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Abstract— This article introduces a general-purpose frame-
work aimed at capturing the elusive concept of quality of mea-
surement information (MI), a critical issue for both researchers
and practitioners when dealing with MI-enabled decision-
making. The framework is a blueprint for the definition,
assessment, communication, and improvement of MI quality,
as analyzed through a set of general criteria, classified according
to the syntactic, semantic, and pragmatic layers of semiotics,
as suggested in the ISO 8000-8:2015 technical standard. The
top-down analysis, where each criterion is specified in terms of
characteristics and each characteristic in terms of domain-related
indicators, is complemented with a bottom-up synthesis and
operationalized by means of a flowchart. An application example,
about the quality of information provided by the networks
of measurement instruments reporting pollutants in the air,
is presented to test the usefulness and the limitations of the
framework.

Index Terms— Decision-making, measurement, measurement
information (MI), quality management, semiotic criteria,
semiotics.

NOMENCLATURE

IEDM Information-enabled decision-making.
MI Measurement information.
QoI Quality of information.
QoMI Quality of measurement information.

I. INTRODUCTION

IN TODAY’S information society, data rule transformative
technologies, and with them the social and economic

progress, thus assuming a role analogous to the one that oil
had in the industrial society: a valuable resource, and a key
enabler for almost everything, from governments, to compa-
nies, to everyday activities. Without data, development would
be hampered, and economies would shrink.

In the last years, increasing amounts of data from both the
empirical world and the internet have been indeed acquired,
transmitted, and stored, often at very low (and sometimes zero
marginal) cost, by means of digital systems. This is epitomized
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by the concept of big data, which has been spreading among
the experts and the general public despite its vagueness; it
broadly refers to any sufficiently large data set, or collection of
data sets, usually heterogeneous (e.g., text, audio, images, and
video) and sometimes so poorly structured that it is difficult
to effectively deal with them with the traditional methods and
tools of computer science and statistics.

However, like oil that needs to be transformed into valu-
able goods (such as gasoline and plastic), data need to be
transformed into useful information for effectively support-
ing decision-making processes, toward what may be called
Information-enabled Decision-Making (IEDM) [1]. As a sci-
entific field, IEDM has no sharp boundaries and the related
literature is huge, as most (in particular supervised) data
mining and machine learning techniques may be interpreted
as tools for prediction and decision-making based on data [2].

Conservatively, big data are supposed to reduce the proba-
bility of wrong decisions [3], but the bold hypothesis has also
been proposed that “the data deluge [will make] the scientific
method obsolete,” thus marking “the end of theory” because
“with enough data, the numbers speak for themselves” [4].
We stand here on the more conservative side and consider
data as necessary but generally not sufficient for effective
decision making. For this reason, we refer to situations in
which the process of making decisions is enabled, but not
driven, by information: what instead should drive the process is
the knowledge of the object of the decision and of the purpose
of the decision itself. The procedural definition of the entire
process would then require the formalization of such a broad
context, which is not the purpose of this article.

Rather, our focus here is on Quality of Information (QoI).
Independently of available amount of data and whichever the
goals, the so-called garbage-in garbage-out principle applies,
i.e., poor information quality may lead to wrong decisions,
with potentially severe undesirable consequences: QoI is then
a crucial factor for assuring effective IEDM processes [5]–[9].

Unfortunately, the massive proliferation of data sources
and the exponential growth in data volumes that characterize
big data can make QoI hard to assess and even harder to
assure. This is worsened by the emergence of highly distrib-
uted, heterogeneous data, and multiadministrative application
deployment paradigms for sensor-and-actuator networks, such
as the Internet of Things (IoT) [10], [11]. In addition, these
paradigms include fast-paced machine-to-machine applications
that challenge timescales and make the role of QoI even more
critical than in traditional human-controlled IEDM processes.
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The capability to properly manage QoI is then imperative, and
this explains the vast literature on this topic in the relevant
fields and the significant amount of resources dedicated to
quality issues in big data systems [12]–[14].

However, to the best of the authors’ knowledge, papers
dealing with the quality of the information produced by and
associated with measurement—called here Quality of Mea-
surement Information (QoMI)—are virtually lacking despite
the growing relevance of the topic due to the widespread
diffusion of data-generating devices, in industrial automa-
tion, health care systems, environmental protection, ambient
intelligence and surveillance, domotics, and so on. This may
be because research in instrumentation and measurement is
focused on high-tech laboratory measurement where many
conditions affecting QoMI are well known and can be con-
trolled. The consequence is the usual position that measure-
ment uncertainty effectively summarizes everything that is
relevant to QoMI.

