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Estimation of Lung Properties From
the Forced Expiration Data

Adam G. Polak , Dariusz Wysoczański , and Janusz Mroczka

Abstract— Forced expiration is the most commonly applied
lung function tests. Despite the problem of spirometry model-
ing was solved a few decades ago, a relatively small amount
of work has been devoted to indirect measurements of lung
properties from spirometry data. Just recently, a new method,
based on the reduced model for forced expiration and two-stage
estimation (global with the feed-forward neural network approx-
imating the inverse mapping (InvNN) and then local with
the Levenberg–Marquardt algorithm, starting with the rough
estimates yielded by the InvNN) was proposed. The aim of
this work was to evaluate the accuracy of the above approach
to the indirect measurement of lung properties. To this end,
16,000 synthetic spirometry results were generated, and then
used to optimize, train, and validate the InvNN, and to test the
entire method. The total estimation errors of model parameters
were from 3.7% to 16.6% in relation to their variability ranges.
Those original estimates were then recalculated to clinically
interpretable airway resistances and compliances, assessed with
the relative errors of 7%–35% and 5%–12%, respectively. These
outcomes encourage the future use of the method to analyze the
results of bronchial challenge or dilation tests.

Index Terms— Airway compliance, airway resistance, estima-
tion accuracy, Levenberg–Marquardt (LM) algorithm, neural
network, spirometry.

I. INTRODUCTION

SPIROMETRY, and particularly forced expiration, is one
of the most commonly applied lung function tests. Its

advantages stem from simple and convenient to use mea-
suring equipment, independence of the descending part of
flow-volume (FV) curve from patient effort, and from the
sensitivity of the FV curve shape to respiratory disorders [1].

In the 1960s and 1970s, the main factors determining
the shape of the FV curve were successively identified—
first, the role of lung recoil pressure [2], [3], and then
the wave-speed flow limiting mechanism in elastic air-
ways [4], [5]. These findings, combined with the morpho-
logical model for the symmetrical bronchial tree [6], allowed
Lambert and coworkers to elaborate the pioneering, validated,
and widely recognized computational model for the descend-
ing part of the FV curve [7]. This model was further developed
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to simulate forced expiration in the whole range of lung vital
capacity (VC) [8] and to include the asymmetrical bronchial
tree structure [9], [10]. Thereby, the forward problem in
spirometry was generally solved.

In metrology, however, the inverse problem takes the central
position. In particular, in indirect measurements, it consists
in the estimation of properties of an object under investi-
gation based on directly measured data. Such attempts to
infer about lung mechanics are currently undertaken in the
field of forced oscillations technique [11], mechanical ventila-
tion [12], or computational fluid dynamics [13]. None of these
approaches, however, takes into account the elastic properties
of bronchi or airflow nonlinearities.

In the case of spirometry, solving the inverse problem means
to indirectly measure the lung mechanical properties through
advanced FV data processing. Such information would be
of great clinical significance. Nevertheless, a relatively small
amount of work has been carried out in this field so far, mainly
due to the complexity of the respiratory system resulting in
sophisticated anatomy- and physiology-based models, as well
as advanced data processing techniques to be considered. The
first systematic investigations on the sensitivity and specificity
of the forward model for forced expiration were performed
just after publishing it [14]. This study revealed the main
difficulties in its potential use in indirect measurements, such
as a large number of parameters, their collinearities, and over-
all strong functional nonlinearities. Only relatively recently,
new attempts were made. The first approach consisted in
fitting the model to the descending part of the FV curve
by adjusting solely airway maximal areas [15], [16], which
represented only a small subset of parameters determining the
spirometric data. The second methodology, focused on the
parametrization of distribution of specific airway properties
along the bronchial tree and the advanced sensitivity analysis,
showed that only nine parameters of the reduced model were
of metrological meaning [17]. The first comprehensive attempt
with this approach was presented just recently, combining the
inverse neural network (InvNN) acting as a global estimator
with the local Levenberg–Marquardt (LM) estimation method.
The obtained total errors of parameter estimates were from 4%
to 19% in relation to the parameter variability ranges [18].

