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Hierarchical clustering of materials with defects
using impact-echo testing

Jorge Igual

Abstract—Signals obtained from impact-echo techniques
can be used to detect and classify defects in damaged ma-
terials. The defects change the wave propagation between
the impact and the sensors producing particular spectrum
elements which define the feature vector. We propose a hi-
erarchical clustering method that models the feature vector
as a mixture of Gaussians (MoG) for every class and then
merge the different clusters using as a distance measure
the Kullback-Leibler (KL) divergence. Since there is not a
closed form solution to the KL divergence between MoG,
some approximations are introduced. We apply the hier-
archical clustering algorithms to signals obtained from real
specimens made of aluminum alloy. The samples are classi-
fied in four classes according to the state: homogeneous (no
defect), one hole, one crack and multiple defects. We com-
pare the performance of the different approximations and
discuss the dendrograms that are obtained. Similar kinds
of defects are clustered first and more importantly, the high
level hierarchy is able to distinguish between the defective
and non defective materials.

Index Terms—Impact echo, mixture of Gaussians, hierar-
chical clustering, sensors, Kullback-Leibler divergence, clas-
sification.

I. Introduction

NON Destructive Testing (NDT) analysis consists of
obtaining useful information about the state of the

material under study preserving the integrity of the tested
specimen. Non destructiveness is required in applications
where the analyzed material is irreplaceable, such as his-
torical buildings or artistic works, or in applications where
the cost of the destruction of the sample is very high, such
as in the marble industry.

Some other popular NDT applications are the inspec-
tion and defects characterization in power plants, medicine,
aerospace, military, fuel storage and transportation (see [1]
for a review of engineering materials and composites ap-
plications). There is also a plethora of NDT techniques
based on optical [2], audio, radiological, electromagnetic,
laser, chemical, termographic and other types of signals [3].
The most common acoustic NDT techniques are ultrasonic
and impact echo (IE) [4],[5]. In IE applications, a hammer
hits the material and its acoustic response is recorded by
sensors located on the surface of the material.

Traditional material studies are based on time and/or
frequency analysis of the signals [2],[6],[7],[8],[9]. More re-
cently, the machine learning approaches have received a
lot of attention. However, most of these efforts are based
mainly on the application of artificial neural networks
(ANN): monitoring of rotary machinery systems [10], de-
fective states of catenary support devices [11], fault detec-
tion of induction motors [12], identification of the moisture

The author is with the Departamento de Comunicaciones, Uni-
versitat Politècnica de València, Valencia 46022, Spain (e-mail:
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content in brick walls of historic buildings [13], prediction
of the concrete compressive strength and thickness of con-
crete structures [14], prediction of the internal grouting
quality of prestressed ducts [15] and identification of the
pull-off adhesion of the concrete layers in floors on the ba-
sis of parameters evaluated on the structural layer surface
[16].

In previous work [17], we presented a machine learning
based semisupervised classifier to determine the kind of de-
fect in the structure of the material using IE signals. We
introduced a Bayesian classifier based on the modeling of
the class conditional probabilities by a mixture of Gaus-
sians (MoG). In Figure 1 we summarize how the models
for each class are obtained. 1881 executions of the IE test
from different specimens made of aluminum alloy series
2000 of dimensions 7x5x22 cm (width, height, and length,
respectively) are carried out and the signals are recorded
by seven sensors. In order to simulate defective materi-
als, up to three defects per piece were drilled in different
locations of some pieces. The defects consisted of holes
(10 mm φ cylinders) and cracks (5x20 mm cross-section
parallelepipeds). The spectrum of the IE recorded signals,
preprocessed by Principal Component Analysis (PCA) in
order to reduce the dimensions of the problem [18] is the
input data to the Bayesian model. PCA is a common tech-
nique in defect classification problems [19]. We choose the
number of principal components such that 95% of the vari-
ance was retained. As a result, the feature vector had
seven dimensions. The next step consists of obtaining the
class conditional distributions for each class, i.e., the MoG
models. We use a semisupervised variation of the EM al-
gorithm. In order to simulate different real conditions, we
introduce a supervision parameter in the EM algorithm.
It indicates the percentage of samples with a pre known
class used during the training of the models. The feature
vectors with a known class are used only to learn the cor-
responding model. The feature vectors with an unknown
preassigned class are used in all models weighted by the
corresponding posterior probability. We split the samples
randomly into two groups: a training set containing the
80% of the data and a testing set with the rest of sam-
ples. We apply the EM algorithm to the training data,
obtaining four class models according to its defective sta-
tus: homogeneous, one defect (one hole or one crack) or
multiple defects class. In [17] we used those models for
classification purposes: the classification problem consists
of assigning each sample in the testing data set to the class
with a higher posterior probability (Bayesian maximum a
posteriori classifier). For a detailed explanation about the
specimens, IE experiments and measurements, and perfor-
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mance analysis of the classifier, see [17]; for more informa-
tion about the spectra of the recorded signals, how PCA
is applied and how the feature vector is obtained, see [20].

