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Abstract— The effectiveness of workload identification
is one of the critical aspects in a monitoring instrument
of mental state. In this field, the workload is usually
recognized as binary classes. There are scarce studies toward
multiclass workload identification because the challenge of the
success of workload identification is much tough, even though
one more workload class is added. Besides, most of the existing
studies only utilized spectral power features from individual
channels but ignoring abundant interchannel features that
represent the interactions between brain regions. In this study,
we utilized features representing intrachannel information and
interchannel information to classify multiple classes of workload
based on an electroencephalogram. We comprehensively
compared each category of features contributing to workload
identification and elucidated the roles of feature fusion and
feature selection for the workload identification. The results
demonstrated that feature combination (83.12% in terms of
accuracy) enhanced the classification performance compared with
individual feature categories (i.e., band power features, 75.90%,
and connection features, 81.72%, in terms of accuracy). With the
F-score feature selection, the classification accuracy was further
increased to 83.47%. When the features of graph metric were
fused, the accuracy was reached to 84.34%. Our study provided
comprehensive performance comparisons between methods and
feature categories for the multiclass workload identification and
demonstrated that feature selection and fusion played an impor-
tant role in the enhancement of workload identification. These
results could facilitate further studies of multiclass workload
identification and practical application of workload identification.
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I. INTRODUCTION

W ITH the increase in the pace of people’s lives, their
mental workload is elevated accordingly. The previous

study has shown that mental overload could lead to errors
during decision-making [1], which is one of the main causes
of mistakes/accidents. In contrast, keeping workload always
low might avoid mistakes/accidents, but it would waste mental
resource and result in low work efficiency [2]. Therefore,
an appropriate workload level, ensuring high efficiency but
no overloading, is desired. To this end, accurate identification
of workload level is prerequisite.

In general, the workload can be assessed using subjective
or objective manners [3]. The subjective manner is based on
individual’s self-estimation of task difficulty [4]. In contrast,
the objective manner is to assess workload based on objective
metrics, such as performance score or accuracy. Another
critical factor affecting workload assessment application is real
time. If an assessment is done discretely, it is not promising
for practical application. Nowadays, neurophysiological
signals are frequently used to monitor mental states as
they can be measured continuously [5]–[8]. Using such
signals, the mental workload can be assessed in real time.
To date, electroencephalogram (EEG), electrooculogram,
and electrocardiogram ECG have been used in workload
assessment [9], [10]. Among these signals, EEG is relatively
better for assessing workload level as it directly reflects
brain activity [11]. In addition, assessment accuracy could
be higher using EEG signal compared with the ECG signal,
which was found in Zhang et al.’s [12] study.

As we know, band power is one of the feature cat-
egories for the investigation of mental workload. For
instance, Borghini et al. [13] found that theta band power
was increased, while the alpha band power was decreased
when drivers were under high workload. In the study of
driver’s mental workload, event-related potentials in different
frequency bands were investigated and the association between
mental workload and frequency bands was observed [14]. All
typical frequency bands were used in the above-mentioned
studies and studies in [15] and [16]. In this study, we,
therefore, included all typical frequency bands and compared
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the performance among them. Besides power features, func-
tional connection features were recently used in workload
identification [17]–[21]. The functional connection features
can provide interchannel information representing interac-
tions between brain regions, which cannot be captured by
power features that are derived from individual channels.
Gupta et al. [22] found that the EEG graph metric features
were more suitable for emotion classification than traditionally
used EEG features, such as band powers and asymmetry index.

As power features and functional connection features,
respectively, represent different information, and they are
complementary, we explored both of them in our study. In the
other classification reports other than workload identification,
feature fusion, and feature selection gave a positive role in
the enhancement of classification performance. In the method
proposed by Chen et al. [23], significant multimodal features
were selected respectively by two comparative feature selec-
tion methods: fisher criterion score and Davies–Bouldin index.
The comparison results showed that accuracy was significantly
improved. Another study using the fusion of wavelet entropy
and spectral power demonstrated the improvement of classifi-
cation performance [24]. Therefore, we planned to take these
two strategies (i.e., feature selection and feature fusion) to find
out the role of them in workload identification. Finally, most of
the published studies performed binary classification (i.e., high
workload versus low workload) [25]–[30]. Toward practical
application, it is more desirable to classify more levels of
workload. To this end, we designed an aircraft operation sim-
ulation experiment to induce multiple levels of workload and
performed multiclass workload identification. We compared
workload identification performance among frequency bands,
different individual feature categories, different combinations
of feature categories, and feature selection methods. We then
provided comprehensive results of workload identification and
performance comparison.

