroll the loop L2

directly to increase the parallelism without changing the code

structure. After unrolling, massive parallelized MAC units can

be mapped to DSP slices on FPGA easily. Meanwhile, same

level of parallelism can also be applied to L3 to shorten the

latency. Assume we unroll L2 and L3 with a factor of f and the

delay of an adder is 𝑇𝑎, the total latency can be calculated as

follows:

 Latency =
𝑁𝑠𝑀

𝑓⏟
Partial sum

+ 𝑓𝑇𝑎 +
𝑁𝑠

𝑓
+ 𝐿𝑡𝑟𝑒𝑒(𝑓)⏟

Final sum

 (4.3)

𝐿𝑡𝑟𝑒𝑒(𝑓) ≈ {
𝑇𝑎 ⌈log2

𝑁𝑆

𝑓
⌉ , 𝑓 >

𝑁𝑆

2𝑓

𝑇𝑎 ⌈log2
𝑁𝑆

𝑓
⌉ + 2 ⌈

𝑁𝑠

2𝑓2
⌉ − 2, 1 < 𝑓 <

𝑁𝑆

2𝑓

where 𝐿𝑡𝑟𝑒𝑒(𝑓) is the latency of the adder tree inside L3 after

unrolling. 𝐿𝑡𝑟𝑒𝑒(𝑓) has different expressions with small and

large unroll factors, but in both cases it has little effect on total

latency, therefore it can be dropped safely in later analysis. Note

that the latency for 𝑓 = 1 is calculated separately as Equation

(4.2). To study the effect of parallelization, we apply different

unroll factors on Algorithm 2. The target platform is Xilinx

ZCU104 and the working frequency is set to 200 MHz. All the

input signals and intermediate values use single-precision

floating point numbers. The execution latency and speedup

factor are collected from Vivado HLS synthesis report, shown

in Fig. 7(a). We can see that the latency for one regression

decreases fast as the unroll factor increases, and the speedup

almost scales linearly when the unroll factors are relatively

small (≤ 36). But if we further increase the unroll factor, the

linear scaling does not hold and the acceleration effect is

weakened. When the unroll factor increases to 142, the real

speedup is about 92x. This can be explained by the following

equation:

 Latency ≈ {

𝑁𝑠𝑀

𝑓
, for small 𝑓

𝑁𝑠𝑀

𝑓⏟
+ 𝑓𝑇𝑎 +

𝑁𝑠

𝑓⏟
, for large 𝑓

 (4.4)

For small unroll factor, the latency for final sum calculation

is negligible compared with partial sum, therefore the total

latency is approximately inversely proportional to f. For large

unroll factor, the latency of the adder chain within L3 is

comparable to that of the partial sum, so the linear scaling does

not hold anymore. The hardware consumption is shown in Fig.

7(b), we can see the DSP consumption scales linearly with the

unroll factor, while the block-RAM (BRAM) consumption
doesn’t change much because the support vectors dominate

most of the BRAM usage. The look-up table (LUT) and flip-

flop (FF) consumptions are also proportional to the unroll

factor. The results prove that area-performance trade-off can be

easily achieved with the proposed optimization method.

 6

Fig. 7. (a) Speedup and latency versus unroll factor, (b) hardware utilization

rate on ZCU104 versus unroll factor.

C. Batch Processing Method

From the experimental results in Fig. 7(a), we know that the

latency can be greatly reduced with the proposed two-step

optimization method and loop unroll, thus a notable speedup

can be achieved. However, the linear scaling relationship is not

valid for large unroll factor. If we want to achieve high

parallelism with a large unroll factor, the latency of 𝑓𝑇𝑎 of the

long adder chain becomes prominent, since it is proportional to

the unroll factor f. Under this circumstance, very long pipeline

stages of the adder chain in L3 will cause the MAC units under-

utilized.

