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Experimental validation of a data-driven

step input estimation method for dynamic

measurements
Gustavo Quintana Carapia, Ivan Markovsky, Rik Pintelon, Fellow, IEEE, Péter Zoltán Csurcsia,

and Dieter Verbeke,

Abstract

Simultaneous fast and accurate measurement is still a challenging and active problem in metrology.

A sensor is a dynamic system that produces a transient response. For fast measurements, the unknown

input needs to be estimated using the sensor transient response. When a model of the sensor exists,

standard compensation filter methods can be used to estimate the input. If a model is not available,

either an adaptive filter is used or a sensor model is identified before the input estimation. Recently, a

signal processing method was proposed to avoid the identification stage and estimate directly the value

of a step input from the sensor response. This data-driven step input estimation method requires only the

order of the sensor dynamics and the sensor static gain. To validate the data-driven step input estimation

method, in this paper, the uncertainty of the input estimate is studied and illustrated on simulation and

real-life weighing measurements. The mean squared error of the input estimate was observed near to the

Cramér Rao lower bound of the estimation problem.
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I. INTRODUCTION

In this paper we consider that a measurement is a dynamic process and a sensor is a dynamic

system. The to-be-measured quantity is an unknown input that excites the sensor. The consequent

transient response is further processed to estimate quickly the measurand value. The steady-state response

of the sensor gives easy access to the measurand value but this approach is mainly exploited for

calibration purposes. Calibration of sensor devices from steady state responses are described in [1] for

an accelerometer, in [2] for weighing sensor, and in [3] for pressure sensors.

A compensator is an additional dynamic system that acts on the transient response aiming to reduce the

sensor transient time. The compensation is motivated by the need of inverting the sensor dynamic effects

to recreate the input. The convolution of the compensator impulse response with the sensor transient

response yields the input. Therefore, the design of a compensator is based on the sensor model and

requires a deconvolution [4]. Examples of input estimation using compensation of the sensor transient

response include a recursive estimation of the compensator parameters [5], finite impulse response (FIR)

[6], [7] filters and infinite impulse response (IIR) filters [8], [9]. The filters in these works estimate in

real-time the unknown input value.

An alternative to the compensation approach is to use digital signal processing methods that are

independent of the sensor model. A data-driven method that estimates the unknown level of step inputs

by processing the sensor step response was introduced in [10]. This data-driven input estimation method

avoids the sensor modeling stage and estimates directly the input. The step input estimation method

performance was demonstrated by simulations and experiments on a digital signal processor (DSP) of

low cost [11].

To validate the input estimation methods it is necessary to assess the uncertainty associated with their

estimates [12], [13]. There are uncertainty propagation studies for model-based compensators such as

the FIR and IIR filters for acceleration measurements where the uncertainty is computed in real time

[6], [9], [14]. In these works, the uncertainty expression is based on the transfer function or state space

representations of the LTI sensor and filter systems. Another way to assess the measurement uncertainty

is by observing the results of multiple practical measurements as it is described in [15] for mass and in

[16] for temperature sensors. A deconvolution method is implemented to estimate the input waveform

in [17] and the uncertainty is obtained from the input estimate covariance. The impact that the signal

processing data-driven dynamic error correction has on the uncertainty is investigated in [18]. A statistical

analysis of the data-driven step input estimation method [11] was investigated in [19] and the method

uncertainty was obtained with a Monte Carlo simulation study.
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This paper provides and uncertainty assessment of the data-driven step input estimation method in a

real-life application. The measurements were conducted in a weighing system based on a load cell sensor.

We observed that even when the whiteness assumptions of the measurement noise are not fulfilled, the

step input estimation method still is able to provide a good estimation. We found that the mean squared

error of the input estimate is near the Cramér Rao lower bound of the EIV problem. A confidence interval

is provided for the input estimate in terms of the number of samples required to satisfy the accuracy

specifications of the user.

The organization of the paper is as follows. Section II describes of the step input estimation method and

its uncertainty analysis. Section III presents the results obtained from Monte Carlo simulations. Section IV

presents the uncertainty results from a practical implementation of the input estimation method. Section

V concludes the paper.