II. PARTICIPANTS AND METHOD

A. Experiment

The experiment for inducing workload is a simulated aircraft
operation, where an oculus rift virtual reality headset was used
to display virtual 3-D aircraft, and a joystick was provided
to participants. A total of seven participants were recruited
in this experiment. All of them had not had any experience
of EEG experiment and the use of this aircraft simulation.
They were asked to control the virtual aircraft by a joystick
and performed three 2-min-long tasks, constituting a 6-min
session. They completed three identical sessions. For each
session, they started a low workload task and ended with
high workload task. During the low workload task, participants
only monitored autonomous aircraft and were not asked to do
any control actions. In the medium workload task, participants
manually controlled the aircraft and had to pay more effort.
In the high workload task, the effort was further increased due
to more difficult manipulation for keeping aircraft balanced
because the aircraft had malfunctioned, such as engine failure.
During the experiment, 62 EEG channels were used to record
brain activity with a sampling rate of 256 Hz. The protocol

of the experiment was approved by the institutional review
board of the National University of Singapore, Singapore.
All participants signed the consent form before starting the
experiment.

B. Data Processing

A typical procedure was utilized to mitigate artifacts from
EEG signals, including bandpass filter (0.5–48 Hz) and inde-
pendent component analysis. The EEG signals were parti-
tioned into 2-s-long segments, resulting in 180 segments for
each level of workload and a total of 540 segments for
each participant. Power features and functional connection
features were then extracted for each segment. Consequently,
individual categories of features and their combinations were
used to identify workload. The schematic is shown in Fig. 1.

C. Feature Extraction

Fourier transform (FT) and wavelet packet
decomposition (WPD) were, respectively, utilized to obtain
power features in five frequency bands (i.e., delta, 1–4 Hz;
theta, 4–8 Hz; alpha, 8–12 Hz; beta, 12–30 Hz; and gamma,
30–45 Hz). The wavelet Daubechies 4 (db4) was selected
following the previous research [31]. There were two power
features for each frequency band. These were band power
and relative band power (i.e., the ratio of the band power to
the total power of five bands). In our study, 62 channels were
used. Therefore, there were 620 power features (62 × 5 band
power features and 62 × 5 relative band power features).

The interactions between brain regions could be quantified
by phase-locking value (PLV), which describes phase cou-
pling. The PLV method estimates the phase synchronization
among channels. The PLV between channel k and channel l
over time span t = {t1, t2, . . . , tk} can be computed as follows:

PLVk,l = �e j (ϕk(t)−ϕl (t))� (1)

where �·� stands for the arithmetic mean over the time span,
and ϕk and ϕl are the phases of channels k and l, respectively.

PLV is affected by volume conduction. In contrast, the phase
lag index (PLI) is insensitive to volume conduction. The PLI
is computed by

PLIk,l = |�sign[sin(ϕk(t) − ϕl(t))]�| (2)

where sign stands for signum function and |·| indicates
absolute value function.

PLV and PLI values are between 0 and 1. The value of 0
indicates no coupling, and 1 indicates perfect phase locking.
The stronger this nonzero phase locking is, the larger PLV
and PLI values are. In our case, a connection matrix with
the size of 62 × 62 was obtained by either PLV or PLI for
each segment. Because the connection matrix is symmetric,
the upper triangle is the same as the lower triangle. We also
removed entries on the main diagonal as these entries are for
self-connections. Finally, 1891 [62 × (62−1)/2] connection
features were obtained. Moreover, we computed the clus-
tering coefficient and assortativity coefficient to have graph
metric features. During the computation of the graph metric,
a sparsity threshold was applied to the connection matrix.
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Fig. 1. Schematic of multiclass workload identification using different methods, different feature categories, and different feature combinations.

