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Abstract— Tunable diode laser absorption spectroscopy
(TDLAS) tomography has been widely used for in situ combus-
tion diagnostics, yielding images of both species concentration
and temperature. The temperature image is generally obtained
from the reconstructed absorbance distributions for two spectral
transitions, i.e., two-line thermometry. However, the inherently
ill-posed nature of tomographic data inversion leads to noise
in each of the reconstructed absorbance distributions. These
noise effects propagate into the absorbance ratio and gener-
ate artifacts in the retrieved temperature image. To address
this problem, we have developed a novel algorithm, which we
call Relative Entropy Tomographic RecOnstruction (RETRO),
for TDLAS tomography. A relative entropy regularization is
introduced for high-fidelity temperature image retrieval from
jointly reconstructed two-line absorbance distributions. We have
carried out numerical simulations and proof-of-concept experi-
ments to validate the proposed algorithm. Compared with the
well-established simultaneous algebraic reconstruction technique
(SART), the RETRO algorithm significantly improves the quality
of the tomographic temperature images, exhibiting excellent
robustness against TDLAS tomographic measurement noise.
RETRO offers great potential for industrial field applications
of TDLAS tomography, where it is common for measurements
to be performed in very harsh environments.

Index Terms— Laser absorption spectroscopy, regularization,
relative entropy, temperature imaging, tomography, two-line
thermometry.

I. INTRODUCTION

S INCE the first experimental demonstration of high-speed
chemical species tomography [1], interest in tunable

diode laser absorption spectroscopy (TDLAS) tomography has
grown rapidly, with a focus on noninvasive imaging of critical
combustion parameters, e.g., temperature [2]–[5], gas concen-
tration [3]–[7], pressure [8], [9], and velocity [10], in reactive
flows. High-fidelity temperature imaging is of critical interest,
as the temperature distribution directly relates to heat transfer
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and reveals combustion efficiency and temperature-dependent
creation of pollutants, such as NOx and CO. Therefore, many
articles on TDLAS tomography have focused on improving
the accuracy and robustness of temperature imaging.

The widely adopted method in TDLAS tomography for tem-
perature imaging is the so-called two-line strategy [11], where
the absorbance distributions for two spectral transitions with
different temperature-dependent line strengths are individually
reconstructed, then the temperature image is retrieved from
the ratio of the absorbances in each pixel of the region of
interest (RoI). Alternatively, temperature images can be recon-
structed by using spectra for multiple transitions, the so-called
hyperspectral tomography (HT) [12], [13]. Although better
accuracy and noise resistance can be achieved by HT, mea-
surement of the necessary spectra requires expensive hardware,
e.g., broadband lasers and detectors [5], and introduces high
computational cost for data inversion. In contrast, the two-line
strategy is cost-effective for temperature retrieval, placing
minimal requirements on optical components and computing
resources, and it is adopted in this article.

Temperature imaging using the two-line strategy requires
the solution of two linear inverse problems by reconstruct-
ing, from the line-of-sight (LOS) TDLAS measurements,
the absorbance distribution for each spectral feature. The
inverse problems are inherently ill-posed due to the limited
number of available LOS measurements and their inevitable
uncertainties, leading to noise in each of the reconstructed
absorbance distributions [14]. To mitigate the instability
of the reconstructions, a variety of computational tomo-
graphic algorithms have been applied in TDLAS tomography,
e.g., algebraic reconstruction technique (ART) [15], simulta-
neous ART (SART) [3], [16], Landweber algorithm [4], [17],
and Tikhonov regularization [18], by formulating the inverse
problem with a heuristically determined prior, e.g., smoothness
of the true temperature distributions. Noise in the retrieved
absorbance distributions, particularly in the denominator of
the two-line ratio, propagates into the ratio and gener-
ates spike noise in the temperature image. To address this
problem, we have developed a tomographic reconstruction
algorithm using relative entropy regularization, and the algo-
rithm is called Relative Entropy Tomographic RecOnstruction
(RETRO). The inverse problem of RETRO is solved by
cone optimization, enabling high-fidelity temperature retrieval
from jointly reconstructed two-line absorbance distributions.
As well as using smoothness constraints, relative entropy
regularization is imposed to directly penalize large values in
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the ratio of two-line absorbance and therefore alleviates the
spike noise in the tomographic images. The proposed RETRO
algorithm promises to be highly beneficial for industrial
applications of TDLAS tomography, e.g., gas turbine exhaust
imaging [19] and power plant boiler diagnosis [20], where
significant noise contamination of TDLAS measurements is
common due to the harsh measurement environment. Recently,
statistical inversion has been investigated by imposing a priori
knowledge on the desired solution based on the framework of
Bayesian statistics. The solution is then calculated based on
the maximum a posteriori (MAP) estimation [21] or covari-
ance estimation [22]. Although this article does not address
statistical inversion techniques, the proposed relative entropy
regularization can also be used in the statistical inversion
framework.