II. PRELIMINARIES

The step input estimation method is formulated as a signal processing method where the true value of

the input is estimated from the sensor response. The objective of the statistical analysis is to obtain the

bias and the covariance of the input estimate.

A. STEP INPUT ESTIMATION METHOD

The step input estimation method estimates the unknown value ū∈ IR of the input u= ūs, where s is the

unit step function (s(t) = 0 if t < 0, and s(t) = 1 elsewhere), applied to a bounded-input bounded-output

stable linear time-invariant sensor of order n and dc-gain g ∈ IR. The method processes the sequence of

step response observations
(
ỹ(0), . . . , ỹ(T )

)
, where ỹ(t) ∈ IR for t = 1, . . . ,T , where T is the number of

samples, and

ỹ = y+ ε. (1)

The exact sensor response y is affected by additive Gaussian white measurement noise ε with zero mean

and given variance σ2
ε . The response of the sensor is a step-invariant discretization of the continuous-time

response.

The estimation of the step input level is obtained as the solution of the minimization problem

x̂ = argmin
x

∥∥∥ỹ− K̃x
∥∥∥2

2
(2)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

where ỹ =
[
ỹ(n+1) . . . ỹ(T )

]>
, the first element of the vector x̂ =

[
û ̂̀>]> is the estimated step

input level, the vector ̂̀ is linked to the sensor initial conditions, and the matrix

K̃ =


g ∆ỹ(1) ∆ỹ(2) · · · ∆ỹ(n)

g ∆ỹ(2) ∆ỹ(3) · · · ∆ỹ(n+1)
...

...
...

...

g ∆ỹ(T −n) ∆ỹ(T −n+1) · · · ∆ỹ(T −1)

 (3)

is a Hankel matrix of (T −n)−block rows, constructed from consecutive differences

∆ỹ(t) = ỹ(t)− ỹ(t−1)

of the measured transient response, augmented in the left side with a (T −n)-vector of repeated elements

equal to the dc-gain g. The measurement noise ε enters in the matrix K̃

K̃ = K +E, (4)

where K is exact data information and E is the measurement noise.

The data-driven step input estimation method builds a system of equations ỹ ≈ K̃x. The recursive

least-squares (LS) allows for a real-time implementation that solves the systems of equations. However,

the structured measurement noise in K̃ is correlated with the measurement noise in ỹ. It is necessary to

study the bias and covariance of the LS solution to express the uncertainty of the step input estimate.

The uncertainty assessment of the input estimate is crucial for metrology applications.

The data-driven step input estimation method converts the output-error simultaneous model identifica-

tion and input estimation problem into an errors-in-variables (EIV) input estimation problem. The cost

of avoiding the parametric sensor modeling is to deal with a more difficult stochastic framework.

Details of the step input estimation method are described in [11].

B. STATISTICAL ANALYSIS

To obtain the first and second moments of the step input estimate û, we need to study the least-squares

(LS) solution

x̂ = K̃†ỹ = (K̃>K̃)−1K̃>ỹ, (5)

of the overdetermined structured errors-in-variables EIV problem (2), where K̃† is the pseudo-inverse

matrix of K̃. Using a second order Taylor series expansion of the inverse matrix we can approximate the

LS solution as

x̂≈
(
I−M+M2)C−1(K +E)>(y+ ε). (6)
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where

C = K>K, and M =C−1(K>E +E>K +E>E). (7)

The Taylor series approximation of x̂ enables the calculation of the bias and covariance of x̂ since the

measurement noise ε and E are no more subject to matrix inversion. The bias and the covariance of the

estimate x̂ is obtained from

b(x̂) = µ− x, (8)

cov(x̂) = E
{
(x̂−µ)(x̂−µ)>

}
. (9)

where µ = E{x̂}, and x = K†y is the true value. Considering the structure of the EIV problem, the bias

and the covariance of the approximation (6) can be expressed as

bp (x̂)≈C−1
((

K>B1−B2

)
x−
(

K>B3−B4

))
, (10)

covp (x̂)≈ K†
(

σ
2
ε IT−n +C1−C2−C>2

)
K†>, (11)

where B1 = E
{

EK†E
}

, B2 = E
{

E>P⊥E
}

, B3 = E
{

EK†ε

}
, B4 = E

{
E>P⊥ε

}
, C1 = E

{
Exx>E>

}
,

C2 = E
{

Exε>
}

, and P⊥ = I−KK†.