Conversely, the devices that, outside the labs, produce
data from the empirical world are often designed and oper-
ated focusing on their functional performance, while their
metrological characterization (and consequently the quality of
returned information) is of minor relevance [1].

Unlike the instrumentation and measurement field, computer
science and engineering have developed a huge amount of
literature about the quality of (generic) information that is
available, but the problem is not analyzed from a metrological
perspective. This is a serious gap, and this article aims at
contributing to fill it. In particular, we will argue that several
other factors, together with measurement uncertainty, need
to be considered to ensure that the information provided by
measurement “fits for purpose”: in such a broader context,
whether a measurement is “good” or “bad” depends on its
ability to produce information that effectively supports IEDM
processes [1], and measurement uncertainty is only a compo-
nent, though usually a critical one, of such an ability.

This article introduces a conceptual and operational
framework aimed at identifying several components of the
IEDM-oriented QoMI. The framework accompanies its user
in this endeavor through a top-down analysis, in which the
complexity of a decision-making problem is acknowledged
as affected by the compresence of multiple criteria, where
each criterion is specified in terms of characteristics, which
are then operationalized by means of domain-related indi-
cators, whose ranges of acceptable values are derived from
context-dependent requirements. This analysis offers a struc-
tured understanding of QoMI and allows the user of the
framework to assess whether the quality of the available infor-
mation is sufficient for supporting IEDM. The complementary
bottom-up process of synthesis, which leads to an actual
decision, is so dependent on contextual and pragmatic factors
(including the level of specification of the target) that hardly
can be supported by a general-purpose tool, and in any case,
this is not the purpose of the framework we present here. The
several stages of top-down analysis and bottom-up synthesis
are also presented by means of a flowchart.

In summary, measurement is expected to produce not only
values of the measurand but also information about the trust-

worthiness with which such values are attributed to the mea-
surand. This contributes to the QoMI, so as to make it possible
to distinguish “good” (i.e., able to produce information that is
useful for the intended purpose) from “bad” measurements.
Hence (i) the possibility to evaluate such quality is critically
important for appropriate design and performance evaluation
of a measurement; (ii) ideally, QoMI should be then measured
in turn, a challenging task given its complexity and the diver-
sity of the contexts in which it is applied; and therefore (iii) a
framework that supports the collection and the organization of
QoMI may be useful to this endeavor.

This article is organized as follows. Section II characterizes
the complex concept of information in the context of semiotics,
which in Section III is applied to the case of measurement.
Section IV describes the concept of QoMI. Section V intro-
duces a general-purpose QoMI-oriented framework by describ-
ing its structure and identifying some of its characterizing
criteria. Section VI illustrates the use of the framework by
means of an application example. Section VII discusses how
this work relates to the literature in the topic, and Section VIII
highlights the main limitations of the framework and suggests
possible research directions. Some final remarks are drawn in
Section IX.

II. SYNTACTIC, SEMANTIC, AND

PRAGMATIC INFORMATION

What is information is a complex issue: “there is a network
of related concepts of information, with roots in various
disciplines such as physics, mathematics, logic, biology, econ-
omy, and epistemology” [15]. In particular, in the context
of big data, information and data are sometimes intermin-
gled, whereas some authors consider them to be distinct
entities [12], [16]. We frame our understanding of QoMI in a
semiotic perspective, which provides a hierarchical structure
for the definition of information, and split into three layers
traditionally called “syntactic,” “semantic,” and “pragmatic,”
related, respectively, to the form, the meaning, and the useful-
ness of the signs that vehicle information [17].

The first layer only requires that a set of elements is given,
possibly together with some conditions of comparison and
rules of combination among the elements. The selection of
an element from the set provides the most fundamental kind
of information; we are informed that that element has been
selected, instead of any other of the set. Despite its simplicity,
this standpoint proved to be very effective in grounding the
first full-fledged mathematical theory of transmission [18]
and from then on in providing a criterion for measuring
the quantity of information in bits (if the set contains two
equiprobable elements, the selection of one of them conveys
1 bit of information and so on). As considered in this layer,
information is syntactic, being referred to “the formal relations
of signs to one another,” in the words of Morris [17]. This
has to do with a common use of the term “data,” and
accordingly, we will use “data” and “syntactic information” as
synonyms here. Data as such are purely formal entities, whose
treatment—storage, retrieval, transfer, and also processing,
whenever the rules of combinations are explicitly specified—
does not depend on the meaning(s) that someone might
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associate with them (what data are is an elusive question, with
different positions; for example, ISO 9000:2015 defines it as
“facts about an object” [19], thus making the related concept
not purely syntactic).