II. METHODS

A. Formulation of TDLAS Tomography

When a laser beam at frequency v [cm−1] penetrates an
absorbing gas sample on a path of length L [cm], a pro-
portion of its intensity is absorbed. According to Beer’s law,
the wavelength-dependent absorbance can be defined as

α(v) = ln
I0(v)

It (v)
=

� L

0
P(l)X (l)Sv (T (l))φ(v, l)dl, (1)

where I0(v) and It (v) are the incident and transmitted laser
intensities, respectively, and l is the position along the path.
P(l) [atm] is the local total pressure, X (l) the local molar frac-
tion of the absorbing species, T (l) [K] the local temperature,
φ(v, l) [cm] the line shape function, and S(T ) [cm−2atm−1]
the temperature-dependent line strength.

Since the line shape function can be normalized as� +∞
−∞ φ(v, l)dv ≡ 1, the path integral Av can be formulated

as

Av =
� ∞

−∞
α(v)dv =

� L

0
P X (l)Sv (T (l))dl

=
� L

0
av(l)dl (2)

where av is the local density of the path integral.
For TDLAS tomography, (2) can be discretized as

Av = Lav (3)

where Av ∈ R
M×1 denotes the vector of path integrals

obtained from M LOS-TDLAS measurements. L ∈ R
M×N

is the sensitivity matrix with its element li, j representing
the length of the laser path segment for the i th laser beam
passing through the j th pixel. i (i = 1, 2, … , M) and j ( j
= 1, 2, … , N) are the indices of laser beams and pixels,
respectively. av ∈ R

N×1 is the vector of the density of Av

with its elements av, j = Pj X j Sv (Tj).

B. SART-Based TDLAS Tomographic Reconstruction

SART is one of the most well-established algorithms
for hard-field tomography. This technique maintains the
rapid convergence rate of the ART, while retaining the
noise-suppression features of the simultaneous iterations

reconstruction technique (SIRT) [23]. In this article, SART
is used as a representative tomographic algorithm and its
performance is compared with the proposed RETRO.

Using the a priori information of smoothness, the two-line
absorbance distributions, av1 and av2, can be reconstructed by
solving the following regularized least-squares problem:

arg minav

��Av − Lav�2
W + λ�Fav�2

2

�
s.t. av ≥ 0 (4)

where �Fav�2
2 is the first-order Tikhonov regularization term

with a linear differential operator F. λ is the empirically
determined regularization parameter. The residual term �Av −
Lav�2

W is weighted per unit length of the laser path using W ,
which is defined as

W = diag(1/lray,1, 1/lray,2, . . . , 1/lray,M ), (5)

where lray,i denotes the length of the i th beam through the RoI

lray,i =
N�

j=1

li, j . (6)

By utilizing adaptive step size η, and nonnegative projection
operator �+(), SART solves (4) iteratively as

ak+1
v = �+

�
ak

v + ηC LT W(Av − Lak
v ) − λC FT Fak

v

�
(7)

where
	

+() operates as �+(av, j ) = max(0, av, j ).
C is the diagonal preconditioner defined as

C = diag(1/lpixel,1, 1/lpixel,2, . . . , 1/lpixel,N ) (8)

where

lpixel, j =
M�

i=1

li, j . (9)

In each iteration, η is updated by back-tracking line
search [24].