The bias and covariance given by expressions (10) and (11) depend on the unobservable true values

x, K. The measured variable is the sensor step response ỹ, and from its observations we construct K̃ and

compute x̂. The substitution of the measured data in the expressions gives an approximation of the bias

and covariance estimation. We have then

b̃p (x̂)≈ C̃−1
((

K̃>B̃1− B̃2

)
x̂−
(

K̃>B̃3− B̃4

))
, (12)

c̃ovp (x̂)≈ K̃†
(

σ
2
ε IT−n +C̃1−C̃2−C̃>2

)
K̃†>, (13)

where B̃1 =E
{

EK̃†E
}

, B̃2 =E
{

E>P̃⊥E
}

, B̃3 =E
{

EK̃†ε

}
, B̃4 =E

{
E>P̃⊥ε

}
, C̃1 =E

{
Ex̂x̂>E>

}
, C̃2 =

E
{

Ex̂ε>
}

, and P̃⊥ = I− K̃K̃†.

The expected values B1, B2, B3, B4, C1, and C2, are described in [19]. The bias and covariance were

obtained to extend previous analysis conducted on EIV estimation problems without an imposed structure

[20], [21]. It was shown that the bias and variance expressions (12) and (13) are good predictions of

the first and second moments of the LS estimate of a Hankel structured EIV problem. The problem

formulated by the step input estimation method belongs to this type of structured EIV problems and

the derived expressions can be used to find the bias and variance of the input estimate û. The bias and

variance predictions approximate the empirical bias and variance.
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In the rest of this section we describe the Cramér-Rao lower bound (CRLB) of the structured EIV

problem. Since the measurement noise is normally distributed, the sensor response observations y are

also normally distributed [23]

y∼N (Kx,Σx) , where Σx = σ
2
E

(T−n)(n+1)

∑
i=1

Aixx>A>i +σ
2
ε I, (14)

Ai ∈ R(T−n)×(n+1) are matrices that describe the Hankel structure of K, and σ2
E is the variance of the

columns of E stacked in a vector. The covariance matrix Σx is used to construct the likelihood function

of the structured EIV problem

l(x) =− T −n
2

ln(2π)− 1
2

ln |Σx|−
1
2
(Kx− y)>Σ

−1
x (Kx− y) . (15)

The Fisher information matrix is defined as the expected value of the Hessian of the negative likelihood

function, where the partial derivatives are evaluated for x̂ = x. We have

Fi(x) =−E
{

∂ 2l(x̂)
∂ x̂2

}
= K>Σ

−1
x K− 1

2

(
∂Σx

∂ x̂

)> (
Σ
−1
x ⊗Σ

−1
x
) ∂Σx

∂ x̂
. (16)

The Cramér Rao lower bound of the minimization problem (2) is

CRLB(x) = Fi−1(x). (17)

III. SIMULATION RESULTS

A Monte Carlo (MC) simulation was conducted to test the bias and covariance expressions (12) and

(13). The MC simulation performed NMC = 106 runs of the data-driven step input estimation with different

realizations of the measurement noise ε . The measurement noise variance was selected to have a signal-

to-noise ratio (SNR) in the interval [30 dB, 80 dB]. We are interested in the first element of x̂, which is

the input estimate û.

The MC simulation was conducted processing T = 500 samples of the transient step response ŷ

generated by a stable LTI sensor of order n = 5, with a sampling frequency of fs = 4 kHz. The steady

state response of the system is practically reached after 5000 samples because from there on the relative

error between the transient response and the steady-state response is smaller than 2%, see Fig. 1.