To further improve the hardware utilization efficiency of L3

with large unroll factor, we propose a batch processing method

to process a batch of input vectors at a time. With batch

processing, the nested loop L1 and L2 in Algorithm 2 become

a three-level nested loop L1, L2 and L3, while the original L3

loop turns into a nested loop L4 and L5. The pseudocode for

batch processing is shown in Algorithm 3. The total latency of

Algorithm 3 can be calculated as follows:

Latency ≈
𝐵𝑁𝑠𝑀

𝑓⏟
Partial sum

+ 𝑓𝑇𝑎 +
𝐵𝑁𝑠

𝑓⏟
Final sum

 (4.5)

where B is the batch size. If we divide the total latency by B,

the average latency of the adder chain inside L3 is now shared

by B inputs:

Average Latency ≈
𝑁𝑠𝑀

𝑓
+
𝑓𝑇𝑎

𝐵
+
𝑁𝑠

𝑓
 (4.6)

When B increases, the average latency of the adder chain will

decrease and finally we can have the approximate average

latency as follows when B is large enough:

 Average Latency ≈
𝑁𝑠(𝑀+1)

𝑓
 (4.7)

In Equation (4.7), we can see the latency is only dependent on

the unroll factor f, which exhibits an inversely proportional

relationship and the linear scaling of speedup holds.

The hardware structure for calculating the three-level nested

loop in Algorithm 3 is shown in Fig. 8. To enable multiple

access to the support vector matrix, array partition is performed

to increase the memory bandwidth and the partition factor is

equal to the unroll factor. Moreover, the partitioned partial sum

matrix is mapped to the dual port RAM to enable simultaneous

read and write operations. In every clock cycle, f support

vectors and one element from input vectors are read to the

parallel MAC array, the accumulation results are written to the

dual port RAM concurrently. It takes totally 𝐵𝑁𝑠𝑀/𝑓 cycles to

finish updating the partial sum matrix. After this, the partial

sum matrix will be used to calculate the final sum.

Algorithm 3: Optimized linear SVR with loop distribution, loop
interchange and batch processing

Input: multiple feature vectors 𝑥[𝐵][𝑀]
Require: support vectors 𝑆𝑉[𝑀][𝑁𝑠], support vector corresponding
multipliers 𝛽[𝑁𝑠], bias
Output: classification results 𝑓(𝑥[𝐵])
Initialize: 𝑝_𝑠𝑢𝑚[𝑁𝑠] ← 0, f_sum[𝐵] ← 𝑏𝑖𝑎𝑠
L1: for k=0 to B−1 do
 L2: for i=0 to 𝑀 − 1 do
 L3: for j=0 to 𝑁𝑠 − 1 do ⊲ loop unroll
 square[k]← 𝑆𝑉[𝑖][𝑗] ∗ 𝑥[𝑘][𝑖];
 𝑝_𝑠𝑢𝑚[𝑘][𝑗] ← 𝑝_𝑠𝑢𝑚[𝑘][𝑗] + square[k];
 end for
 end for
end for
L4: for k=0 to B−1 do
 L5: for i=0 to 𝑁𝑠 − 1 do ⊲ loop unroll
 𝑡𝑒𝑚𝑝[𝑘][𝑖] ← 𝛽[𝑖] ∗ 𝑝_𝑠𝑢𝑚[𝑘][𝑖];
 f_sum[k]←f_sum[k]+ 𝑡𝑒𝑚𝑝[𝑘][𝑖];
 end for
end for
𝑓(𝑥[𝐵]) ← f_𝑠𝑢𝑚[𝐵];

Fig. 8. Hardware structure for calculating the partial sum matrix with batch

processing.

Fig. 9. Hardware structure for calculating the final outputs with batch

processing.

The hardware structure of loop L4 and L5 is presented in Fig.

9. Different from the structure in Fig. 8, the massive MAC units

are reconstructed to a cascaded MAC array. In every clock

cycle, f elements from partial sum matrix and coefficients

vector are fetched to the MAC array, while only one output is

generated to the intermediate auxiliary matrix at a time. The

long adder chain inside the MAC array is heavily pipelined to

ensure the initiation interval of 1 clock cycle. It takes 𝐵𝑁𝑠/𝑓

cycles to feed all the inputs to the MAC array, however, the

latency of the adder chain is not negligible since it is directly

proportional to the unroll factor f. After the intermediate

auxiliary matrix is completely updated, an optimized adder tree

will generate the final outputs in serial, the time consumption

of this adder tree is trivial since 𝑁𝑆/𝑓 is normally very small for

large unroll factors.