The aim of this work was to further improve the abovemen-
tioned approach by taking into account other methods of global
estimation and better tuning the inherit parameters of the
chosen global estimator to show the possibility of translating
the estimation results into clinically relevant quantities, as well
as to perform comprehensive tests of the entire method for
indirect measurement of respiratory system properties.
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II. METHODS

A. Methodology

The typical approach to the identification of complex and
nonlinear models consists in solving the optimization problem
(i.e., the minimization of the objective function Fob—the dis-
tance between the model output and data), and this task should
be divided into two stages because of a usually unknown and
possibly complex topology of Fob: first—global identification
yielding approximate estimates of parameters near the global
minimum, and then—a more accurate local estimation method.

First, three methods of global optimization: random
search (RS), simulated annealing (SA), and genetic algo-
rithm (GA), were tested as global estimators using the
nine-parameter model of normal lung and compared to the
performance of the InvNN. Taking into account the obtained
results, we decided to continue with the InvNN. The number
of free parameters was further decreased to 6 by taking into
account the natural optimality of the bronchial tree structure.
Then, the synthetic FV data were generated with this model
and applied to train the InvNN. The estimates yielded by the
InvNN were used as starting points for the LM algorithm of
local estimation. The relevant estimates were recalculated into
resistances and compliances of airway generations. Finally,
the estimates were compared with the true parameter values
and their variability ranges, returning the assessments of the
relative systematic, random, and total errors of estimation.
All the computations and analyses were carried out on a PC
with Intel Core i7-6950X CPU at 3.0 GHz, RAM 32 GB,
GPU NVIDIA Quadro 8 GB, using MATLAB (R2017a,
MathWorks).

B. Forward Model and Its Reduction

The complex forward model for forced expiration, allowing
the simulation of the entire spirometric curve, was described
elsewhere [8], [19]. Breathily, the model includes the symmet-
rical bronchial tree with mechanical properties of the airways
specified independently for each of their 24 generations. These
parameters describe the dependence of the airway lumen area
(A) on transmural pressure (Ptm)

A(Ptm) =
{

Amα0(1 − Ptm/P1)
−n1 , Ptm ≤ 0

Am[1−(1−α0)(1− Ptm/P2)
−n2 ], Ptm > 0

(1)

where Am is the maximal airway area, α0 is the normalized
airway area at Ptm = 0, α′

0 is the slope of α0 at Ptm = 0
(neutral compliance), P1 = n1α0/α

′
0, P2 = n2(α0 −1)/α′

0, and
n1 and n2 are the shape-adjusting exponents [7]. The second
crucial component is the nonlinear relationship between the
elastic recoil pressure (Pst) and lung volume (VL)

Pst(VL)=

⎧⎪⎨
⎪⎩

VL − V0

Cst
, VL ≤ Vtr

Vm − Vtr

Cst
· ln

(
Vm − Vtr

Vm − VL

)
+ Vtr − V0

Cst
, VL > Vtr

(2)

where VL is the lung volume, Vm, Vtr, and V0 are the maximal,
transition, and minimal volumes, and Cst is the lung compli-
ance defining the linear part of Pst(VL) characteristics [20].

Finally, the airflow Q is computed by repeatedly solving the
differential equation for the pressure drop along the lengths lg
of airway generations for a given VL [7]

d P

dx
= fd(x)

1 − u2(x)
c2(x)

= fd(x)

1 − ρQ2

A3(x)

(
∂ A

∂ Ptm

)
x

(3)

where dP/dx is the gradient of pressure along a bronchus, u
and c are the local airflow and wave speeds, ρ is the gas
density, and

fd(x) = (a + b · Re(Q, x)) · 8πμQ(x)

A2(x)
(4)

is the elementary dissipative pressure loss at the point x
(a and b are the proportionality coefficients, Re is the local
Reynolds number, and μ is the gas viscosity) [21]. Each time,
the total pressure drop along the airways is equated to the
instant driving pressure to find actual Q.

The first stage of the systematic reduction of that forward
model was achieved by replacing a great number of its
original parameters by functions that describe the distributions
of airway properties (such as Am, α′

0, or α0) along the
bronchial tree, as well as by considering the uninfluential
parameters as constants (based on the sensitivity analysis of
the descending part of the FV curve, which is determined
by the mechanism of flow limitation). This model had nine
parameters, all accompanied by the ranges of their variabil-
ity [17]. However, one of the basic features characterizing the
bronchial tree has not been included in that reduced model—
namely, the natural optimality of its structure, manifesting in
fixed ratios between linear dimensions (diameters and lengths)
of subsequent airway generations [22], [23]. This means that
the intersubject variability (approximately ±30% [24]–[26]) in
lung dimensions may be captured by one scaling parameter, pl.
Thus, the structural parameters of an individual subject, lg and
Am (unaffected by airway remolding and narrowing [19]),
have been related to pl in this study. Moreover, it is obvious
that two other airway properties do not change independently
during the constriction of airway smooth muscle: the resulting
lumen area (related to α0) and wall compliance (related
to α′

0) [19], [27]. Using the reported relationships between the
airway diameter, wall thickness, and compliance [28], [29],
another scaling parameter, ka , has been used in the model to
describe the effects of airway narrowing, such that when α0
alters proportionally to ka , α′

0 changes in proportion to k2
a .