The difference between the sample mean µ̂1 of the step input estimates and the true value ū is the

empirical bias be.

be =
1

NMC

NMC

∑
i=1

ûi− ū≈ µ̂1− ū. (18)

The sample variance σ̂2 of the step input estimates is used to obtain the standard error of the MC

simulation σe, which decreases with respect to the square root of the number of MC runs NMC.

σe =
σ̂√
NMC

, where σ̂
2 =

1
NMC−1

NMC

∑
i=1

(ûi− µ̂1)
2. (19)
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Fig. 1. Left: example of a simulated response ŷ and its step input estimation û assuming measurement Gaussian noise with 50

dB of SNR. Right: the relative error |û− ū|/ū is below 1% after 100 samples. We take the estimate at 500 samples because

there the relative error is smaller than 0.2%.

In each of the NMC runs we obtain the difference between the LS estimate and the true value, and

the prediction of the LS estimate bias and variance from measured data. In the same way we obtained

the empirical bias and its associated standard error, we get the sample mean of the bias prediction from

observed data b̃p and its standard error σ̃p. The predicted bias and variance from exact data are obtained

with one evaluation of the expressions (10) and (11).

Fig. 2 shows the sample mean and the standard error of the MC estimates. It can be seen that the

empirical biases be are proportional to the perturbation noise variance while the standard errors σe are

proportional to the perturbation noise standard deviation. For SNR below 40 dB there is a difference of

a small order of magnitude between the empirical bias be and the bias prediction b̃p.

The standard errors of the MC estimates σe and σ̃p are smaller than the bias estimates be and b̃p. The

estimates are spread near the sample mean and the uncertainty is smaller than the bias. Therefore, the

empirical bias of the MC simulation is meaningful.

The mean squared error (MSE) is defined as

MSE(û) = v(û)+(b(û))2 , (20)

where v(û) is the variance and b(û) is the bias of the input estimate û. The MSE of the step input

estimation method is compared to the CRLB of the minimization problem. Fig. 3 shows that the MSEe,

computed from the empirical estimates, and the MSEp̃, computed from the measured data, have the same

proportionality as the CRLB with respect to the measurement noise variance. The difference between the

the CRLB and the mean squared errors MSEe and MSEp̃ is of small order of magnitude. Therefore, the

LS estimation of the structured EIV problem produces results that are comparable to maximum-likelihood
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30 40 50 60 70 80

10
-3

10
0

Fig. 2. The results of the Monte Carlo simulation of the step input estimation method are the empirical bias be, the predicted

bias using exact data bp, the predicted bias using measured data b̃p, the empirical standard error σe, and the prediction standard

error σ̃p. The estimation biases are proportional to the perturbation variance and the estimation standard errors are proportional

to the perturbation standard deviation. Since the standard errors are smaller than the biases, the MC simulation is meaningful.

estimation.

30 40 50 60 70 80
10

-6

10
0

Fig. 3. The MSEs of the LS estimate are close to the Cramér-Rao lower bound of the minimization problem. The MSE of

the empirical estimates is represented by MSEe, and those of the predictions are MSEp and MSEp̃. The MSEp̃ is smaller than

CRLB because of the introduced bias error, but this is not a serious issue since the difference between MSEp̃ and the CRLB is

of one order of magnitude for SNR larger or equal than 40 dB.

In order to get more insight into the step input estimation method we conducted another simulation

study. The step input estimation method assumes the order n is given in (3). In this simulation, the step
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input estimation method processed the step response generated by a 5− th order system using different

values of n in the interval from 2 to 100.

The step response is perturbed with Gaussian white noise with SNR values of 30, 40, 50 and 60

dB. For each order n and SNR value, 100 step input estimations are performed from independent noise

realizations. Fig. 4 shows the average of the squared biases and the variances, and the MSEs of the input

estimate using the first 500 samples. It is evident that the estimation variance and MSE depend on the

SNR.