Fig. 1. Method to obtain the mixture of Gaussians model for each
class. The measurements are preprocessed by PCA to obtain the 7
dimension feature vector. Features are shuffled and split in training
(80%) and testing (20%) data sets. The training data are used to
train the models by EM and the testing data for classification. The
supervision ratio controls the percentage of samples that have a pre
known class during the learning of the models.

The most important advantage of obtaining a generative
model such as a Bayesian classifier with respect to discrim-
inative classifiers such as those based on ANN is to obtain
posterior probabilities for every class, so this probability
can be used in many different ways, not only for classifica-
tion purposes as it is in Figure 1 and [17].

In this paper, we will assume that the models are already
estimated. We will use the class conditional distributions
to present some hierarchical clustering procedures in order
to solve different granularity classification problems with-
out the need to train new models. For example, using the
models obtained to solve the four classes problem (homo-
geneous materials with no defect, with one kind of defect,
with another kind of defect or with multiple defects), how
to merge hierarchically the four classes into a hierarchy
of clusters with at the end only two groups (homogeneous
and with any kind of defect) using as the starting point
the 4-classes model and some distance measurement as the
variable to establish in which order the classes must be
grouped.

It is important to note that the goal of the paper is
not to improve the classification results obtained by the
Bayesian classifier, but to study if the class models ob-
tained to solve the four classes problem can be used to
solve other problems, such as a hypothetical two classes
problem (homogeneous or defective). If that is the case,
it will show how the clustering naturally, without super-
vision, groups physically similar cases (defective materials
vs. homogeneous blocks) and, more importantly, it will
reduce the time in material quality assessment since the
models learned to solve one problem can be used to solve
higher level problems.

II. Hierarchical clustering

The starting point are the MoG class conditional distri-
butions for each class obtained by the EM semisupervised

algorithm. The next step is how to merge the classes in or-
der to obtain an agglomerative hierarchical clustering. The
results of these groupings we call clusters, and the original
bottom level of the hierarchy (the input to the hierarchi-
cal clustering) we call classes. As an example of clustering
in NDT, see [21], where clustering is used for honeycomb
detection in concrete. Note that in that paper, as it is
common in clustering, the samples are grouped based on
a distance criterion. However, in our proposal, we group
classes, not samples.

A proximity or similarity measure is the basis for most
clustering algorithms [22]. This measure between clusters
at one level in the hierarchy (also referred to as distance)
is used to determine which of them will be merged. The
distance between two clusters can be estimated between
pairs of data objects of each of the clusters or between
probabilistic relationships of the data densities of the two
clusters. Since we have a probabilistic model for every
class, we follow this approach.

The distance between a cluster l and a new clus-
ter formed by the merging of two clusters i and j is
D (Cl,(Ci,Cj)) = αD (Cl,Ci)+βD (Cl,Cj)+γD (Ci,Cj)+
ε |D (Cl,Ci)−D (Cl,Cj)|

By manipulating the coefficients α, β, γ and ε sev-
eral agglomerative hierarchical algorithms of clustering
based on distances between data objects can be de-
rived. Note that, if α = β = ε = 1/2 and γ = 0, (1) be-
comes the complete linkage method: D (Cl,(Ci,Cj)) =
max (D (Cl,Ci) ,D (Cl,Cj)), while α = β = 1/2, γ = 0,
and ε = −1/2 corresponds to the single linkage method
D (Cl,(Ci,Cj)) = min(D (Cl,Ci) ,D (Cl,Cj)).

The probabilistic approaches to hierarchical clustering
consider model-based criteria or Bayesian hypotheses to
decide on merging clustering rather than using an ad-hoc
distance metric. Basically, there are two approaches to
derive the hierarchy: hierarchical generative modelling of
the data or hierarchical ways of organizing nested clusters.
Methods of the first approach include the following hierar-
chical generative models, for instance: Gaussian-based [8],
Dirichlet-based [9]. In [11], an agglomerative algorithm to
merge Gaussian mixtures is presented. It considers a vir-
tual sample generated from the model at a level and uses
expectation-maximization (EM) to find the expressions for
the mixture model parameters for the next level that best
explain the virtual sample. In [23] an alternative based on
Independent Component Analysis mixers is proposed.

III. Hierarchical clustering of mixture of
Gaussians

The conditional probability density function (pdf) of an
observation vector x for cluster Chk , k = 1,2, ...,K − h+ 1
at level h = 1,2, ...,K of the hierarchy is f

(
x/Chk

)
. This

pdf is modeled by a MoG for every class at level h = 1.
The MoG (or Gaussian mixture model) is a weighted sum
of Gaussians with mean µk, covariance matrix Σk and di-
mensionality d.
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f(x) =
K∑
k=1

αkNk (x;µk,Σk)

Nk(x;µk,Σk) = (2π)−d/2 |Σk|−1/2
e−

1
2 (x−µk)T Σ−1

k (x−µk)

(1)

Each Gaussian contributes to the mixture model in
the proportion or mixing coefficient αi, with αi ≥ 0 and
K∑
k=1

αi = 1. These weights can also be interpreted as pri-

ors, indicating the prior probability of the data coming
from the corresponding Gaussian of the mixture. When an
observation is available, we can apply the Bayes theorem
to calculate the posterior probability, i.e., the responsibil-
ity that the observation comes from each component of the
mixture model.