This relationship is in line with experimental results [19].
Because the specific level and location of airway constriction
is generally unknown, its distribution along the bronchial
tree is finally expressed by the sigmoidal function with two
parameters, pa1 and pa2

ka(g) = 0.0196 · g + 1.05

1 + exp(pa1g + pa2)
− 0.0174 · g + 0.7 (5)

where g denotes the airway generation. Modifications of pa1
and pa2 allow for alternative simulations of: unchanged prop-
erties, homogeneous alterations, or dominant modifications
in the zone of small or big airways. Considering various
published results, the coefficients in (5) have been chosen in
such a way that the sigmoidal upper asymptote varies between
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TABLE I

FREE PARAMETERS OF THE REDUCED MODEL AND
THE ASSESSED RANGES OF THEIR VARIABILITY

1.05 for g = 0 (the modified α0 cannot exceed 1) and 1.5 for
g = 23, and the lower asymptote between 0.7 for g = 0
(stiffer airways) and 0.3 for g = 23 (resulting in approximately
120 times increased resistance of these airways). Ranges of
pa1 and pa2 have been assessed to keep ka within 5%–95%
of these asymptotes. The last step of model reduction was
moving Vm from the set of free parameters to constants
(using its approximate relation to the total lung capacity:
Vm = 1.05 · TLC), because it modifies only the last part
of Pst(VL) characteristics related to maximal lung volumes,
and the relevant data (the ascending part of the FV curve)
will not be used when identifying the model. In addition, the
volumetric parameters from the Pst(VL) characteristics, V0 and
Vtr, were referenced to the lung residual volume (insignificant
parameter), so they are denoted as �V0 and �Vtr in the
reduced model. The six parameters of the reduced model are
collected in Table I together with their ranges of variability.

C. Preliminary Tests of Global Optimization Methods

Just recently, an analogous model was used to create and
evaluate a feed-forward neural network (FFNN) approximat-
ing the inverse mapping between the spirometric data and
model parameters (InvNN). This approach has been considered
because any multidimensional continuous mapping can be
arbitrary well approximated using the FFNN [30], [31].

The total relative error of estimation of individual para-
meters using this InvNN was between 11% and 28% (domi-
nated by estimate deviations) of their variability ranges [32].
Further attempts based on this inverse mapping have shown
that it often returns parameter estimates characterizing local
minima of Fob, giving an inadequate solution to the inverse
problem in such cases. To continue with possibly the best
approach to global estimation, three other methods for sto-
chastic optimization were tested and compared to the results
of InvNN: RS, SA, and GA. These methods were chosen
because of their similarities, popularity, and the ability of
easily imposing bounds on parameters. The simplest one
is RS with an iteratively damped region of interest, where
the next population of analyzed points is drawn around the
best parameter vector found in the previous step. On the
contrary, in SA only one evaluation of Fob is done in a new
random direction per one iteration with the decreasing step
and with the possibility of accepting worse solutions. The most
advanced is GA, mimicking biological evolution when creating
new descendant populations of parameters. For each algorithm,
the same maximal number of Fob evaluations, fitness limit, and
the population size in RS and GA was set. The methods were
tested using FV data generated by the nine-parameter model.

Identifications were performed 30 times for each method to
assess statistical features of the algorithms: mean errors and
standard deviations (SDs) of parameter identification, both
related to the parameter variability ranges.

D. Generation of Synthetic Data

The preliminary tests revealed InvNN’s advantage as a
global estimator, nonetheless, using it required a huge amount
of spirometric data related to specific parameters of the
reduced model and appropriate choice of InvNN features.