Increasing the order n is equivalent to adding more regressors in the regression problem. It is well

known that increasing the order n causes a monotonic decrement of the estimation bias and increment

of the variance. This is the asymptotic behavior of the estimation statistical moments with respect to the

number of regressors. Nevertheless, the simulation results presented in Fig. 4 show that the variance first

increases for small values of n, followed by a decrement and finally after n ≈ 40 the variances exhibit

a slow and steady increment. This apparent contradiction does not prove the invalidity of the estimation

method since the results presented correspond to a finite sample size and the asymptotic results cannot

be applied. The theoretical explanation of the estimation statistics for finite sample sizes is out of the

scope of this paper.

There is a bias-variance tradeoff and the MSEs exhibit local minima with respect to n. The principal

contribution to the MSE is the squared bias for the smaller values of n and the variance for the larger

values of n. However, the higher orders do not produce overfitting since the MSEs do not grow fast and

remain close to the minimum values.

The optimum value of n is not necessarily equal to the order of the generating system and varies for

each SNR. According to the plots in Fig. 4, there are orders that provide local minima of the step input

estimation MSEs. From the right hand side of Fig. 4, the orders that give the first two MSE minima were

identified and those values are listed in Table I. For each SNR, there is a first minimum at a low order

and a second minimum at a high order. For SNR of 30 and 40 dB, it is recommended to use the order

that gives the first minimum since the MSE at the second minimum is less than one order of magnitude

smaller than at the first minimum. Depending on the requeriments, the user can choose between the

simplicity of an estimation with a low order or an estimation with higher computational complexity and

a smaller MSE. In a calibration stage, during the setup of the estimation method, the user can search

and set the order that enables the estimation method to provide a required MSE.
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TABLE I

ORDERS n THAT PROVIDE LOCAL MINIMA FOR THE MSE OF THE STEP INPUT ESTIMATE. IT IS RECOMMENDED TO USE THE

ORDER THAT GIVES THE FIRST MINIMUM WHEN THERE IS A DIFFERENCE OF SMALL ORDER OF MAGNITUDE WITH RESPECT

TO THE MSE AT THE SECOND MINIMUM.

SNR [dB] order at first minimum order at second minimum

30 11 40

40 7 35

50 4 40

60 3 31

10
1

10
2

10
-6

10
-4

10
-2

10
0

10
1

10
2

10
-6

10
-4

10
-2

10
0

Fig. 4. The simulated step responses of a 5−th order system are processed by the step input estimation method using different

orders n and independent noise realizations. The perturbation of the step responses is Gaussian white noise with SNRs of 30,

40, 50, and 60 dB. The square of the empirical bias (solid) and the empirical variance (dashed) are shown on the left hand

side and the MSE is shown on the right hand side, for n between 2 and 100. These results suggest that, during the setup of the

estimation method, we have to search the order that gives the minimum MSEr without increasing unnecessarily the complexity

of the estimation method.

IV. PRACTICAL IMPLEMENTATION

An experimental setup was constructed to test the step input estimation method. The implementation

is a weighing system that uses a load cell Tedea Huntleigh 1004 [24]. The maximum rating of the load

cell is 600 g. An cylindrical aluminium object of 138.32 g of mass was used to excite the load cell.

This value was found by calibration using a balance KERN PCB 200-2 that has an uncertainty of 0.01

g. The step input excitation was provided by a magnet that holds and releases a mass from above the

load cell. The magnet is located sufficiently far from the load cell to avoid magnetic interference in the

sensor response.

A two-stage linear conditioning amplifier performs amplification and filtering of the load cell signal.
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Mass

load cell

Tedea 1004

ỹ

amplifier and filter

ADC

16 bits

Fig. 5. Diagram of the load cell and the conditioning amplifier that provide the sensor response.

The first stage is an precision instrumentation amplifier INA114 that has high common mode rejection

ratio. The second stage is a third-order low-pass Butterworth filter with cut-off frequency of 100 Hz. The

low-pass filter prevents the aliasing noise in the measured transient response. The signal obtained from

the conditioning amplifier is considered to be the response of the sensor. The sensor responses to step

excitations were sampled with a frequency of fs = 4 kHz, and therefore the Nyquist frequency is 2 kHz.