Finally, the temperature in the j th pixel, Tj , can be calcu-
lated by the two-line absorbance ratio, R j , given by

R j = av2, j

av1, j
= Sv2(Tj)

Sv1(Tj)
. (10)

Equation (10) shows that the quality of the temperature image
directly depends on the noise level of the two-line absorbance
ratio. Although smoothness regularization is used in SART,
the individually reconstructed av1 and av2 inevitably suffer
from perturbations caused by the ill-posed nature of TDLAS
tomography. Fig. 1 illustrates intuitively the resulting spike
noise for each pixel in the temperature image. For these
calculations, the inverse problem is formulated using the
tomographic sensor and phantom 2 introduced in Section III-A
below; TDLAS measurements are simulated with a signal-to-
noise ratio (SNR) of 40 dB. The reconstructed and original
av1, j and av2, j with their relative errors ev1, j and ev2, j in each
pixel are shown in Fig. 1(a) and (b), respectively. Although
the maximum values of ev1 and ev2 are 0.046 and 0.103,
respectively, very large spike noise effects can be observed
in the Tj values shown in Fig. 1(c), with a maximum relative
error eT, j of 1.51.
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Fig. 1. Spike noise introduced in temperature reconstruction using SART.
(a)–(c) Reconstructed and original absorbance av1, j , av2, j , and temperature
Tj in j th pixel with their relative errors ev1, j ; ev2, j ; and eT , j , respectively.

C. RETRO-Based TDLAS Tomographic Reconstruction

The RETRO algorithm proposed here introduces a con-
straint that directly enforces the smoothness of the two-line

absorbance ratio. Both av1 and av2 are jointly reconstructed
by solving the following inverse problem:

min
av1,av2


����
�

Av1

0


−

�
Lav1

γ Fav1

����
2

2

+
����
�

Av2

0


−

�
Lav2

γ Fav2

����
2

2

�

s.t. av1 > 0, av2 > 0, �av2./av1�2
2 < r (11)

where γ is the smoothness regularization parameter and r the
ratio constraint parameter.

The constrained optimization problem in (11) can be
reformulated into the following unconstrained problem using
Lagrange’s multipliers:

min
av1,av2

⎧⎨
⎩

����
�

Av1

0


−

�
Lav1

γ Fav1

����
2

2
+

����
�

Av2

0


−

�
Lav2

γ Fav2

����
2

2+μ�av2 · /av1�2
2

⎫⎬
⎭

s.t. av1 > 0, av2 > 0 (12)

where μ represents the two-line absorbance ratio regulariza-
tion parameter. Unlike the smoothness regularization parame-
ter γ for single-line absorbance, the selection of μ has a direct
impact on the reconstruction of line strength ratio and thus the
temperature. A too large μ will flatten the temperature peaks
while a too small μ cannot suppress the spike noise.

However, the regularization term μ�av2./av1�2
2 is not con-

vex [25], therefore it is generally difficult to use in the
determination of the globally optimal solution for (12) [26].
To replace this regularization term, we developed a relative
entropy function g(av2, av1) that is jointly convex in terms of
both av2 and av1 [27], as follows:

g(av2, av1)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(av2 + av1) ◦ log(1 + av2./av1), if av2, av1 > 0
0, if av1 + av2 = 0,

av1 ≥ 0
+∞, otherwise.

(13)

The relative entropy regularization term �(av2 + av1)◦ log(1+
av2./av1)�2

2 in (13) is used considering its good mathematical
properties including: 1) it is convex and therefore enables a
unique solution and 2) it balances well the penalty on a wide
range of av2./av1. For any given j , the imposed penalty from
the Logarithmic term log2(1 + av2, j /av1, j ) is calculated with
different values of av2, j /av1, j . As shown in Fig. 2, log2(1 +
av2, j /av1, j) is close to zero given small values of av2, j /av1, j ,
denoting the regularization has minor influence on typical
av2, j /av1, j that are relatively small. As av2, j /av1, j increases,
the imposed regularization becomes stronger in order to sup-
press large perturbations in the retrieved temperature, such
as the spike noise shown in Fig. 1. Therefore, it can be
seen that the relative entropy regularization developed above
is superior for keeping useful details of the reconstructed
image while maintaining good performance on spike noise
suppression.