The estimation of the parameters is obtained by the EM
algorithm, where the new estimated parameters become
the guess for the next iteration. Given N observations
xn,n= 1, . . . ,N , each iteration consists on two steps. The
expectation E step calculates the posterior probabilities
p(k/xn), i.e., the responsibility that the kth distribution
takes for generating the nth observation:

p(k/xn) =
αkNk (xn;µk,Σk)
K∑
k=1

αkNk (xn;µk,Σk)

(2)

The maximization M step updates the parameters:

µk =

N∑
n=1

p(k/xn)xn

N∑
n=1

p(k/xn)

Σk =

N∑
n=1

p(k/xn)(xn−µk)(xn−µk)T

N∑
n=1

p(k/xn)

αk =
1

N

N∑
n=1

p(k/xn)

(3)

The algorithm is applied iteratively until convergence.
Once the distribution for every class is estimated, we can
measure their similarity and merge them according to some
criterion obtaining a hierarchical clustering. Since we are
using a probabilistic framework, the most logical simi-
larity measurement is the differential relative entropy or
Kullback-Leibler KL divergence D(f‖g), although it is not
a true distance measure since it is not symmetric, i.e.,
D(f‖g) 6= D(g‖f). A simple extension is the symmetric
KL divergence D(f‖g)+D(g‖f), which is used in the work
presented here.

The KL divergence between two distributions f(x) and

g(x) is [24]:

D(f‖g) =

∫
f(x) log

f(x)

g(x)
dx (4)

In the case of Gaussian distributions, f(x) =
N (x;µf ,Σf ), g(x) =N (x;µg,Σg), the KL divergence is:

D(f‖g) = 1
2 [log

|Σg|
|Σf | +Tr(Σ−1

g Σf )− d+

+(µf −µg)TΣ−1
g (µf −µg)]

(5)

However, there is not an analytical solution to the KL
divergence between MoGs. This fact implies that the KL
divergence must be estimated in an approximated way.

IV. Estimation of the Kullback-Leibler
divergence between mixture of Gaussians

There are three main approaches to estimate D(f‖g):
first, transforming (4) in a tractable equation using sim-
plified versions of the MoG, e.g., reducing the mixture to
just a single Gaussian; second, using approximations to the
KL divergence definition; third, estimating (4) numerically,
e.g., using Monte Carlo or another kind of sampling.

A. Approximations based on the modification of the mix-
ture of Gaussians model

The simplest way to approximate a MoG is its substitu-
tion by a single Gaussian. The most intuitive way to carry
out this simplification is to approximate the MoG model
in (1) by a single Gaussian N(x; µ̂, Σ̂). This is the same
problem that clustering Gaussians with a single Gaussian.
The optimal parameters (µ̂, Σ̂) minimize the cumulative
differential relative entropy between the single Gaussian
and the components of the MoG. The values are given by
[25]:

µ̂=
K∑
k=1

αkµk

Σ̂ =
K∑
k=1

αk(Σk + (µk − µ̂)(µk − µ̂)T )

(6)

As it was expected, the mean of the single Gaussian is
the weighted average of the means of the Gaussians of the
mixture. However, the covariance is not just the average of
the covariances; this value is modified to take into account
the distance between the mean of the corresponding Gaus-
sian of the mixture and the mean of the single Gaussian.

After this simplification, since every class is modeled by
a single Gaussian, the estimation of the KL divergence
DG(f‖g) is obtained using (5):

DG(f‖g) = 1
2 [log(|Σ̂g|/|Σ̂f |) +Tr(Σ̂−1

g Σ̂f )− d+

+(µ̂f − µ̂g)T Σ̂−1
g (µ̂f − µ̂g)]

(7)

B. Approximations based on modifications of the KL di-
vergence

Another option is, instead of reducing the MoG distribu-
tion to a Gaussian one, to modify the definition of D(f‖g).
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In this case, we keep the MoG model, but the distance
measure is modified to obtain a closed form equation. One
option is to define the distance Dmin(f‖g) as the KL di-
vergence between the components of f and g that have
minimum divergence:

Dmin(f‖g) = min
i,j

D(fi‖gj) (8)

Like in (6), the final expression is the KL divergence be-
tween two Gaussians. In other words, this approximation
is equivalent to reducing the original distributions by sin-
gle Gaussians, in this case the ones that are closest in the
KL divergence sense.