The step responses were collected and stored as datasets for further analysis. The number of samples

collected for each step response is N = 20000. For practical purposes, we consider that the last 10000

samples correspond to the steady state response.

0 1000 2000 3000 4000 5000

0

138

250

0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

Fig. 6. Left: a typical measured sensor transient response ỹ takes more than 1.25 s (5000 samples, fs = 4 kHz) to converge to

the steady state response. Right: the relative error of the input estimate û is smaller than 0.2% from 300 samples. We consider

that at 500 samples the estimate û is small enough to be considered close to its expected value.

The step input estimation method processed 100 measured sensor step responses, assuming the sensor

is of 7−th order. Fig. 6 shows a typical measured transient response ỹ and an example of the estimated

input û.

The empirical bias be is the difference between the average of the 100 estimates û and the mass

calibration value ū = 138.32 g. The bias b̃p and variance ṽp predictions from the measured data were

obtained by processing off-line the 100 measured sensor transient step responses with expressions (12)
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and (13). These expressions require the measurement noise variance σ2
ε to obtain the bias and variance

prediction. One way to estimate the measurement noise variance is computing the variance of each

sensor steady state response, see Fig. 7. Later in this section we will explore another way to estimate the

measurement noise variance. Computing the noise variance from the steady state response we observed

that the SNR of the measured step responses is 55 dB in average.

1 1.2 1.4 1.6 1.8 2

10
4

137.5

138.32

139

Fig. 7. From the sensor steady-state response an estimation of the measurement noise variance is obtained.

Fig. 8 shows the empirical bias be and the standard error σe that result after processing the first

T = 500 samples of the 100 measured step responses y. The standard error is smaller than the bias. As

it was observed in the MC simulation, this is the uncertainty of the estimation method. The oscillations

observed in the bias are mainly due to the transient response and not to the measurement noise. The

measurement noise effects are partially removed since we averaged the 100 transient responses, which

is a small number compared with the NMC runs averaged in the simulation section.

It is expected that the empirical bias is large when a small number of samples is processed. The

data-driven input estimation method is recursive and it is implemented in real-time. The estimation errors

decrease as more data is processed.

The measurement noise is not white since there is evidence of frequency components in the sensor

steady state response that are observed as oscillations in Fig 7. To get insight into the properties of the

measured sensor response ỹ, a 7−th order model was identified from input-output data assuming that

the input is a step of level ū. A response ŷ was simulated from the identified model and the residual

r = ỹ− ŷ was obtained. We can observe these signals in the frequency domain using the discrete Fourier
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Fig. 8. The results of estimating the step input level after processing 100 measured step responses are the empirical bias be and

the empirical standard error σe. The estimation bias and the estimation standard error decrease as more samples are processed.

The estimation bias is affected by the transient effects of the sensor response. The values of be and σe provide the estimate

accuracy and uncertainty for a given sample size.

transform, that for the signal ỹ is defined as

Ỹ (l) =
1√
N

N−1

∑
k=0

ỹ(k)e− j2πkl/N (21)

where l = 1, . . . ,N/2 are the frequency lines and N is the total number of samples. The power spectrum

of the signal ỹ is given in decibels by ỸdB (l) = 20log10 |Ỹ (l) |. Figure 9 shows the power spectra of the

sensor response YdB, the simulated response ŶdB, and the residual RdB. There are frequency components

near the main resonance peak in the magnitude spectrum of the residual. The presence of frequency

components near the main resonance peak is commonly found in mechanical devices. The vibrations

captured from the environment explain the accumulation of energy near the main resonance modes.