Since there is no definitive method to determine the sparsity
threshold [32], we followed previous studies to utilize a series
of thresholds to eliminate the bias due to only using one
arbitrary threshold [33]–[37]. A series of thresholds ranging
from 0.12 to 0.40 with an incremental step of 0.01 was used
in our study, and the metric values were obtained by taking
integral of all values corresponding to the thresholds.

Clustering coefficient describes the connection centraliza-
tion of the connection network. The clustering coefficient for
channel i is defined as

Ci =
∑

k �=i

∑
l �=i,l �=k wikwilwkl

∑
k �=i

∑
l �=i,l �=k wikwil

(3)

where w stand for entries in the connection matrix, which were
either PLI or PLV values, and i , k, and l are channel indices.

The assortativity coefficient can measure the overall con-
necting structure of a network. Supposing a network has M
edges totally and the nth edge is with the degrees of αn and
βn for each end, assortativity coefficient (r) of the network
can be calculated by

r =
1
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∑
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1
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1
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1
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]2 . (4)

The network is assortative if r is greater than zero and is
disassortative if r is less than zero. If r is zero, the network is
randomly mixed. The assortative networks are likely to consist
of mutually coupled high-degree channels and to be resilient
against random failures. In contrast, disassortative networks
are likely to have vulnerable high-degree nodes. For each
frequency band, there were 62 clustering coefficients and one
assortativity coefficient, resulting in 315 (62 × 5 + 1 × 5)
features.

D. Feature Selection and Fusion

High computational demand is needed to process high-
dimensional features, and there might be the curse of dimen-
sionality. To overcome this problem, we used the Fisher score
(F-score) [38] and stochastic proximity embedding (SPE)
[39] to reduce the feature dimension. The desired number
of features has to be set for performing these two methods.
We explored different feature numbers (power features: from
20 to 620 with an incremental step of 50, graph metric
features: from 5 to 315 with an incremental step of 10,
connection features: from 41 to 1891 with an incremental
step of 50) to obtain classification accuracies. The desired
numbers for each category of features were determined when
the highest accuracy was reached.

E. Classification

Random forest (RF) is a nonlinear classifier [40], belonging
to the family of ensemble methods. Such methods have good
generalization [41] and are more robust to overfitting than
individual trees because each node does not see all features
at the same time [40]. It has been shown that RF performed
well for workload classification [42]. We, therefore, adopted
RF in this study. For the performance evaluation, 2-s-long
segments were considered as samples, resulting in 180 samples
for each workload level and each participant. The total number
of samples for each participant was 540. The accuracies were
separately obtained for each participant using fivefold cross-
validation. The accuracies averaged across all participants
were reported in this article.

III. RESULTS

We first compared the performances between FT and WPD.
We used FT and WPD to extract frequency bands sepa-
rately and obtained classification accuracies using the features
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Fig. 2. Accuracies averaged across all subjects for each case. The accuracies
obtained using FT were higher than that of using WPD. In the cases of
using the single feature category, the highest accuracies are 68.60% (band
power) and 77.99% [graph metric (PLV)] for WPD and FT, respectively. When
combining features of band power and graph metric (PLV), the accuracies are
improved by 0.61% and 2.60% for the conditions of FT and WPD, respec-
tively. The Wilcoxon signed-rank test was utilized to check how significant
the differences in the accuracies. This statistical evaluation generated p-values.
The smaller p-value is, the more significantly different the accuracies are.
The cases showing significant differences in the accuracies among feature
categories of the same method (i.e., FT or WPD) and between FT and WPD
for the same feature category are marked in the figure. ∗ stands for p <
0.05 and ∗∗ stands for p < 0.01.

extracted from these frequency bands. The mean classification
accuracy averaged across all subjects was used for perfor-
mance assessment. The performance was better when using
FT compared with WPD (see Fig. 2). In the cases of the
single-feature category, the highest accuracy under the FT
method was 77.99% [graph metric (PLV)] and the highest
accuracy under WPD method was 68.60% (band power). The
best accuracies were elevated by 0.61% and 2.60% for FT
and WPD, respectively, when combining feature categories of
power and graph metric (PLV). Overall, the accuracy obtained
by using FT was significantly greater than that of using
WPD (Wilcoxon signed-rank tests, p<0.01, see Fig. 3). These
results suggested that FT gave rise to a better performance of
workload classification in our case. Therefore, we, hereafter,
compared classification accuracies obtained by using FT.