Note that these approximations can obtain very poor
results; e.g., when the closest components in the mixture
model of f and g are the same Gaussians but the rest of
components are very far away; in this case, f and g are
very different, but Dmin(f‖g) = 0. The good news in these
simplifications is that they are very attractive considering
the computational cost, since they provide an analytical
solution. In addition, they can be helpful in situations
where the number of modes of the mixture is reduced and
they are close.

In the case that distributions f and g have the same
number of components Nf = Ng = N , an upper bound of
KL divergence can be calculated [26], DDo(f‖g)≥D(f‖g),
where:

DDo(f‖g) =

N∑
i=1

αi

(
log

αi
βi

+D(fi‖gi)
)

(9)

with βi the weights of the g(x) pdf. DDo(f‖g) is a
weighted sum of distances between the components of the
two mixture models. It means that the value that is ob-
tained depends on the way the components are ordered.
Since (9) is an upper bound, we can define a matching
function between Gaussians in every mixture model such
that the summation in (9) is minimum. This is the ap-
proximation proposed in [27], DGold(f‖g). If we alleviate
the Nf = Ng restriction and define the matching function
such as j(i) = argmin

k
(D(fi‖gk)− log(βk)), we obtain:

DGold(f‖g) =

Nf∑
i=1

αi

(
log

αi
βj(i)

+D(fi‖gj(i))
)

(10)

Note that, since Nf 6=Ng, DGold(f‖g) is not necessarily
an upper bound of the true KL divergence.

Analyzing the definition of D(f‖g), it is clear that an-
other family of estimators can be obtained when the likeli-
hood function included in it, Ef [logg] =

∫
f(x) logg(x)dx

is approximated. For example, we can use Jensen’s in-
equality E[φ(f)]≥ φ(E[f ]) with the convex function φ(.) =
− log(.), as it is used in information theory to demonstrate
that the KL divergence between two distributions is greater
or equal than zero. Then, an upper bound of the likelihood
Ef [logg] substitutes the true value in equation (4), obtain-
ing an approximation Dprod(f‖g) that underestimates the
KL divergence:

Dprod(f‖g) =

Nf∑
i=1

αi log

Nf∑
l=1

αl
∫
fi(x)fl(x)dx

Ng∑
j=1

βj
∫
fi(x)gj(x)dx

(11)

Taking into account that all the terms in the integrals of
(11) are Gaussians, the integrals become the normalizing
factor in a product of Gaussians. Therefore, the value
of the integrals in the numerator and denominator are,
respectively:∫

fi(x)fl(x)dx = (2π)−d|Σfi + Σfl |−1/2

·e− 1
2 (µfi

−µfl
)T (Σfi

+Σfl
)−1(µfi

−µfl
)∫

fi(x)gj(x)dx = (2π)−d|Σfi + Σgj |−1/2

·e−
1
2 (µfi

−µgj
)T (Σfi

+Σgj
)−1(µfi

−µgj
)

(12)
The next approximation is inspired in the opposite

idea. Instead of using Jensen’s inequality to take the
log out of the integrals in the calculation of the expec-
tations Efi [logg] =

∫
fi(x) logg(x)dx, we use it to put the

log into the summation of the mixture models when cal-

culate the likelihood Ef [log g] =
∫
f(x) log

Ng∑
j=1

βjgj(x)dx,

with gj(x) =N (x;µj ,Σj), and analogously with Ef [logf ].
Doing this, we obtain a lower bound of the likeli-

hood, since Ef [log g] ≥
∫
f(x)

Ng∑
j=1

δj|i log
βjgj(x)
δj|i

dx, where

δj|i are the variational parameters introduced to maxi-
mize the lower bound, with the constraints δj|i ≥ 0 and∑
j δj|i = 1. We proceed in the same way with Ef [logf ];

in this case the parameters are εk|i, so Ef [log f ] ≥∫
f(x)

Nf∑
k=1

εk|i log αkfk(x)
εk|i

dx. Using the values of δj|i and

εk|i that optimize the approximation, the KL divergence
becomes Dvar(f‖g) [28]:

Dvar(f‖g) =

Nf∑
i=1

αi log

Nf∑
k=1

αke
−D(fi‖fk)

Ng∑
j=1

βje−D(fi‖gj)

(13)

Dvar(f‖g) is a variational version of DGold(f‖g), where
instead of defining a strict matching function between ev-
ery component in the different mixture models we prefer
to average over all the components using the variational
parameters.

There is another way to apply a variational approach.
It consists on introducing the variational parameters not
only in the components into the log term in the likelihood
function but in the distribution itself, i.e.:

f(x) =

Nf∑
i=1

αifi(x) =

Nf∑
i=1

Ng∑
j=1

δj|ifi(x) (14)
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with non negative parameters summing up to the mix-
ture coefficient for every component, i.e.,

∑
j δj|i = αi.