The former was achieved by a synthetic generation of
16,000 FV curves representing a variety of possible states
of the respiratory system. In the beginning, the sex of
a virtual subject was randomly chosen as female (F) or
male (M). Then, its height and age were randomly drawn
(uniform distribution) from the ranges 1.50–1.80 (F) or
1.60–1.90 cm (M), and 25–70 years, respectively. These data
were used to calculate the predicted values of VC and
other basic spirometric indices characterizing this subject,
such as forced expiration volume in 1 s (FEV1), Tiffeneau
index (FEV1/FVC), forced mid-expiratory flow between 25%
and 75% of FVC (FEF25%−75%), and peak expiratory flow
(PEF) [33]. Then, the whole FV curve was simulated in
the range of VC (100 evenly spread samples) using the
values of model parameters (the target vector for the InvNN)
randomly drawn from their variability ranges (uniform distri-
bution). Finally, the first volume after PEF (Vmax) was found
and 100 samples of the descending part, evenly distributed
between Vmax and VC, were computed again. The simulated
flow data were then supplemented with the values of Vmax
and VC, forming the input vector for the InvNN. Because
some combinations of randomly chosen parameter values were
returning unnatural FV curves, additionally the spirometric
indices were calculated from the simulated data and compared
with the upper 95 percentiles of the predicted values for that
subject [33]. When any of these limits was exceeded or the
volume corresponding to PEF was smaller than 6% of VC,
such an FV curve was rejected. In the end, the flow data were
corrupted with white noise, by adding random samples from
the normal distribution, with an SD of 0.01 dm3 · s−1 deduced
from the available spirometric sensor connected to the data
acquisition system [32]. The above procedure yielded the sets
of corresponding input (102 × 16,000) and target (6 × 16,000)
data.

E. Global Estimation Using the InvNN

To decide about the InvNN preferred features, preliminary
studies on the inverse mapping quality were carried out with:
1) 8,000 versus 16,000 sets of FV curves; 2) 52 versus 102 data
in an FV set; 3) LM versus scaled conjugate gradient (SCG)
training methods; and 4) tansig versus logsig activation
functions—all analyses were done with different numbers of
neurons in two hidden layers (from 20, every 10, to 50) and
30 initializations of each InvNN. Finally (see Section III), the
InvNN with 102 input neurons, two hidden layers with 40 neu-
rons each (with logsig activation functions), and 6 linear
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output neurons were trained using the LM method, with the
initial value of the regularization parameter equal to 10−3.

All artificially generated data were divided into the train-
ing, validation, and test sets, in the proportion 0.7:0.15:0.15
(11,200:2,400:2,400 elements). The input data were left in
their original ranges. On the other hand, the absolute values
of parameters differed from each other by several orders,
so the target data (expected parameter values) were scaled by
their ranges of variability (Table I). Additionally, the formerly
assessed error weights [5 2 1 3 8 3] were assigned to the corre-
sponding InvNN outputs to enhance the accuracy of estimation
of the most significant parameters [32]. The validation set was
used to stop training before overfeeding the network (after
ten unsuccessful steps), with a network performance evaluated
by the mean squared error (MSE). The InvNN structure that
yielded the least MSE for the validation set was further trained
100 times, and the one characterized by the smallest MSE
was ultimately considered the best achieved inverse mapping
between the spirometric data and the parameters of the reduced
model. The first estimates of parameters were computed using
this InvNN and the FV curves from the test set. Since the
InvNN implements the continuous inverse mapping, some
estimates may fall outside the feasible ranges. For this reason,
such estimates were corrected using the limits given in Table I.

F. Local Estimation Using the LM Method

The final stage of inverse problem solving involved local
estimation, starting from the rough estimates yielded by the
InvNN. The sensitivity analysis of the reduced model done
for a set of typical respiratory system states [32] had revealed
that the gradient-based procedures of local estimation may be
numerically ill-conditioned (coefficients of Pearson correlation
between sensitivity vectors sometimes higher than 0.999).
This caused that the LM method was chosen to iteratively
find the estimates of model parameters θ̂ by minimizing the
distance between the model output Qm(θ) and flow data Q.
The LM algorithm balances between the steepest descent and
Gauss–Newton directions of minimum search by modifying
the regularization parameter λ according to the local topology
of Fob, and simultaneously avoids the ill-conditioning of
matrix inversion by adding small λ values to its diagonal