By applying the relative entropy function g(av2, av1) in (12),
and retaining the empirical tuning parameter μ, the inverse
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Fig. 2. Dependence of log2(1 + av2, j /av1, j ) on av2, j /av1, j .

problem of TDLAS tomography can be formulated as

min
av1,av2

⎧⎨
⎩

����
�

Av1

0


−

�
Lav1

γ Fav1

����
2

2

+
����
�

Av2

0


−

�
Lav2

γ Fav2

����
2

2+μ�(av2 + av1) ◦ log(1 + av2./av1)�2
2

⎫⎬
⎭

s.t. av1 > 0, av2 > 0. (14)

In general, the inverse problem in (14) can be solved by
successive approximation of the convex regularization term
�(av2+av1) ◦ log(1 + av2./av1)�2

2, which suffers from very
high computational cost [28]. Alternatively, we recast (14) as
a conic optimization problem

min
av1,av2,τ

⎧⎪⎨
⎪⎩
����
�

Av1

0


−

�
Lav1

γ Fav1

����
2

2

+
����
�

Av2

0


−

�
Lav2

γ Fav2

����
2

2
+μ

�N
j=1 τ j

⎫⎪⎬
⎪⎭

s.t. av1 > 0, av2 > 0, (av1+av2, av1, τ ) ∈ Kre (15)

where Kre is the (scalar) relative entropy cone defined by

Kre

≡ �
(x, y, τ ) ∈ R

N
++×R

N
++×R

N
++ : x j log(x j/y j) ≤ τ j ,∀ j

�
(16)

and τ ∈ R
N++ the auxiliary vector.

Consequently, av1 and av2 in (16) can be solved jointly
and efficiently using the interior-point method [29], which
is implemented by the MOSEK optimization suite for
MATLAB [30]. With av1 and av2 in hand, the temperature
image can be reconstructed by (10).

III. NUMERICAL SIMULATION

In this section, the proposed RETRO algorithm is validated
using numerical simulations of three phantoms with differ-
ent numbers of inhomogeneities. The quality of the tomo-
graphic image was quantitatively examined in terms of image
error, dislocation, accuracy of centroid value, and overshoot.
To demonstrate the superiority of the proposed algorithm, its
performance was compared with SART.

A. Simulation Setup

Water vapor (H2O) has a strong near-infrared absorption
spectrum and is a principal product of hydrocarbon combus-
tion. Therefore, it is selected as the target absorption species
to demonstrate RETRO for TDLAS tomographic temperature
imaging. The absorption transitions at v1 = 7185.6 cm−1

and v2 = 7444.36 cm−1 are used in this work. According to
HITRAN 2016, they have moderate line strengths and good

Fig. 3. Optical layout of the TDLAS tomographic sensor.

Fig. 4. Phantoms of 2-D distributions of temperature and H2O concentration
with (a) and (b) one, (c) and (d) two, and (e) and (f) three inhomogeneities,
respectively.

temperature sensitivity over 300–1200 K [31]. Given no prior
information of the target field, it has been shown that a regular
beam array, i.e., equiangular projections and equispaced laser
beams within each projection, leads to the uniform distribution
of the sampling deficiency across the RoI [32]. Therefore,
a parallel beam arrangement is adopted in this work, as shown
in Fig. 3, with 32 laser beams arranged in four equiangular
projection angles, each angle with eight equispaced parallel
beams. The same optical layout is used for both the simulation
and the experiment. In the experiment, all the optics and laser
paths are enclosed and purified by dry air to avoid the ambient
absorption.

The angular spacing between projections, θ , is 45◦. The
neighboring beam spacing, d , is 1.8 cm, while the distance D
between each emitter and detector is 36.76 cm. The central
RoI is defined as a circular sensing area with a diameter
of 18 cm that encloses the highest density of beam crossings,
as shown in Fig. 3. The dimensions of each pixel in the RoI
are 0.45 cm × 0.45 cm, resulting in 1396 uniformly segmented
pixels.