To verify the effectiveness of batch processing, we apply

different batch sizes on Algorithm 3. The unroll factor of 284 is

chosen to maximize the use of the available DSP resources on

ZCU104. The latency and speedup versus batch size is depicted

in Fig. 10(a). We can see that the latency decreases rapidly

 7

along with the increase of batch size, and finally converges to

about 900 clock cycles. Meanwhile, the speedup increases

along with the batch size, and the maximum speedup achieved

is 275x with batch size of 40. The hardware utilization is shown

in Fig. 10(b). We can see that the DSP, BRAM and FF usage

does not change much when the batch size increases. Only the

LUT consumption slightly increases since the storage

requirement for intermediate values like partial sum matrix and

intermediate auxiliary matrix is proportional to batch size. The

overall hardware utilization for large batch size does not impose

heavy burden to the resources, which proves our proposed batch

processing method is also area efficient for hardware

implementation.

Fig. 10. (a) Speedup and latency versus batch size, (b) hardware utilization

rate on ZCU104 versus batch size.

D. Implementation Results on ZC706 and ZCU104

Next, we implement linear SVR decision function on two

different FPGA platforms based on the proposed optimization

methods. Two FPGA boards are Xilinx ZC706 and ZCU104 as

shown in Fig. 11. The post-implementation resource utilization

is shown in Table I, it can be observed that the resources are

used adequately for both platforms. The performances of two

FPGA boards are shown in Table II, which also includes a

software implementation based on widely used LIBSVM

running on a computer with i7-5960x CPU and 32 GB RAM.

From Table II, we can see that the software implementation

with LIBSVM needs 19.41 seconds for the post-processing of

96,100 BGSs from 38.44-km FUT when it works at 3GHz,

taking up 18~87.8% of total measurement time. On the contrast,

our implementation with ZC706 can complete the post-

processing in 1.98 second, while the power consumption of the

FPGA development board is only 14.43W when it works at

100MHz, taking up 2.2~42.3% of measurement time.

Furthermore, the implementation with ZCU104 completes the

post-processing in 0.46 seconds when it works at 200MHz,

taking up 0.52~14.5% of measurement time. The power

consumption is 26.5W. The working frequency difference

between ZC706 and ZCU104 is due to the different

manufacturing technology by the two FPGAs, and advanced

technology can enable higher working frequency. The

equivalent performance of the three platforms are

2.48GFLOPS, 24.3GFLOPS and 104GFLOPS, respectively.

The results prove that the hardware accelerators can achieve

real-time post-processing for the BOTDA data, which are 9.8x

and 42x faster than the software implementation. Meanwhile,

two implementations also achieve 95.1x and 226.1x energy

efficiency compared with i7-5960x, which could save plenty of

energy in all-day monitoring environments.

Fig. 11. FPGA boards of (a) Xilinx ZC706, (b) ZCU104.

TABLE I POST-IMPLEMENTATION RESOURCE UTILIZATION OF

ZC706 AND ZCU104

Xilinx ZC706 Xilinx ZCU104

Used Available
Utilization

rate
Used Available

Utilization
rate

BRAM 290.5 545 53.30 286 312 91.67
DSP 710 900 78.89 1421 1728 82.23
LUT 111415 218600 50.97 149623 230400 64.94
FF 73213 437200 16.75 199529 460800 43.30

TABLE II PERFORMANCE COMPARISON BETWEEN SOFTWARE

IMPLEMENTATION AND TWO FPGA PLATFORMS
Platform Intel i7-5960x Xilinx ZC706 Xilinx ZCU104

Technology 22nm 28nm 16nm
Frequency 3.0 GHz 100 MHz 200 MHz

Power 140 W 14.43 W 26.50 W
Latency(sec) 19.41 1.98 0.46
𝑇𝑝𝑝 𝑇⁄ 18~87.8% 2.2~42.3% 0.52~14.5%