However, we usually acquire and manage data with a
purpose, not to perform a purely syntactic activity (like instead,
it occurs in a game-like chess, in which player proficiency
has nothing to do with interpreting K as a king, Q as a
queen, and so on). Despite the wealth of results obtained at
the syntactic layer—to which the two fundamental Shannon’s
theorems about source entropy and channel capacity paved
the way [18]—human interest is usually for data as carriers
of meanings. Meaning is attributed to data by referring each
element of the set to something else outside the set itself,
which represents the context in which data are produced.
Associating data with metadata is the simplest formal tech-
nique to embed them in a semantic context. This merges
data into a second layer, in which the emphasis is on “the
relations of signs to the objects to which the signs are applica-
ble” [17]. Data equipped with meanings become semantic
information.

The third layer builds upon this and adds the context in
which data-with-meaning are used by some agents for some
purposes, where such fitness for purpose is sometimes called
the “value” of data. Indeed, the same syntactic entity, e.g.,
the string “no,” once equipped with a meaning, e.g., negation
in English, and thus made a semantic entity, may have very
different values (compare receiving a “no” to the questions
“have you already read my draft?” or “is all quiet on the
western front?”: quite a critical difference for most persons,
though syntax and semantics are exactly the same). Such an
encompassing perspective is then about “the relations of signs
to the interpreters” [17], and it refers to pragmatic information,
which relates to the user’s interpretation of signs and depends
on the user’s a priori knowledge.

It could be noted that while the quantity of syntactic infor-
mation is comprehensively dealt with in Shannon’s framework,
only hypotheses have been advanced about the quantification
of semantic information [20]–[23], and we are not aware
of any general solution proposed for the quantification of
pragmatic information and, therefore, for attributing a (formal)
value to the (pragmatic) value of information.

For the goals of the present work, it is particularly interest-
ing that each of these three layers has its own quality criteria.

• The quality of syntactic information is about the consis-
tency with the formal rules characterizing the set from
which data are selected.

• The quality of semantic information is about the cor-
rectness of the meanings associated with data, and thus,
whenever this applies, to their truth, intended as the
correspondence between the semantized data and the
actual state of the world [24].

• The quality of pragmatic information is about the rel-
evance and the usefulness in the use context of the
semantized data.

This layered structure offers a significant insight also about
the conditions for the social role of information, where at each
layer the information producer and the information user have

to agree on the prerequisites needed for effective information
sharing:

• at the syntactic layer, a common set of elements, or a rule
for mapping distinct sets to one another, and a common
set of formal rules of data treatment;

• at the semantic layer, a common set of meanings or
a rule for recognizing the compatibility of meanings
expressed in different ways, as in a linguistic context that
is provided by a common vocabulary, i.e., a set of terms
and definitions, possibly together with a multilingual
dictionary;

• at the pragmatic layer, a common set of criteria for
agreeing upon the value of the semantized data for the
decision to be made.

In each layer, there could be a divergence—a gap—between
the information delivered by the producer and that received
by the user: if this occurs, the effectiveness of the exchange
of information between the producer and the user may be
compromised.

Fig. 1 summarizes these key aspects of the semiotic under-
standing of information.

III. MEASUREMENT INFORMATION

Measurement is a process aimed at producing information
and, as such, can be interpreted in a semiotic perspective both
at a fundamental level [25]–[29] and in specific application
fields [30], [31], and this in turn provides us with a structured
context for discussing about QoMI. As a preliminary assump-
tion, let us consider that the empirical world consists of objects
(physical bodies, phenomena, events, processes, individuals,
organizations, and so on) that have properties (we are usually
adopting here the terminology of the International Vocabulary
of Metrology [32]). Relevant to measurement is information
about properties, and more specifically quantities, of objects:
measurement results are in fact information elements in the
form of values, attributed to the quantity intended to be
measured, i.e., the measurand, or characterizing other relevant
properties, of the object under measurement, the measuring
system, and the environment in which they are embedded. The
three layers of semiotics provide an effective interpretation
of MI as follows, in reference to the simple example of the
measurement of the temperature of a liquid in a container by
means of an alcohol thermometer (for an extended presentation
of this measurement model, see [33]).