Three phantoms of 2-D distributions of temperature and
H2O concentration are generated with one, two, and three
inhomogeneities, respectively. As shown in Fig. 4, each
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TABLE I

SIMULATION PARAMETERS OF THE THREE PHANTOMS IN FIG. 4

inhomogeneity is simulated by a 2-D Gaussian profile.
In a hydrocarbon flame, the H2O concentration is generally
well-correlated with the temperature. Therefore, the H2O
concentration distribution in each phantom is similar to the
temperature distribution. The distributions of temperature and
H2O concentration are mathematically expressed as

T (x, y) = 298.15 +
K�

k=1

800 exp

�
−

�
x − xk

c

�2 + �
y − yk

c

�2

σ 2

�

(17)

X (x, y) =
K�

k=1

0.1 exp

�
−

�
x − xk

c

�2 + �
y − yk

c

�2

σ 2

�
(18)

where x and y denote the horizontal and vertical coordinates
of the RoI, respectively. (xk

c , yk
c ) is the central position of

the kth Gaussian profile. σ is the standard deviation. Table I
details the parameters of the three phantoms. A high-resolution
RoI with 31 428 pixels, each with size 0.09 cm × 0.09 cm,
is used in the phantoms to calculate the path integrals Av . As a
result, the forward problem in (3) can be formulated with high
accuracy, thus facilitating the analysis of noise performance in
Section III-C.

B. Metrics for Image Quality Quantification

To examine the performance of the reconstruction algo-
rithms, the tomographic images can be evaluated quantitatively
using the following four metrics:

Image Error (IE): IE is defined as the relative error between
the reconstructed and the true images, indicating the overall
quality of the reconstructed image.

IE=
�T rec−T true�2

�T true�2
(19)

where T rec and T true represent the reconstructed and the true
temperature distributions, respectively.

Dislocation (DL): DL characterizes the relative error of the
centroid locations between the reconstructed inhomogeneity
(xr , yr ) and that of true inhomogeneity (xc, yc). The centroid of
the Gaussian-shaped inhomogeneity in the phantoms coincides
with its center.

DL =
�

(xr − xc)2 + (yr − yc)2

rRoI
(20)

where rRoI is the radius of the RoI. For phantoms with multiple
inhomogeneities, the mean value of DL is given below.

Centroid Value Error (CVE): CVE calculates the rela-
tive difference of temperature values at the centroids of the

Fig. 5. Dependence of IE on λ in the SART.

reconstructed inhomogeneity Trec(xr , yr ) and that of the true
inhomogeneity Ttrue(xc, yc).

CVE = |Trec(xr , yr ) − Ttrue(xc, yc)|
|Ttrue(xc, yc)| . (21)

For phantoms with multiple inhomogeneities, the mean value
of CVE is given below.

Overshoot (OS): OS is defined as the ratio of the number
of pixels assessed as outliers, NOT, to the total number of
pixels, N .

OS = NOT

N
. (22)

In a window containing 3 × 3 pixels, the mean temperature,
T̄w, and the standard deviation, σw , is calculated. The outliers
are defined as the pixels within the window with temperature
values deviating from T̄w by more than 3 × σw . NOT for a
whole image is obtained from accumulating the number of
outliers when the window moves across the RoI. Therefore,
the extent of spike noise in the tomographic image can be
characterized by OS.

C. Determination of the Regularization Parameters

As noted in Section II, the regularization parameters play
an important role in both SART and the proposed RETRO.
One regularization parameter, λ, is involved in SART, while
two, γ and μ, are used in RETRO. In this section, these
regularization parameters are optimally determined using the
phantoms in Fig. 4. For other applications with very different
phantoms, the regularization parameters can be determined by
following the method detailed below.

In the simulation, the SNR of the LOS-TDLAS mea-
surements was set to 40 dB, which is similar to the noise
performance in the experiment. IE, the metric defined above
to evaluate overall image quality, was calculated for all three
phantoms when the regularization parameters were varied
over wide ranges. For each given value of the regularization
parameter, IE was averaged for 20 repeated simulations. The
optimal regularization parameters were selected as those where
the minimum value of the averaged IE was obtained, i.e., when
the best image quality was achieved.

For SART, the averaged IE was calculated when λ varies
from 1 to 10−9 with 40 steps of logarithmic decrement.
As shown in Fig. 5, the dependence of IE on λ follows the
same trend for each of the three phantoms. IE decreases as λ
decreases from 0.2. When λ equals 0.1, the minimal values
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Fig. 6. Dependence of IE on γ and μ for (a) phantom 1, (b) phantom 2, and
(c) phantom 3 using the proposed RETRO algorithm. The optimal γ and μ
are 0.01 and 10−5, respectively.

of IE are 0.13, 0.19, and 0.28 for phantoms 1, 2, and 3,
respectively. IE gradually increases as λ further decreases
from 0.1. Therefore, the optimal λ is selected as 0.1 in SART.