In the case of g, we have:

g(x) =

Ng∑
j=1

βjgj(x) =

Nf∑
i=1

Ng∑
j=1

εi|jgj(x) (15)

with
∑
i εi|j = βj .

Using these distributions and Jensen’s inequality again,
it is possible to obtain an upper bound of D(f ||g) [28]:

Dvub(f ||g) = D(δ||ε) +

Nf∑
i=1

Ng∑
j=1

δj|iD(fi||gj) ≥D(f ||g)

(16)

with D(δ||ε) =
Nf∑
i=1

Ng∑
j=1

δj|i log
δj|i
εi|j

. The parameters are

obtained by minimizing (16):

εi|j =
βjδj|i∑
k δj|k

δj|i =
αiεi|je

−D(fi||gj)∑
l εi|le

−D(fi||gl)

(17)

The updating equations for the parameters are applied
iteratively until convergence. Since these equations are
multiplicative, it is important that the initial values are
not zero, e.g., εi|j = δj|i = αiβj .

All the solutions presented up to now, excepting (16),
obtain a closed form to estimate the approximated value of
the KL divergence; in other words, they obtain an analyti-
cal solution. Only the variational solution includes an iter-
ative algorithm to obtain the solution. Another approach
to estimate D(f‖g) is using numerical approximations.

C. Approximations based on sampling

Since there is not an analytical solution to D(f‖g), an-
other approach to estimate it is using sampling, e.g., Monte
Carlo methods. The goal is to generate Q samples {xi}Qi=1

from distribution f(x) and then estimate the expectation

D(f‖g) =
∫
f(x) log f(x)

g(x)dx numerically:

DMC(f‖g) =
1

Q

Q∑
i=1

log
f(xi)

g(xi)
(18)

We can use as samples the observations obtained with
the sensors or artificial samples generated according to the
MoG models estimated in previous subsection. In this case,
a simple option is to generate a responsability variable fol-
lowing the prior probabilities αi and, then, generate the
observation sample xi with the probability function of the
corresponding Gaussian component.

A related method consists in using the unscented trans-
form [29]. In this case, the values where the log function
is estimated are not obtained according to the Gaussian
mixture models, but they are deterministic. The estimated
value of the KL divergence is Du(f‖g):

Du(f‖g) =
1

2K

Nf∑
i=1

αi

2K∑
k=1

log
f(xi,k)

g(xi,k)
(19)

where the xi,k points are, for k = 1, . . . , d, xi,k = µi +

(dλi,k)
1/2

ei,k and xi,k+K = µi − (dλi,k)
1/2

ei,k, with λi,k
the eigenvalues of the covariance of the component fi(x),
and ei,k the corresponding eigenvector.

Monte Carlo sampling is a very effective method, but the
drawback is that it requires a lot of samples to guarantee
a good estimate.

V. Results

The goal is to analyze the clustering of the previously
estimated class models; i.e., which classes are more similar
in the symmetric KL distance space. The interest from
a hierarchical point of view is to: (i) merge first the one
defect classes and (ii) more importantly, separate between
the homogeneous and defective classes. We will use the fol-
lowing numbering system to identify the original classes:
1 (homogeneous), 2 (one hole defect), 3 (one crack defect)
and 4 (multiple defects). For the sake of clarity and avoid
confusions between the use of the words class and cluster,
we will rename the original four classes as the initial four
clusters at the bottom level of the hierarchy. During the
first level hierarchy, a new cluster 5 will be obtained after
merging two of the original classes. In the second level hi-
erarchy a new cluster 6 will appear as a result of merging
two first level hierarchy clusters. The proposed hierarchi-
cal clustering algorithm is summarized in Algorithm 1. For
the first level clustering, we will use the different KL ap-
proximations explained in Section IV. For the second level,
we will use different linkage methods of clusters.

To test the model complexity, several models were
trained changing the number of Gaussians K per class:
K = 3,5,7,9,11,13,15,17,19,21. In addition, to study the
influence of the supervision, i.e., the percentage of samples
with a known class used during the learning of the MoG
models, two different supervision ratios are analyzed: 30%
and 90%. The higher the supervision ratio, the better the
model, since the EM updating rules are mostly applied to
the correct class conditional distribution. Finally, every
MoG model and supervision case was run 40 times with
different input data to test the consistency of the results
(see Figure 1).

A. First level clustering

Once the different models for each class are obtained
using the semisupervised EM algorithm, we calculate the
symmetric KL divergence between classes and a new clus-
ter is obtained merging the closest classes. The seven
tested KL approximations are: DG, Dmin, DGold, Dprod,
Dvar, Dvub and DMC , given by equations (7), (8), (10),
(11), (13), (16) and (18), respectively.

In Figure 2 we show the results obtained with each
method for the 90% supervision case. The horizontal axis
shows the possible outcomes of the new cluster, i.e., the
merging classes (the ones with the lowest KL divergence).
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Algorithm 1: Hierarchical clustering algorithm

Data: The class models. Each class c= 1,2,3,4 is
represented by a MoG with K Gaussians

fc(x) =
K∑

k=1
αkcNk (x;µkc ,Σkc )

Result: a hierarchical clustering.