• Syntactic Layer: As the result of its thermal contact
with the liquid, the alcohol expands in the tube of the
thermometer and its upper surface reaches a position
that corresponds to a mark on the scale etched on the
instrument; if at first nothing is assumed on what caused
the transduction, the instrument indication, i.e., the value
of position associated with the mark, is purely syntactic
information, being only about the fact that among the
possible indications one is selected as the result of the
transduction. Instrument indications as such are then
measurement data, which may be treated (i.e., stored,
transmitted, compared, and so on) still with no reference
to the temperature that produced them. While stopping
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Fig. 1. Summary of the semiotic layers of information.

at this stage may appear an artificial condition in the
considered example, such a situation might not be so
unusual in the context of big data if data sets are stored
and made available without accompanying metadata. The
basic information elements in the syntactic layer are then
the instrument indications.

• Semantic Layer: The semantization of measurement data
is about interpreting them as conveying information on
the measurand. It requires the adoption of a model of
the transduction and the physical context of measurement
(and therefore the metrological characterization of the
behavior of the instrument, including the identification
of the relevant quantities other than the measurand that
influence the instrument behavior) and the adoption of
a model of the measurand (leading to establish the
uncertainty related to the very definition of the measur-
and, the so-called “definitional uncertainty” [32]), and
then the functional connection of the instrument with
a primary standard that realizes the definition of the
relevant unit (i.e., of the temperature in the consid-
ered example) and enables the instrument calibration via
a metrological traceability chain. This transforms the
instrument indication into a measurement result, then
equipping measurement data with a semantic component,
due to the fact that instrument indications are referred
to the measurand via the instrument calibration, which
provides a context to the transduction performed by
the instrument. The basic information elements in the
semantic layer are then the values attributed to the
measurand, together with the values of all other prop-
erties involved in the process: the influence quantities,
the quantities affecting the measurand itself, and the
quantities embodied in the measurement standards, all of
them explicitly or implicitly accompanied by the values of
their uncertainty, as reported in the so-called “uncertainty
budget” [32].

• Pragmatic Layer: The measurement result contains,
in some form, information of both location and disper-
sion of the measurand, for example, as a pair (mea-
sured value and standard measurement uncertainty).
The core information about the purpose of measure-
ment is encoded in target uncertainty, “specified as an
upper limit and decided on the basis of the intended
use of measurement results” [32]. If the measurement

uncertainty is less than the target uncertainty, the mea-
surement result is considered to be useful to support
decision-making, and this embeds measurement in the
pragmatic layer. While the basic information element
in the pragmatic layer is then the value of the target
uncertainty, all criteria relevant to the IEDM process (see
Table I) concur to form the information elements of this
layer.

In summary, transduction as such can be modeled as a syntac-
tic process: in the example proposed above, what we read on
the thermometer scale still without reference to the measured
temperature is syntactic information. Measurement is a seman-
tic process, aimed at evaluating the relationship between the
measurand and the measurement scale, and the measurement
results are then semantic information. Finally, measurement
IEDM is a pragmatic process, in which measurement results
are key (though not exclusive) enablers for decision making.
Fig. 2 extends Fig. 1 and adapts it to the case of measurement.

This semiotic understanding of measurement could be
further developed, in particular for considering that some
information on the measurand is available before measurement
(possibly quantified as a definitional uncertainty), so that the
value of measurement might be characterized in reference to
the differential (prior versus posterior) pragmatic information
that it conveys, and that measurement uncertainty is inversely
related to the semantic information conveyed by a measure-
ment result, so that the greater the uncertainty the less the
conveyed information. However, even this simple introduction
is sufficient to show that the fundamentals of semiotics may
be extended beyond human communication and can provide
an effective conceptual framework for identifying, describing,
and analyzing the relevant aspects of QoMI.

IV. QUALITY OF MEASUREMENT INFORMATION

The concept of quality of an entity (a process, a product,
a service, and so on) is complex and has been defined in
different ways in the literature. Only referring to a signif-
icant sample of relevant technical standards, the definition
proposed in the ISO 9000 series—“degree to which a set
of inherent characteristics of an object fulfills requirements”
[19]—effectively gets the point: quality has to do with ful-
filling requirements. A bit less generic is the definition of
(the more specific concept) “data quality” in the ISO/IEC
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Fig. 2. Summary of the semiotic layers of information in the case of measurement.

25000 series of standards on Software product Quality
Requirements and Evaluation (SQuaRE): “degree to which the
characteristics of data satisfy stated and implied needs when
used under specified conditions” [34]. In the perspective of
interpreting and adapting these definitions to QoMI, two key
aspects of the concept may be elaborated for making these
definitions more explicit: the kind of requirements/needs and
the role of information producers and users.

The first point is clear: quality has to do with requirements,
and without requirements, there cannot be quality (nor non-
quality in fact). It is in reference to requirements that a primary
classification is introduced between “internal” and “external”
quality: though not uniquely interpreted, this distinction is
usually about a more specific and a more encompassing
understanding, where internal quality is typically related to
conformity to specifications and external quality is about
fitness for use. The latter implies that the intended users of
the entity whose quality is under evaluation are identified and
their needs specified.