For RETRO, the two regularization parameters γ and μ
were jointly evaluated to achieve the optimal image qual-
ity. For each phantom, the averaged IE was calculated for
100 different combinations of γ and μ when each parameter
varies from 10−1 to 10−9. As shown in Fig. 6, relatively small
values of IE can be obtained for all three phantoms within
the parameter set {(μ, γ ): μ ≤ 10−2γ , 10−5 ≤ γ ≤ 10−1,
10−6 ≤ μ ≤ 10−2}. The optimal γ and μ are 0.01 and 10−5,
respectively, giving the values of IE 0.10, 0.12, and 0.14 for
the three phantoms. This optimal combination of γ and μ in
RETRO is highlighted in Fig. 6.

D. Results and Discussion

With the regularization parameters determined above, both
SART and RETRO were used to reconstruct simulated data

Fig. 7. Reconstructed temperature images using SART and the proposed
RETRO algorithms with TDLAS tomographic data at the SNR of 40 dB for
(a) and (b) phantom 1, (c) and (d) phantom 2, and (e) and (f) phantom 3,
respectively.

TABLE II

QUANTITATIVE EVALUATION OF THE SART AND THE PROPOSED RETRO
USING THE FOUR METRICS, INCLUDING THE IMAGE ERROR (IE),

DISLOCATION (DL), CENTROID VALUE ERROR (CVE),
AND OVERSHOOT (OS)

from the three temperature images shown in Fig. 4. The simu-
lation was first implemented with TDLAS tomographic data at
the SNR of 40 dB. This work focuses on substantial improve-
ment on temperature imaging in TDLAS tomography. The
improved quality of temperature images will also contribute to
a better accuracy of the gas concentration distributions that can
be subsequently solved by linear tomographic algorithms [15].

Fig. 7 shows the three reconstructed temperature images.
The proposed RETRO algorithm outperforms SART for all
three phantoms. Although both algorithms are capable of
locating and displaying the inhomogeneities, fewer artifacts
are observed in the images reconstructed using RETRO.

To achieve quantitative validation of the proposed new
algorithm, the four metrics described in Section II-B were
calculated, with results presented in Table II. In terms
of overall image quality, the proposed RETRO algorithm
improves 4%–15% on IE compared with SART. In addi-
tion, RETRO is much superior in localizing inhomogeneities
in the reconstructed temperature images since DL values
obtained using RETRO, less than 1.2% for all three phantoms,
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Fig. 8. Dependence of the four proposed metrics. (a) IE, (b) DL, (c) CVE,
and (d) OS, on different SNRs for both SART and RETRO.

are approximately half of the values obtained using SART.
A slightly better performance on CVE can be seen using
RETRO, although both algorithms estimate temperature values
at the centroids with all CVEs larger than 5%, arguably a poor
level of accuracy. This is possibly caused by the regularization
terms imposed on both algorithms, leading to robustness in
image reconstruction at the cost of accuracy and bias errors
in the retrieved temperature values. Finally, RETRO is much
better at suppressing spike noise with smaller OS than those
obtained using SART. In particular, OS for phantom 3 is 1.06%
using the RETRO, which is approximately four times less than
that using SART.

The performances of the two algorithms were evaluated
further using simulated TDLAS measurements contaminated
with different noise levels. The dependence of all the four
metrics at different SNRs is shown in Fig. 8. For a given SNR,
the value of each metric is averaged for the three phantoms.
For the metrics of IE, DL, and OS, the results obtained
using RETRO are persistently better than those using SART.
For CVE, RETRO introduces more significant improvement
in relatively low-SNR scenarios, which commonly exist in
industrial field applications.

IV. EXPERIMENTAL VALIDATION

In this section, lab-scale experiments were carried out to
further validate the proposed RETRO algorithm. The TDLAS
tomographic sensor was built with the same optical layout
as depicted in Fig. 3. The lasers at the transitions v1 =
7185.6 cm−1 and v2 = 7444.36 cm−1 were provided by
two distributed feedback laser diodes NLK1E5GAAA and
NLK1B5EAAA (NTT Electronics), respectively. Current mod-
ulation with a scan frequency fs = 200 Hz and a modulation
frequency fm = 40 kHz was imposed on both laser diodes.
With the time division multiplexing scheme between the two
lasers, a temporal resolution of 10 ms can be achieved in
the proof-of-concept experiment. The two laser diodes with
pigtailed fibers were combined and split by a 2 × 32 fiber

Fig. 9. Three temperature distributions generated in the experiment.