θ̂ i+1 = θ̂ i + μ
(
XT

i Xi + λi I
)−1XT

i εi (6)

where the sensitivity matrix (computed numerically) X =
∂Qm/∂θ , the residues ε = Q − Qm, and μ is the step
size (0.5 in this study). In addition, this iterative routine
attracts poorly defined estimates to their previous values, so it
preserves the values of such parameters that have been used in
the starting vector (resulting from global estimation) [34]. In
the original LM method, λ is tuned based on the model fit to
data, which is not the best approach in indirect measurements,
where a method should focus on the accuracy of parameter
estimates. Thus, recently an alternative approach was proposed
to modify λ, assessing the balance between the systematic
and random error of estimation in each iteration [34]. This
is done by calculating values of the auxiliary variable Vλ for
λi+1 = 10 · λi , λi+1 = λi and λi+1 = λi /10. Vλ consists of

two terms, related, respectively, to the systematic and random
errors

Vλ = εT(λi+1)ε(λi+1) + σ̂
T
θ (λi+1)XTXσ̂ θ (λi+1) (7)

where σ̂ θ is a vector of SDs of parameter estimates assessed
by cross-validation (leave-one-out), Eventually, such λi+1 is
selected for use in the next iteration, which returns the
minimal Vλ.

The above algorithm, taking additionally into account con-
straints on the estimates given by the lower and upper para-
meter bounds (Table I), was applied to calculate the final
estimates of model parameters.

G. Calculation of Clinically Interpretable Parameters

The derived reduced model has six free parameters, where
three of them correspond to airway mechanics, and the other
three to the elastic properties of lung tissue. The only clinically
recognized parameter from this set is lung compliance Cst
[see (2)]. Simultaneously, very important information on the
airway state is encoded in the parameters pa1 and pa2,
which describe the distribution of airway narrowing along the
bronchial tree (5). Fortunately, these parameters can be recal-
culated into well-established in clinical practice resistances
and compliances of airway generations for the conditions char-
acterizing the end of normal expiration, when cross sections
of flexible airways are constant due to a very small airflow Q,
and typical Ptm = 0.5 kPa, so [see (3) and (4)]

d P

dx
= a8πμQ

A2 ⇒ �P =
∫ lg

0

a8πμQ

A2 dx = a8πμQlg

A2 (8)

where the length of an airway generation, lg , depends on
parameter pl. Then the resistance Rg of 2g parallel airways in
generation g is equal to

Rg(g) = 1

2g

�P

Q
= a8πμlg

2g A2 . (9)

Analogously, the compliance of parallel airways can be
derived from (1) according to its definition as follows:

Cg(g) = 2g ∂Vaw

∂ Ptm
= 2g lg

∂ A

∂ Ptm

= 2glg Am(α0 − 1)
n2

P2

(
1 − Ptm

P2

)−n2−1

(10)

where Vaw is the airway volume, and Am, α and P2 depend
on pl, pa1, and pa2.

H. Metrological Analysis of Results

The accuracy of estimation performed by the InvNN and
LM methods was evaluated using the test set of synthetic data
(with 2,400 elements composed of true parameter vectors θ∗
and corresponding FV curves). Because the true values of
parameters were known, it was straightforward to calculate
the relative error of estimation for each parameter, taking into
account the range of its variability r (see Table I)

δθk = (
θ̂k − θ∗

k

)
/rk . (11)

Such an approach to expressing the relative error seems
better than the classical one, δθ = (θ̂ − θ∗)/θ∗, when the true
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TABLE II

ASSESSED RELATIVE ACCURACY OF ESTIMATION
WITH THE INVNN AND LM ALGORITHMS

value can be 0, as in this study. Having N = 2,400 estimates of
each parameter, the statistical characteristics of relative errors
could be evaluated—the mean error dm, the SD of errors ds,
and the total error dt, as follows:

dm(k) = 1

N

N∑
i=1

δθk

ds(k) =
√√√√ 1

N − 1

N∑
i=1

(δθk − dm(k))2

dt(k) =
√

d2
m(k) + d2

s (k). (12)

With the true values of model parameters and their estimates,
it is also possible to find relative errors of Rg and Cg calculated
on their basis for each airway generation

δRg = (
R̂g − R∗

g

)
/R∗

g , δCg = (
Ĉg − C∗

g

)
/C∗

g . (13)

III. RESULTS

The results of global estimations using RS, SA, and GA
revealed large mean errors and their SDs, ranging from 0.2%
to 27.6% (mean) and 2.4% to 33.1% (SD), depending on
a method and parameter. They were larger than the errors
yielded by the InvNN (Table II). Moreover, these computations
required a huge number of Fob evaluations: (5.4 ± 4.3) ×
103, (7.0 ± 1.5) × 103, and (2.7 ± 1.5) × 104, respectively,
prolonging the first stage of estimation.