Even when the residual r is not white, it provides an alternative way to estimate the measurement noise

variance. The average of the residual power spectrum approximates the measurement noise variance as

follows

σ̂
2
ε ≈

2
N

N/2

∑
l=1
|R(l)|2 . (22)

The dotted line in Figure 9 indicates the 10log10
(
σ̂2

ε

)
level of the measurement noise variance estimated

from the residual. This level is higher than the mean value of the residual R in the frequencies above

120 Hz.

Using the residual power spectra that correspond to the measured step responses, we obtained the

measurement noise variance and the SNR for each experiment. Figure 10 shows the estimated SNRs
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Fig. 9. The power spectra of a measured response ỸdB, a simulated response ŶdB, and the residual RdB is not flat and then the

measurement noise is not white. The average of the residual power spectrum provides a conservative estimate of the measurement

noise variance σ̂2
ε , represented with the dotted line.

from the residual power spectra. The SNR mean value is 50 dB. Therefore, we assume that the SNR of

the measured transient responses is 50 dB instead of 55 dB, as it was estimated from the steady state

response.

20 40 60 80 100

40

50

60

Fig. 10. The mean value of the signal-to-noise ratios estimated from the residual power spectra is 50 dB. We consider that this

is the estimated SNR of the measured step responses.

The 5 dB difference provides a conservative bound since the bias and variance computed from 50 dB

of SNR are higher than those obtained using the variance estimation from the steady-state response. Fig.

11 shows a comparative of the results obtained with both measurement noise variance estimations after
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processing the first T = 500 samples of the step response y. Using expression (12), the bias prediction

b̃p2 obtained using an SNR of 50 dB approximates more closely the empirical bias than b̃p1 obtained

using an SNR of 55dB. In accordance, the standard error of the bias predictions σ̃p2 is larger than σ̃p2

and is a conservative measure of the input estimation uncertainty. In conclusion, using the noise variance

estimated from the residual prevents underestimating the step input estimation uncertainty.

0 100 200 300 400 500

10
-2

10
0

Fig. 11. Comparative view of the bias prediction using two different noise variance estimations. Estimating the variance from

the step response residual gives a bias prediction b̃p2 and a standard error σp2 that are slightly higher than using the noise

variance estimated from the steady state response b̃p1 and σp1. The bias prediction b̃p2 approximates better the empirical bias.

The standard error σ̃p2 provides a conservative value of the input estimation uncertainty.

We investigated another aspect of the step input estimation method performance when processing

measured step responses. The step input estimation method requires an assumption of the generating

system order in the formulation of the estimation problem (3). The estimation method performance is

assessed under different assumptions of the values of n in the interval from 2 to 10. For each value of

n, 100 step input estimations are computed from measured transient responses and the empirical MSEs

are compared. Fig. 12 shows that, similar to the observations made in the simulation study, the MSEs

have two local minima at n = 7 and n = 48. It is recommended to use n = 7 in the estimation method to

provide a small estimation MSEs without the higher computational complexity that n = 48 implies.

V. CONCLUSION

In this paper we investigated the uncertainty of a data-driven step input estimation method in a

real-life application. The step input estimation method is an errors-in-variables problem that is solved

with recursive least squares. The statistical analysis of the input estimate provides a tool to assess the
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Fig. 12. The hundred measured sensor step responses are processed by the step input estimation method for different values

of the order n. The empirical squared bias (solid) and the empirical variance (dashed) are shown on the left and the empirical

MSE on the right. The MSE has a local minimum at n = 7 and another at n = 48. It is recommended to use the estimation

method with n = 7 because at n = 48 the decrement of the MSE is not significant.

uncertainty of the estimate assuming that the measurement noise is Gaussian white noise. In simulation

we observed that the mean squared error of the input estimate is close to the theoretical minimum given

by the Crámer Rao lower bound. In the practical experiments, the measurement noise is not white.

The variance of the sensor steady state response underestimates the measurement noise variance. We

introduced a conservative bound of the measurement noise variance so that the first and second moments

of the input estimate are more accurately predicted. We can assess the uncertainty of the input estimate

with respect to the number of samples processed by the data-driven step input estimation method. The

input method is useful in practical applications where the whiteness assumption of the measurement noise

is not fulfilled.
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[3] C. Matthews, F. Pennecchi, S. Eichstädt, A. Malengo, T. Esward, I. Smith, C. Elster, A. Knott, F. Arrhén, and A.Lakka,

“Mathematical modelling to support traceable dynamic calibration of pressure sensors,” Metrologia, vol. 51, no. 3, p. 326,

2014.
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