Initialization (bottom level hierarchy): classes 1 to 4
correspond to clusters 1 to 4.

First level hierarchy:
(i) Calculate the symmetric KL distance between each pair of

original classes (bottom level clusters).
(ii) Merge the two classes with the minimum KL distance.

(iii) Define it as cluster 5.
Second level hierarchy:

(i) Calculate the proximity between each pair of clusters in the
first level hierarchy.

(ii) Merge the two more similar clusters.
(iii) Define it as cluster 6.
Result: clusters 1, . . . ,6

The vertical axis represents the model under study, i.e.,
the number of Gaussians used to model the class condi-
tional distribution. The figure shows how many out of the
40 experiments are assigned to the corresponding cluster
for each MoG model. The colormap used is at the bottom
of the figure. The values range from a dark blue (0 cases)
to a dark red (40 cases); cyan corresponds to around 15,
green to 20, yellow to 25 and orange to 30 cases.

Fig. 2. First level hierarchy for different algorithms. Vertical axis:
MoG model (number of Gaussians). Horizontal axis: classes merged.
Bottom: colormap; e.g., algorithm DG merges the classes 2 (one hole
defect) and 3 (one crack defect) for all models and experiments (40
out of 40 for each MoG case).

Taking into account that class 1 means no defect at all,
the new cluster does not have to include class 1 if the
hierarchy is correct. As we can see in the figure, most
clusters 1&2, 1&3 and 1&4 have a dark blue color (zero
cases) for all methods but the Dmin approximation. DG

and Dprod are the only two methods that always merge
first the one hole and one crack classes (cluster 2&3). The
worst results are obtained for theDmin distance, since class
1 is merged with the defective classes in some experiments,
confirming that to estimate the distance between classes as
the distance between the closest Gaussians is a too strong
simplification.

As we also expected, DGold and Dvar obtain similar re-
sults, as the second one can be interpretated as a varia-
tional version of the first one. The results with Dvub and
DMC are better and also similiar. The difference between
these methods is the proportion of cases that join damaged
materials with one hole and one crack (2&3 cluster) or ma-
terials with one crack and multiple defects (3&4 cluster).

In Table I we show the mean values in percentage for
all the models. We confirm that DGold and Dvar have a
similar performance as it happens with Dvub and DMC .
The most important result is that all methods but Dmin

obtain an excellent result by not merging the class with no
defects with any of the other classes (values close to 0 for
columns 1&2, 1&3 and 1&4).

1&2 1&3 1&4 2&3 2&4 3&4

DG 0 0 0 100 0 0
Dmin 3 2.25 6.5 16.75 52.25 19.25
DGold 0.5 0 0 64.25 0.5 34.75
Dprod 0 0 0 100 0 0
Dvar 0.5 0 0 62.25 0.5 36.75
Dvub 0.5 0 0 72.75 1.55 25.25
DMC 0.75 0 0 73.5 2 23.75

TABLE I

First Level hierarchy mean results for all models in %.

Supervision ratio 90%.

B. Second level clustering

The ultimate goal is to separate in the high level clus-
tering the pieces with no defect from the ones with any
problem, i.e., to separate between class 1 and the rest of
them. It means that in the second level hierarchy, the
classes 2, 3 and 4 must be merged. We have seen that dur-
ing the first merging, classes 2 and 3 are the closest ones
for DG and Dprod in all cases, while DGold, Dvar, Dvub

and DMC in some cases prefer to merge first classes 3 and
4, and Dmin failed in some experiments. The new cluster
of the first level hierarchy is cluster 5; not considering the
Dmin approximation, cluster 5 is the merging of classes 2
and 3 (cluster 2&3) or 3 and 4 (cluster 3&4), depending
on the case. It means that a correct second level merging
to obtain the new cluster 6 must merge the clusters 4&5
in the case that 5 is 2&3, or 2&5 in the case that 5 is 3&4.
For a perfect hierarchical classification, in no case, cluster
6 must include class 1.

For the first level hierarchy clustering we have used
the KL distance. In the second level, since clus-
ter 5 is composed of two classes, a measure of clus-
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ter proximity D must be defined. The two more sim-
ilar clusters will be merged. We tested three differ-
ent hierarchical clustering algorithms: the single link-
age D((Ci,Cj),Cl) = min(D(Ci,Cl),D(Cj ,Cl)), the com-
plete linkage D((Ci,Cj),Cl) = max(D(Ci,Cl),D(Cj ,Cl))
and the average linkage D((Ci, Cj), Cl) = (D(Ci, Cl) +
D(Cj ,Cl))/2 [30]. In Figure 3 we show the results of the
second level hierarchy using the single linkage method.