Investigation on the preferred features of the InvNN returned
some expected outcomes: the errors of estimation were smaller
for 16,000 versus 8,000 sets of FV curves, and 102 versus
52 input data, as well some additional information: using
SCG backpropagation significantly worsened the accuracy
compared to the LM algorithm, and the logsig activation
function improved slightly the accuracy of global estimation
compared to tansig.

Based on the above results, a large ensemble of synthetic
data was generated, consisting of 16,000 vectors of model
parameters and corresponding spirometric curves. Examples of
the test data are presented in Fig. 1.

The first portion of these data (11,200 training and
2,400 validation elements) was used to train and optimize the
InvNN with 40 neurons in each of the two hidden layers. This
InvNN was further used as a global estimator and evaluated
with the test data (remaining 2,400 elements). The results of

Fig. 1. First 100 spirometric curves from the test set (thin lines) and the
main trend from the whole set (bold line).

Fig. 2. Fit of the reduced model to spirometric data in the case of the
worst-matched InvNN model.

this stage, in terms of estimation errors, are shown in the top
panel of Table II. Then, the estimates returned by the InvNN
(corrected when necessary to be within the parameter ranges,
which sometimes worsen the model fit) were used as starting
vectors for local estimation with the LM. An example of
improving the model fit to the descending part of a spirometric
curve is shown in Fig. 2, and the relationships between the
final estimates and true parameter values in Fig. 3.

The final errors of this stage of estimation are collected
in the low panel of Table II. These results reveal that the
most accurately assessed parameter is pl (3.7% of the vari-
ability range)—responsible for scaling the linear dimensions
of airways, and the less accurately assessed is pa2 (16.6%)—
describing the homogeneous narrowing/dilating of all airway
generations (5). The final stage using the LM method has
improved the accuracy of all parameter estimates, but �Vtr.

Upon inspecting the results of Rg and Cg assessment shown
in Fig. 4, it is apparent that retrieving airway compliances
from spirometric data is more accurate than extracting air-
way resistances (total errors of 5%–12% versus 7%–35%),
and that accuracy is three–four times better for large
bronchi (first airway generations) than that for small bron-
chioli (last generations). Simultaneously, the third clinically
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Fig. 3. Dependencies between estimated and true values of model parameters
with the identity lines (see Table I for definitions).

Fig. 4. Distribution of relative estimation errors (mean ± SD) of airway
resistances and compliances along the bronchial tree generations.

valuable parameter, Cst , is directly estimated with a relatively
small error of 4.2% (Table II).

IV. DISCUSSION

The aim of this work was to evaluate the effectiveness of
the proposed method for indirect measurement of respiratory
system properties based on the reduced model for forced
expiration, including the stages of global and local estimation.

The reduction of the complex model for forced expiration
has been performed by analyzing only the descending part of
the spirometric curve, taking into account the natural optimal-
ity of the bronchial tree structure, describing the distribution
of airway properties along their generations with the scaling
function, and treating the least influential parameters as con-
stants. Nevertheless, the computational structure of the reduced
model has not been changed and it is fully compliant with the
complex model, i.e., it includes all the essential relationships.
According to our best knowledge, this is the first compact
(in terms of free parameters), yet still rational model (in terms
of respiratory anatomy and physiology/ pathophysiology) that
has been proposed to solve the inverse problem in spirometry.

Fig. 5. Dependencies between LM and InvNN estimation errors.

After the tests with a few methods of global optimization,
the FFNN approximating the inverse mapping between spiro-
metric data and model parameters (InvNN) was chosen as
returning more accurate estimates. Although the time of its
training is quite long and comparable to RS, SA, or GA,
the evaluation of model parameters from new data is very
fast, substantially shortening the stage of global estimation,
which makes that this approach outweighs the others in the
contest of clinical application. Considering the InvNN training,
the LM backpropagation algorithm has outperformed the SCG
method, which follows two facts. First, the sought inverse
mapping is numerically ill-conditioned (strong correlations
between model parameters), so the LM approach is recom-
mended [34]. In addition, the SCG algorithm has been run on
the GPU that uses single-precision arithmetic with rounding
being destructive in the case of ill-conditioned problems.