Fig. 10. Temperature images reconstructed using both SART and the
proposed RETRO for (a) and (b) case 1, (c) and (d) case 2, and (e) and
(f) case 3, respectively.

coupler to deliver the 32 laser beams in the tomographic
sensor. Each collimated laser beam was detected by an InGaAs
photodiode (G12182-010K, Hamamatsu) and then digitized by
a data acquisition platform (RedPitaya) at 3.9 Mega Sam-
ples/second. Digital lock-in filters were used to extract the
wavelength modulation spectroscopy (WMS) first and second
harmonic signals, i.e., 1 f and 2 f , from the transmitted sig-
nals. Finally, the calibration-free 1 f normalized 2 f signal,
i.e., WMS-2 f /1 f [33], [34], was fitted to calculate each of
the 32 path integrals, i.e., the measured data, for each spectral
transition.

In the experiment, three temperature distributions were gen-
erated to validate the proposed RETRO algorithm. As shown
in Fig. 9, there is a single flame located at the center of the RoI
in case 1. In case 2, the same flame is relocated at the lower
center of the RoI. A more complex temperature profile with
two flames in the RoI is used in case 3. Estimates of all three
real temperature images were reconstructed from the same
frame of measurement data using both RETRO and SART.

As shown in Fig. 10, the three temperature images recon-
structed using RETRO have fewer artifacts and less spike noise
than those using SART. For case 1, the location of the flame
reconstructed using RETRO agrees well with the original
one shown in Fig. 9(a), while that obtained from SART is
distorted to the right of the center. The peak temperature
values of the inhomogeneity retrieved by RETRO and SART
in case 1 are 713 and 816 K, respectively. For case 2,
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the relocated flame can be clearly localized using RETRO,
the peak value of the retrieved temperature now being 683 K,
similar to that in case 1. However, the temperature image
in case 2 reconstructed by SART suffers from significant
artifacts at the upper center of the RoI, showing an unreal
high-temperature inhomogeneity with maximum temperature
value of 1159 K. In addition, the peak temperature value of
the real inhomogeneity reconstructed using SART is 574 K,
an offset of 242 K compared with that in case 1. For case 3,
RETRO can reliably resolve the two flames with their locations
being consistent with those in the real temperature distribution.
However, the boundaries of the flames retrieved by SART are
severely blurred with much lower temperature values.

V. CONCLUSION

In this article, we developed a radically new reconstruction
algorithm for high-fidelity temperature imaging in TDLAS
tomography, called the RETRO algorithm. RETRO enables
temperature retrieval from the jointly reconstructed two-line
absorbance distributions, thus significantly suppressing the
spike noise caused by the ill-posed nature of TDLAS tomogra-
phy. RETRO was analytically demonstrated to be successful in
retaining useful details of the reconstructed temperature image
while maintaining good robustness against noise.

The performance of the proposed RETRO algorithm was
compared with the SART algorithm, by simulation and by
experiment, using two H2O transitions and a fixed beam
arrangement. The regularization parameters for both algo-
rithms were optimized using noise-contaminated data with
the SNR of 40 dB. Four metrics were proposed to evaluate
quantitatively the performances of both algorithms. For a wide
range of measurement SNR, simulation results indicate that
RETRO can reconstruct the temperature images for the three
phantoms used with better quality in comparison with SART.
In the experiment, both algorithms were used to reconstruct
three different temperature distributions. Compared with those
obtained using SART, the tomographic temperature images
using RETRO achieved much better agreement with the known
locations of the original flames and have stronger resistance
to spike noise.

In summary, both simulation and experiment indicate that
the proposed new RETRO algorithm for two-line temper-
ature tomography is spatially accurate and robust to noisy
measurements and is superior to well-established algorithms
for TDLAS tomography. These attributes are invaluable for
implementations in harsh environments. In our future work,
the RETRO algorithm will be enhanced to incorporate the
redundancy of temporal information to investigate the dynamic
evolution of the flame.
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