Performance
(GFLOPS)

2.48 24.3 104

Energy
efficiency

1x 95.1x 221.6x

E. Theoretical Analysis and Discussions

In Part B and C, we have systematically optimized the

original linear SVR decision function for hardware

implementation. Loop distribution and loop interchange enable

efficient pipeline strategy to be used for partial sum calculation,

loop unroll further greatly reduces the latency through

parallelizing the MAC operations. Furthermore, the batch

processing method makes the latency of the long adder chain

shared by multiple inputs, which makes the linear scaling of

speedup holds approximately. These optimization techniques

make the SVR decision function very suitable to be mapped to

FPGA, which are also reflected in the hardware structures in

Fig. 8 and Fig. 9. If we further analyze Algorithm 3, we find

that we have actually transformed the partial sum matrix

calculation and final sum vector calculation to matrix-matrix

multiplication and matrix-vector multiplication as follows:

 (4.8)

 8

(4.9)
For matrix-matrix multiplication in Equation (4.8), we tile the

support vector matrix into small blocks and the input vectors

multiply each block in serial. The partial sum matrix is also tiled

accordingly. For the matrix-vector multiplication in Equation

(4.9), the coefficients vector for support vectors also needs to

be partitioned to maintain same level of parallelism. As a result,

the two operations are both heavily parallelized, which could

take the advantage of massive DSP resources and dual port

RAMs on FPGA. To be more specific, the parallel MAC array

for matrix-matrix multiplication and cascaded MAC array for

matrix-vector multiplication are based on same amount of DSP

resources, making our implementation achieve very high

hardware utilization efficiency since almost no DSP resources

are idle during the computation.

V. CONCLUSION

In this paper, a new temperature prediction method for

BOTDA system based on SVR is proposed. Unlike SVC which

can only predict discrete temperatures, SVR can output

continuous values from the measured BOTDA data. We

experimentally verify that SVR can achieve comparable

performance as SVC under different SNRs. From the hardware

perspective, SVR is more hardware friendly than SVC. To

accelerate the processing speed of SVR, linear SVR decision

function is optimized systematically. The loop-carried

dependence in the loop iterations is eliminated by loop

distribution and loop interchange. Therefore, the pipeline

efficiency of the nested loop is improved. We also propose a

batch processing method to further decrease the latency. Using

the proposed optimization methods, linear SVR decision

function is implemented on two FPGA boards Xilinx ZC706

and ZCU104 to process 96,100 BGSs from 38.44-km FUT

acquired from a BOTDA system. Our hardware accelerator can

achieve up to 42x speedup compared with the software

implementation on an i7-5960x computer. The post-processing

time for 96,100 BGSs along 38.44-km FUT is only 0.46

seconds with ZCU104, which makes our implementation

capable of real-time prediction. Meanwhile, the power

consumption of FPGA is also much lower than a high-end CPU,

making the energy efficiency of our FPGA implementation up

to 226.1x higher than the software implementation based on

LIBSVM.

REFERENCES

[1] T. Kurashima, T. Horiguchi and M. Tateda, “Distributed-temperature

sensing using stimulated Brillouin scattering in optical silica fibers,”

Opt. Lett., vol. 15, no. 18, pp. 1038-1040, 1990.

[2] X. Bao, and L. Chen, “Recent Progress in Distributed Fiber Optic

Sensors,” Sensors, vol. 12, no. 7, pp. 8601-8639, 2012.
[3] C. A. Galindez-Jamioy, J. M. Lopez-Higuera, “Brillouin Distributed

Fiber Sensors: An Overview and Applications,” J. of Sensors, Article

ID 204121, 2012.

[4] A. Barrias, J. R. Casas and S. Villalba, “A review of distributed optical

fiber sensors for civil engineering applications,” Sensors, vol. 16, no.

5, pp. 748, 2016.

[5] C. Li and Y. Li, “Fitting of Brillouin spectrum based on LabVIEW,”

Proc. 5th Int. Conf. Wireless Commun., Netw. Mobile Comput., pp. 1–
4, 2009.