All the analyses were done based on the test data, never
used at the stage of InvNN training and optimization. The main
results are collected in Table II. Small vales of dm prove that
systematic errors (caused mainly by the regularization mech-
anism and the stop criterion in the iterative LM algorithm)
are negligible compared to the random errors represented by
ds. The ds have a major contribution to the expected total
errors of estimation (dt). These, sometimes fairly large values
(above 16% for pa2), result mainly from the presence of
noise in the data, the relatively small sensitivity of the model
output to some parameters and the high correlation between
the impact of certain parameters (mainly between pl and pa2,
and pa2 and Cst). This effect is well visible in Fig. 3, where
the dispersion of pa2 estimates is much bigger than, e.g.,
those of pl. The estimation procedure consists of two stages
and the LM estimates are computed starting from the InvNN
ones. This results in a strong linear correlation of LM on
InvINN estimates of parameters weakly defined by the data
(Fig. 5), particularly in the case of pa2, (r2 = 0.993 versus
0.328 for �V0), and in the inability of the second algorithm to
significantly improve the results. Summarizing, the relatively
unprecise estimation of pa2 follows its weak identifiability,
shown also by the sensitivity analysis of the reduced model.
On the other hand, it could not be removed from the set of
free parameters, having a much greater impact on the model
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output compared to the parameters treated as constants in the
reduced model. In general, the high correlations cause that an
inaccurate match of one parameter can be almost completely
compensated by the changed value of another, and the model
still fits the data very well—as in Fig. 2. From Table II,
it also stems that some of the InvNN estimates do not lie
close to the global minimum, which is a feature of most global
estimation methods. Another finding worth to note is that the
best (for �Vtr) and worst (for pa2) InvNN estimation accuracy
is well related to the a priori assessed error weights: 8 and 1,
respectively.

The errors of directly estimated parameters translate into
inaccuracy of the assessment of airway resistance and com-
pliance distribution along the bronchial tree (Fig. 4). This
evaluation is fairly precise for large airways, but it falls toward
the lung periphery. The lower sensitivity of measurement
results in changes in the small airways observed here is
well known and referred to as the “silent zone” effect [35].
Nevertheless, the proposed approach is currently the only one
allowing the noninvasive assessment of the airway resistance
and compliance distribution along the bronchial tree.

The above discussed disadvantages could be avoided by
taking into account outcomes from other medical exami-
nations, such as computed tomography (to assess pl) [36]
or measurements with an esophageal balloon (to estimate
independently �V0, �Vtr, and Cst) [20]—but this is not part
of the clinical routine. However, there is one more possibility,
relevant to clinical concern, to reduce the errors resulting from
large correlations between parameter estimators, associated
with a further reduction in the number of free model parame-
ters. The principle of differential measurements, eliminating
systematic errors produced by unmeasured variables, can be
applied to data from two spirometric examinations, represent-
ing the same patient with only changed airway properties
(represented by pa1 and pa2), as in bronchial dilation or
challenge tests.

The analysis of estimation based on data generated in
advance by the same model is usually referred to as inverse
crime [37]. On the other hand, as long as the desirable
properties of any new inversion method have not been proven
in this sometimes trivial case, there is no point in using it
with other data, including experimental measurements. In this
study, however, the synthetic data were corrupted by realistic
white noise, which allowed to assess its impact on estimate
variances (random errors), as well as to compare this effect
with the bias resulting from regularization (systematic errors).
Nevertheless, it is planned to use spirometry data of another
origin in the future, including spirometric curves generated
by the computational model with heterogeneous bronchial
tree [38].

V. CONCLUSION

The main contribution of this study covers the following
issues. First, the maximally compact in terms of free parame-
ters, however capturing the main properties of the respiratory
system, reduced model for forced expiration was proposed.
Then the procedure for identifying this nonlinear model,
including the global and local stages, was shown. We also

presented how to recalculate the estimates of model parameters
into the distributions of clinically interpretable airway resis-
tances and compliances. Finally, the metrological properties of
the above approach to solving the inverse problem in spirom-
etry were assessed. The possibility of noninvasive insight into
the airway and lung tissue mechanics, only by additionally
processing data from popular spirometry tests (without any
interference with the expiration procedure and spirometers
hardware), is of great innovative and clinical significance.
The future study will focus on using this methodology in
the differential measurement of changes in airway properties
(represented by pa1 and pa2) based on two spirometric exam-
inations, recorded during bronchial challenge or dilation tests.
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