All connection feature-based classification accuracies aver-
aged across all subjects in each frequency band, and each
condition is shown in Table I. Based on the results, the gamma
band shows the best performance (accuracy of 80.41% aver-
aged across all cases). Using the gamma band, the accuracy
exceeded 80.00% for five out of six cases. Therefore, the
connection features used in the feature combination were from
this frequency band. The F-score improved classification accu-
racies, while SPE reduced classification accuracies. The accu-
racy was enhanced by using feature selection of the F-score.

Table II lists the workload classification accuracies for
single-feature categories and combinations of feature cate-
gories. In single-feature categories, the performance of graph
metric features under the condition of PLV (77.99%) was

Fig. 3. Overall accuracy comparison between FT and WPD. The accuracies
for WPD and FT were 68.20% and 74.77%, respectively. ∗∗ stands for
p < 0.01 (Wilcoxon signed-rank test).

Fig. 4. Confusion matrix for the case of the best classification performance
using the combination of features of band power, graph metric (PLV), and
connection (PLV) and feature selection of F-score. Columns in the confusion
matrix represent predicted classes and rows represent ground truth classes. The
entries in the diagonal show correctly classified percentages in each class.

higher than that of power features (75.90%). Taken Tables
I and II together, we can see that the accuracy obtained using
connection features in the gamma band (81.72%) was higher
than that of using power or graph metric features (75.90%
and 77.99%, respectively) under the condition of PLV and no
feature selection and fusion. In combinations of feature cate-
gories, the classification accuracies were generally improved
compared with that of the single-feature category. The highest
classification accuracy was 83.12%, which was obtained by
using the combination of power and connection features (under
the condition of PLV). After using feature selection and fusion
(F-score), classification accuracies were improved for all cases.
The highest accuracy of 84.34% was achieved when using the
combination of features of band power, graph metric (PLV),
and connection (PLV) and feature selection of the F-score.
Its confusion matrix is shown in Fig. 4. In this case, the
identification of the low workload level was better than the
identification of the other workload levels.
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Fig. 5. Results of Wilcoxon signed-rank test in performance comparisons between feature categories. Most of the compared cases were significantly different
(p < 0.05).

The detailed statistical results obtained by Wilcoxon signed-
rank tests are shown in Fig. 5. It shows whether or not the
accuracies were significantly different when using different
categories of features. We can see that the performance was
better when using connection features compared with that of
using graph metric features. The combination of feature cate-
gories significantly benefited the classification of workload.

IV. DISCUSSION

This study aimed to improve the performance of multiclass
workload classification using the fusion of different kinds of
features and feature selection. We comprehensively explored
different cases and compared their performances in terms
of accuracy. This is the first attempt to fuse single-channel

features and interchannel features for classifying three lev-
els of workload. In the case of the single-feature category,
the performance was higher when using functional connec-
tion features compared with band power features. The result
demonstrated that the connection features were effective for
workload classification. Among the five typical frequency
bands, the highest classification performance was achieved
when the connection features in the gamma band were used.
It has been found that the gamma rhythm originated from
the interneurons with the mediation by pyramidal cells [43].
A greater number of studies using EEG recorded from either
human (e.g., [44]) or animals (e.g., [45]) have shown that
the gamma oscillation was related to cognitive ability. For
example, Tallonbaudry and Bertrand [46] revealed that the
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TABLE I

ACCURACIES AVERAGED ACROSS ALL SUBJECTS WHEN
USING CONNECTION FEATURES

TABLE II

ACCURACIES AVERAGED ACROSS ALL SUBJECTS FOR SINGLE-FEATURE
CATEGORIES AND COMBINATIONS OF FEATURE CATEGORIES

gamma band played a key role in working memory, showing
a high correlation between the enhanced gamma power and
the maintenance of cognitive task. According to our study,
the accuracy was lower when using graph metric features
compared with connection features. We speculated that the
aggregated features of graph metric might be too abstract
to be as informative as the connection features. This finding
informed us that high-level features might be not better than
low-level features for the aim of workload classification.
We were surprised to observe that the best performance was
achieved when the gamma band was used, which was not
accordance with our initial expectation that the theta and alpha
bands should mostly contribute to the workload classification
[13], [26], [47], [48]. This might be partially due to that the
movements during aircraft operation introduced discriminative
artifacts into the gamma band of the EEG signal. However,
this effect should not be significant if any, because we did not
see obvious movement-related artifacts after the procedure of
artifacts removal. Further studies are required to elucidate the
relationship between the gamma band and mental workload.