[6] C. Zhang, Y. Yang, and A. Li, “Application of Levenberg–Marquardt

algorithm in the Brillouin spectrum fitting,” Proc. of SPIE, vol. 7129,

pp. 71291Y, 2008.

[7] M. Soto, S. Le Floch, L. Thevenaz, “Bipolar optical pulse coding for
performance enhancement in BOTDA sensors,” Opt. Exp., vol. 21, no.

14, pp. 16390-16397, 2013.

[8] A. Denisov, M. A. Soto, L. Thevenaz, “Going beyond 1000000

resolved points in a Brillouin distributed fiber sensors: theoretical

analysis and experiment demonstration”, Light Sci. Appl., vol. 5, no. 6,
pp. e16074, 2016.

[9] M. A. Farahani, E. Castillo-Guerra and B. G. Colpitts, “Accurate

estimation of Brillouin frequency shift in Brillouin optical time domain

analysis sensors using cross correlation,” Opt. Lett., vol. 36, no. 21, pp.

4275-4277, 2011.
[10] M. Abbasnejad and B. Alizadeh, “FPGA-based implementation of a

novel method for estimating the Brillouin frequency shift in a BOTDA

and BOTDR sensors,” IEEE Sensors J., vol. 18, no. 5, pp. 2015-2022,

2018.

[11] A. K. Azad, L. Wang, N. Guo, H. Y. Tam and C. Lu, “Signal
processing using artificial neural network for BOTDA sensor

system,” Opt. Exp, vol. 24, no. 6, pp. 6769-6782, 2016.

[12] H. Wu, L. Wang, N. Guo, C. Shu and C. Lu, “Brillouin optical time-

domain analyzer assisted by support vector machine for ultrafast

temperature extraction,” J. Lightw. Technol, vol. 35, no. 19, pp. 4159-
4167, 2017.

[13] H. Wu, L. Wang, N. Guo, C. Shu and C. Lu, “Support vector machine

assisted BOTDA utilizing combined Brillouin gain and phase

information for enhanced sensing accuracy,” Opt. Exp, vol. 25, no. 25,
pp. 31210-31220, 2017.

[14] H. Wu, L. Wang, Z, Zhao, C. Shu and C. Lu, “Support vector machine

based differential pulse-width pair Brillouin optical time domain

analyzer,” Photon. J., vol. 10, no. 4, pp. 1-11, 2018.

[15] V. Vapnik, The Nature of Statistical Learning Theory (Springer
Science & Business Media, 2013).

[16] C. Chang and C. Lin, “LIBSVM: a library for support vector machines,”

ACM Trans. Intel. Sys. Tec., vol. 2, no. 3, pp. 27, 2011.

[17] L. Bottou and C. J. Lin, “Support vector machine solvers,” Large scale

kernel machines, vol. 3, no. 1, pp. 301-320, 2007.
[18] M. A. Soto, J. A. Ramírez and L. Thévenaz, “Intensifying the response

of distributed optical fibre sensors using 2D and 3D image restoration,”

Nat. Commun., vol. 7, pp. 10870, 2016.

[19] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,

“High-level synthesis for FPGAs: From prototyping to deployment,”
IEEE Trans. Computer-Aided Design Integr. Circuit Syst., vol. 30, no.

4, pp. 473-491, 2011.

[20] H. Wang, W. Shi and C. Choy, "Hardware design of real time epileptic

seizure detection based on STFT and SVM," IEEE Access. doi:

10.1109/ACCESS.2018.2870883.

	I. INTRODUCTION
	II. Principle of SVR and Training Process for Temperature Extraction in a BOTDA System
	III. BOTDA Setup and Experimental Results
	A. BOTDA Experimental Setup
	B. Experimental Results

	IV. FPGA Optimizations and Implementations of SVR
	A. Direct Implementation of Linear SVR Decision Function
	B. Loop Dependence Analysis and Optimizations
	C. Batch Processing Method
	D. Implementation Results on ZC706 and ZCU104
	E. Theoretical Analysis and Discussions

	V. Conclusion
	References