Fig. 3. Second level hierarchy for different algorithms and models.
Same colormap as in Figure 2.

Observe that Dprod performance is almost perfect. It
is the only approximation not only able to distinguish be-
tween zero, one or multiple defects in the first level hi-
erarchy, but now it joins one defect and multiple defects
classes in almost all the experiments: class 1 is not in-
cluded in clusters 5 or 6, i.e., blocks with no defect at all
are not mistaken by damaged materials in any level of the
hierarchy. DG method fails in this second level hierarchy.
The simplification of the MoG model by only one Gaussian
is the reason. The results are independent of the number
of Gaussians in the MoG, since at the end all models are
reduced to only one mean Gaussian when measuring dis-
tances. Dmin also obtains poor results as we expected from
first level hierarchy analysis. The rest of methods in the
figure, DGold, Dvar, Dvub and DMC , have a similar good
performance. In the cases where in the first level they
joined class 2 and 3, now most of the time they add class
4 to this cluster; in the cases where they joined class 3 and
4 first, now they add mainly class 2.

The percentage results averaging across the different
models are given in Table II. Summing up all the cases
where class 1 is combined with any of the defective classes,
the percentage is around 11% for DGold, Dvar, Dvub and
DMC , and only 4.25% for Dprod. The incorrect merging is
between class 1 and the previous merge of 2 and 3. In sum-
mary, most of the KL distance approximations are able to
distinguish between defective and non defective materials
using as a starting point the low level class distribution

models.

1&4 1&(2,3) (2,3)&4

DG 0 93.25 6.75
Dprod 0 4.25 95.75
DGold 0 11.5 52.75
Dvar 0 11.5 50.75
Dvub 0 11.75 61
DMC 0 12.25 61.25

1&2 1&(3,4) 2&(3,4)

DGold 0.25 0 34.5
Dvar 0.25 0 36.5
Dvub 0.25 0 25
DMC 0 0 23.75

TABLE II

Second level hierarchy mean results in % for all models.

Supervision ratio 90%.

We compare the single linkage hierarchical clustering
method with the average and complete linkage methods.
The difference is the way the proximity between clusters
is defined: in single linkage it is the closest distance (the
similarity between the two most similar instances in each
cluster), in complete linkage the furthest distance (the sim-
ilarity between the two most dissimilar instances in each
cluster) and in average linkage is the average similarity be-
tween all pairs of instances. The results obtained for all
methods are very similar. The only significant difference is
in the DG results; for the average and complete linkages,
although the 1&5 grouping is also the most likely, there are
more 4&5 mergings than when using the single linkage.

Previous figures and tables give us an intuitive under-
standing of the qualitative performance of the algorithms
and a quantitative analysis of the merging procedure. To
go deeper we must analyze the KL values in detail. The
box and whisker plot for the KL obtained byDprod for the 9
Gaussians model for the 40 experiments is shown in Figure
4 as a representative example. The central mark indicates
the median, the bottom and top edges of the box indicate
the 25% and 75%, respectively, and crosses correspond to
cases out of this interval.

As we already knew, the closest classes are 2 and 3.
More importantly, we can see that the distance between
the median values of the defective materials, i.e., 2&3, 2&4
and 3&4 is lower than between the homogenous class and
any other of the materials, i.e., 1&2, 1&3 and 1&4. It
means that the KL distance between the material with no
defect and the rest of classes is large enough to allow a
succesful hierarchy most of the times.

In some applications it is not so easy to get a large num-
ber of samples with a pre-known class (a large supervision
ratio) to train the MoG, since the sample must be broken
to obtain the ground truth about its state, with the asso-
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Fig. 4. KL distance for Dprod 9 Gaussians model.

ciated high economic cost. Therefore, it is important to
know how robust the algorithms are to the quality of the
samples used in the training of the MoG models. We can
model this effect by reducing the supervision ratio. In Ta-
ble III we show the first level percentage merging classes
when the number of samples used in the EM algorithm
with a known class is only 30%, instead of 90% .

1&2 1&3 1&4 2&3 2&4 3&4

DG 0 0 0 100 0 0
Dmin 10.75 3.75 12.5 22 37.25 13.75
DGold 3.5 0 0 53.75 0.25 42.5
Dprod 0 0 0 100 0 0
Dvar 3.5 0 0 52.75 0.25 43.5
Dvub 3 0 0 59.75 0.75 36.5
DMC 3 0 0 70.75 1.25 25

TABLE III

First Level hierarchy mean results for all models in %.

Supervision ratio 30%.