The comparison results of classification performance
demonstrated that the feature fusion of different kinds of
features outperformed individual feature categories. Feature
fusion enhanced classification accuracy, achieving the highest

Fig. 6. Classification accuracies for different dimensions with F-score and
SPE.

classification accuracy of 84.34% when the features of band
power, PLV graph metric, and PLV connection were fused.
This suggested that different feature categories were comple-
mentary to each other in terms of discriminative information.

According to the results of feature selection and fusion,
the F-score and SPE have different performances. The F-score
improved the classification accuracies for all cases, while SPE
reduced the classification accuracies. The F-score was better
for the feature selection according to the obtained results. The
advantage of the F-score was also found in Ren et al.’s [49]
study, showing better performance compared with principal
component analysis. Fig. 6 shows the average accuracies
for different feature dimensions with the F-Score and SPE.
The results show that classification accuracies were increased
quickly to a local peak and then slightly increased to a
balanced level for most cases.

Based on the current study, the SPE reduced classification
accuracy, which was different from our previous results [50],
indicating that the same method has different performance
on the different classification tasks and different data sets.
It is worth noting that the FT was better than WPD based on
the results of this study, which is not in agreement with the
findings in other studies. This might be due to the selection
of wavelet since the wavelet dramatically affects the WPD
performance. In our study, we did not explore all wavelets and
selected the widely used wavelet (db4) according to previous
research [31]. Therefore, the selected wavelet might not fit the
data in this particular case.

This study demonstrated that workload classification was
well improved using the fusion of power and functional
connection features. Although the study was informative for
the workload classification, there were a few limitations. First,
this study constructed functional connections using PLV and
PLI. Other methods, such as partial directed coherence and
directed transfer function [51] were not included in the study.
Second, in this study, we did not discuss brain regions relevant
to mental workload because the SPE compressed feature
dimension as a whole, which did not enable us to trace relevant
regions. Third, workload identification was not assessed in
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real time. Therefore, the results reported in this article could
not reflect that derived in a real-time practical application.
However, the majority of findings reported in this article
should be retained when converting to a practical application
since the practical application is similar to the experiment to a
large extent. Fourth, the repetition of tasks in our experiment
might introduce a learning effect on participants’ behavior
of aircraft operation. This effect probably causes bias in the
behavior investigation, but its effect is not critical to the
purposes of classification. In addition, the length of a session
(a cycle of the low, medium, and high workload tasks) is only
6 min. The total time for the three sessions is 18 min. The
duration is not long so that the learning effect should not be
significant if any.

V. CONCLUSION

In summary, the current study designed an experiment of
aircraft operation simulation to explore workload identifica-
tion performance among frequency bands, different individual
feature categories, different combinations of feature categories,
and feature selection and fusion methods. The study had shown
that using the connection features in the gamma band achieved
the highest accuracy (81.72%) among individual features.
The combination of band power features and connection
features (gamma) outperformed individual feature categories,
obtaining the classification accuracy of 83.12%. With feature
selection using the F-score, the accuracy was further enhanced
to be 83.47%. When the features of graph metric were fused
with the features of band power and connection, the classifi-
cation accuracy was reached to 84.34%. The results showed
that feature selection and fusion gave a positive role in the
multiclass workload classification.

REFERENCES

[1] T. Kakizaki, “Relationship between EEG amplitude and subjective rating
of task strain during performance of a calculating task,” Eur. J. Appl.
Physiol. Occupational Physiol., vol. 53, no. 3, pp. 206–212, 1984.