In spite of reducing significantly the number of samples
with a pre-known class during the estimation of the con-
ditional class probabilities, all methods but Dmin are still
able to separate class 1 from the other ones. Obviously,
as more training samples have an unknown class, it is ex-
pected that the class condicional distributions are more
prone to missclassifications during the test task. But a
worse classification performance does not imply that the
hierarchical clustering is worse. Only in 3% of the exper-
iments the perfect class is closer to the one hole class for
DGold, Dvar, Dvub and DMC approximations, while Dprod

is not affected at all. In other words, to reduce drastically
the quality of the training samples to learn the models has
a greater impact at the classification level than at the hi-
erarchy level, since most classification errors are merged in
the first level hierarchy (class 2 and 3 are the closest ones);
i.e., it is not a big problem not to have a large number of
one hole and one crack samples, since they are going to be
joined anyway in the first level hierarchy.

In Table IV we show the results for the second level
hierarchy for the 30% supervision case. Compared to the

results summarized in Table IV for the 90% supervision,
the main difference is the increase in the percentage of
1&(2,3) cluster; it goes from 4.25% to 16% for the Dprod

algorithm and from 11.5% to 19.5% for the other methods.

1&4 1&(2,3) (2,3)&4

DG 0 91.75 8.25
Dprod 0 16 83.75
DGold 0 19.5 34.25
Dvar 0 19.75 33
Dvub 0 20.25 39.5
DMC 0 19.5 51.25

1&2 1&(3,4) 2&(3,4)

DGold 0.5 0.5 41.5
Dvar 0.5 0.5 42.5
Dvub 0.5 0.5 35.5
DMC 0.5 0 24.5

TABLE IV

Second level hierarchy mean results in % for all models.

Supervision ratio 30%.

The last issue to analyze is the influence of the granu-
larity of the problem in the results, i.e., what happens if
the starting number of classes is changed. In the 7-classes
problem we split the hole and crack classes into subclasses
taking into account the direction of the defect: homoge-
neous, X hole, Y hole, XY crack, ZY crack, ZX crack and
multiple defects. Considering that the final goal is to sep-
arate perfect from damaged materials in the top level hi-
erarchy, the dendrogram obtained must not include class 1
up to the top level of the hierarchy.

We run the EM based semisupervised algorithm again
to obtain the new models. After that, the symmetric KL
distance between the seven MoGs is obtained for the seven
different KL distance approximations. As in previous ex-
periments, we run 40 times the algorithms randomizing the
training samples and test different models; in this case, the
number of Gaussians for each model are K = 3,5,7,9,11.

We count the number of times that class 1 is in the top
level of the hierarchy as a separate cluster (since this is a
seven classes problem there are six levels in the hierarchy).

In Figure 5 we show the box and whiskers plot of the
results for the five different models for each method. The
value represents the percentage that class 1 was not merged
until the last level of the hierarchy; i.e., in five previous
levels, the six defective classes were correctly merged.

Again, Dprod obtains the best results; in almost 80% of
the experiments, it was able to separate the homogeneous
material from the six different defective materials in all lev-
els of the hierarchy. In the cases where the homogeneous
materials are merged in previous hierarchies, it would be
better if the class 1 is not merged with a defective material
in the first hierarchical clusterings. To show that this is
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Fig. 5. Percentage of experiments where the class 1 (perfect material)
is in the top level hierarchy.

the case, in Figure 6 we show the percentage where the
perfect class were merged in the fifth level of the hierar-
chy. Adding these values to the ones in Figure 5 we can
observe that most methods are not merging class 1 blocks
until the last or penultimate levels of the hierarchy; i.e.,
the KL distance between the homogeneous specimens and
the damaged ones are greater than between the damaged
materials.

Fig. 6. Percentage of experiments where the class 1 (perfect material)
is in the fifth level of the hierarchy.

Finally, in Figure 7 we plot a typical dendrogram for the
Dprod method for the different agglomerative hierarchical
clustering methods single, average and complete linkages,
where we can observe that class 1 (no defect) is kept sep-
arated from the defective materials in all the clustering
hierarchies up to the top level.

VI. Conclusion

We have presented a hierarchical clustering procedure
based on the KL divergence between MoGs. Since we are
using a probabilistic model, the KL divergence is the most
natural way to measure the similarity between classes. We
have introduced different ways to approximate the KL dis-
tance for the MoG distribution model.

We have applied it to the case of defective and non de-
fective materials using IE techniques. The procedure can
be extended to any other problem where we can obtain a
MoG model for every class. We have seen that results de-
pend on the assumptions of the KL approximation and if

Fig. 7. Dendrogram for Dprod method and 5 Gaussians per class for
the seven classes case. Left: single linkage; middle: average linkage;
right: complete linkage.

they fit the signals under analysis, i.e., the measurements.
Since the MoG is a very flexible model for a large number
of different measurements, the proposed methods can be
applied to many different instruments and measures. The
best results for our application are obtained by the Dprod

approximation, being able to separate the homogeneous
from any cluster of damaged materials most of the time in
a very robust way (different class models, supervision ratio
and number of classes).

Appendix

Mixture of Gaussians: MoG

Kullback-Leibler Divergence KL

Non Destructive Testing NDT

Impact Echo IE

Principal Component Analysis PCA

Expectation Maximization algorithm EM
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