[2] G. F. Wilson, “Operator functional state assessment for adaptive automa-
tion implementation,” Proc. SPIE, vol. 5797, pp. 100–104, May 2005.

[3] Y.-Y. Yeh and C. D. Wickens, “Dissociation of performance and subjec-
tive measures of workload,” Hum. Factors: J. Hum. Factors Ergonom.
Soc., vol. 30, no. 1, pp. 111–120, Feb. 1988.

[4] G. B. Reid and T. E. Nygren, “The subjective workload assessment
technique: A scaling procedure for measuring mental workload,” Adv.
Psychol., vol. 52, pp. 185–218, 1988.

[5] H. Ayaz, P. A. Shewokis, S. Bunce, K. Izzetoglu, B. Willems, and
B. Onaral, “Optical brain monitoring for operator training and mental
workload assessment,” NeuroImage, vol. 59, no. 1, pp. 36–47, Jan. 2012.

[6] X. Wanyan, D. Zhuang, Y. Lin, X. Xiao, and J.-W. Song, “Influence
of mental workload on detecting information varieties revealed by
mismatch negativity during flight simulation,” Int. J. Ind. Ergonom.,
vol. 64, pp. 1–7, Mar. 2018.

[7] B. Wallace, F. Knoefel, R. Goubran, R. A. Lopez Zunini, Z. Ren, and
A. Maccosham, “EEG/ERP: Within episodic assessment framework for
cognition,” IEEE Trans. Instrum. Meas., vol. 66, no. 10, pp. 2525–2534,
Oct. 2017.

[8] P. Arpaia, N. Moccaldi, R. Prevete, I. Sannino, and A. Tedesco, “A
wearable EEG instrument for real-time frontal asymmetry monitoring
in worker stress analysis,” IEEE Trans. Instrum. Meas., early access,
Apr. 20, 2020, doi: 10.1109/TIM.2020.2988744.

[9] K. Ryu and R. Myung, “Evaluation of mental workload with a com-
bined measure based on physiological indices during a dual task of
tracking and mental arithmetic,” Int. J. Ind. Ergonom., vol. 35, no. 11,
pp. 991–1009, Nov. 2005.

[10] J. B. Brookings, G. F. Wilson, and C. R. Swain, “Psychophysiological
responses to changes in workload during simulated air traffic control,”
Biol. Psychol., vol. 42, no. 3, pp. 361–377, Feb. 1996.

[11] M. A. Hogervorst, A.-M. Brouwer, and J. B. F. van Erp, “Combining
and comparing EEG, peripheral physiology and eye-related measures
for the assessment of mental workload,” Front. Neurosci., vol. 8, p. 322,
Oct. 2014.

[12] H. Zhang, Y. Zhu, J. Maniyeri, and C. Guan, “Detection of variations
in cognitive workload using multi-modality physiological sensors and
a large margin unbiased regression machine,” in Proc. 36th Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc., Aug. 2014, pp. 2985–2988.

[13] G. Borghini, L. Astolfi, G. Vecchiato, D. Mattia, and F. Babiloni, “Mea-
suring neurophysiological signals in aircraft pilots and car drivers for
the assessment of mental workload, fatigue and drowsiness,” Neurosci.
Biobehav. Rev., vol. 44, pp. 58–75, Jul. 2014.

[14] S. Lei, S. Welke, and M. Roetting, “Representation of driver’s mental
workload in EEG data,” Hum. Factors, Secur. Saf., pp. 285–294, 2009.

[15] Z. Wang, R. M. Hope, Z. Wang, Q. Ji, and W. D. Gray, “Cross-subject
workload classification with a hierarchical Bayes model,” NeuroImage,
vol. 59, no. 1, pp. 64–69, Jan. 2012.

[16] S. Chandra, K. L. Verma, G. Sharma, A. P. Mittal, and D. Jha,
“EEG based cognitive workload classification during NASA MATB-
II multitasking,” Int. J. Cogn. Res. Sci., Eng. Educ., vol. 3, no. 1,
pp. 35–41, 2015.

[17] J. Gonzalez-Castillo et al., “Tracking ongoing cognition in individuals
using brief, whole-brain functional connectivity patterns,” Proc. Nat.
Acad. Sci. USA, vol. 112, no. 28, pp. 8762–8767, Jul. 2015.

[18] A. Anticevic, G. Repovs, J. H. Krystal, and D. M. Barch, “A broken
filter: Prefrontal functional connectivity abnormalities in schizophrenia
during working memory interference,” Schizophrenia Res., vol. 141,
no. 1, pp. 8–14, Oct. 2012.

[19] A. Mazaheri, S. Coffey-Corina, G. R. Mangun, E. M. Bekker,
A. S. Berry, and B. A. Corbett, “Functional disconnection of frontal
cortex and visual cortex in attention-deficit/hyperactivity disorder,” Biol.
Psychiatry, vol. 67, no. 7, pp. 617–623, Apr. 2010.

[20] J. Li et al., “Mid-task break improves global integration of functional
connectivity in lower alpha band,” Front. Hum. Neurosci., vol. 10,
p. 304, Jun. 2016.

[21] N. Sciaraffa et al., “Brain interaction during cooperation: Evaluating
local properties of multiple-brain network,” Brain Sci., vol. 7, no. 7,
p. 90, 2017.

[22] R. Gupta, K. U. Rehman Laghari, and T. H. Falk, “Relevance vector
classifier decision fusion and EEG graph-theoretic features for automatic
affective state characterization,” Neurocomputing, vol. 174, pp. 875–884,
Jan. 2016.

[23] J. Chen, B. Hu, L. Xu, P. Moore, and Y. Su, “Feature-level fusion
of multimodal physiological signals for emotion recognition,” in Proc.
IEEE Int. Conf. Bioinf. Biomed. (BIBM), Nov. 2015, pp. 395–399.

[24] P. Bashivan, M. Yeasin, and G. M. Bidelman, “Single trial prediction
of normal and excessive cognitive load through EEG feature fusion,”
in Proc. IEEE Signal Process. Med. Biol. Symp. (SPMB), Dec. 2015,
pp. 1–5.

[25] S. Mathan, A. Smart, T. Ververs, and M. Feuerstein, “Towards an
index of cognitive efficacy EEG-based estimation of cognitive load
among individuals experiencing cancer-related cognitive decline,” in
Proc. Annu. Int. Conf. IEEE Eng. Med. Biol., Aug. 2010, pp. 6595–6598.

[26] C. L. Baldwin and B. N. Penaranda, “Adaptive training using an artificial
neural network and EEG metrics for within- and cross-task workload
classification,” NeuroImage, vol. 59, no. 1, pp. 48–56, Jan. 2012.

[27] Y.-T. Wang et al., “Developing an EEG-based on-line closed-loop
lapse detection and mitigation system,” Front. Neurosci., vol. 8, p. 321,
Oct. 2014.

[28] D. De Massari et al., “Fast mental states decoding in mixed reality,”
Front. Behav. Neurosci., vol. 8, p. 415, Nov. 2014.

[29] M. Schultze-Kraft, S. Dähne, M. Gugler, G. Curio, and B. Blankertz,
“Unsupervised classification of operator workload from brain signals,”
J. Neural Eng., vol. 13, no. 3, Jun. 2016, Art. no. 036008.

[30] G. N. Dimitrakopoulos et al., “Task-independent mental workload
classification based upon common multiband EEG cortical connectivity,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 11, pp. 1940–1949,
Nov. 2017.

[31] L.-L. Chen, Y. Zhao, J. Zhang, and J.-Z. Zou, “Automatic detection
of alertness/drowsiness from physiological signals using wavelet-based
nonlinear features and machine learning,” Expert Syst. Appl., vol. 42,
no. 21, pp. 7344–7355, Nov. 2015.

http://dx.doi.org/10.1109/TIM.2020.2988744


4001108 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

[32] S. Achard and E. Bullmore, “Efficiency and cost of economical brain
functional networks,” PLoS Comput. Biol., vol. 3, no. 2, p. e17,
Feb. 2007.

[33] J. Li, R. Romero-Garcia, J. Suckling, and L. Feng, “Habitual tea
drinking modulates brain efficiency: Evidence from brain connectivity
evaluation,” Aging, vol. 11, no. 11, pp. 3876–3890, Jun. 2019.
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