Regarding the roles of producers and users, when the
measurement is of concern multiple roles are involved, in par-
ticular, the designers of the measurement process, who choose
the method, the procedure, and the measuring system in con-
sequence (for a definition of these concepts, see [32]), those
who perform the measurement, including both its empirical
and informational components, the regulators or third-party
auditors who have the task of validating the process, the deci-
sion makers who, under the condition that measurement results
are pragmatically appropriate, use them as key supporting
elements of their conclusions, and finally the end users of the
measurement result, who in some cases are the society at large
(as occurs, for example, with measurements for environmental
protection). Each of these categories of producers/users has
its own, stated or implied, needs: the key objective of QoMI
evaluation and management is then to meet, and possibly to
anticipate, such diverse needs and expectations [7], [16], [35].

A precondition for an appropriate of QoMI evaluation and
management is that common syntactic and semantic informa-
tion is shared among its relevant producers/users, with the
fundamental aim of ensuring its intersubjectivity [36], [37].
Specifically, “measurement cannot be adequately characterized
solely using a black-box model: if a given attribution of
value(s) to a property is claimed to be a measurement result

(instead of, e.g., a guess), it must be possible to explain how
it was obtained, by “opening the box” and identifying the fea-
tures of the process that secure the quality of the results.” [38].
However, it is worth observing that MI producers do not need
to provide perfect quality, but they are required to be explicit
about the level of quality they provide, with the awareness that
it should be chosen in dependence on user’s needs.

As for the concept ‘fitness for use,’ while it captures the
essence of what quality is, it hardly allows us to evaluate
quality, given its too broad and ambiguous definition and the
multitude of aspects that it normally includes. Thus, to enable
QoMI evaluation and management, the multidimensionality of
fitness for use has to be analyzed from the perspectives of the
different producers/users, by identifying the properties of the
entity that are relevant to fulfill the identified requirements
and checking whether the values of such properties are in
the acceptance ranges derived from requirements. The basic
assumption is that properties perfectly satisfying requirements
are the most effective so that poor quality relates to excessive
deviations of the property values from those needed to fulfill
requirements. Unfortunately, in practice, some needs may
remain unidentified because they are not expressed or may
change with producers/users’ knowledge and experience. As a
consequence, we have to distinguish between the component
of quality related to identified needs, called here modeled
quality, and the component that reflects implied, unidentified
needs, called latent quality [14], [35]. Clearly, only the mod-
eled component can be effectively managed, and what follows
only covers the related explicit aspects of the MI fitness for
use.

Furthermore, in the perspective of QoMI evaluation and
management, it is important to distinguish two situations that
may occur in practice. They are about the relationship between
MI and IEDM, which can be [3] and [22] (cap. 15):

• Strongly Coupled: This situation occurs when the
measurement is specifically designed to fulfill the infor-
mation needs of a specific IEDM; in this case, the pur-
poses for which MI is produced (p-purpose) and used
(u-purpose) coincide.

• Loosely Coupled: This situation occurs when MI has been
produced to fulfill information needs that differ from
those of the user (i.e., p-purpose and u-purpose differ
from each other), and MI is repurposed ad hoc; this



1003816 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

Fig. 3. Hierarchical structure of the proposed framework for MI quality.

case is quite common since measurements often provide
information that can be repurposed.

When MI and IEDM are strongly coupled, the measurement
system designer is expected to know a priori (i.e., before the
design) the user’s information needs. In that context, the QoMI
is determined by the designer’s capability of linking the user’s
needs to MI characteristics, which in turn depends on the
adopted measurement system performance [36]. The situation
is very different when MI and IEDM are loosely coupled
and the user’s information needs are unknown at design time.
As an example, if a new general-purpose sensor network for
industrial machine monitoring is designed, information needs
for a specific application and the particular usage context may
not be known in advance. In these cases, the user acts as
a chooser and he/she achieves optimal “fitness for use” by
prioritizing and selecting the available information according
to specific, possibly subjective, criteria. Thus, in this situation,
quality is related not only to conformance to requirements but
also to a variety of available information (assuming that it is
not so large to challenge the user selection capabilities) and
the extent of its range of validity.

In practice, a combination of the two situations described
above often occurs, and quality assessments involve MI
properties variation (i.e., deviations from acceptable values),
as well as their variety and range of validity.

Given this complexity, one might well conclude that, despite
its critical importance, the quality of measurements remains an
imponderable property, whose evaluation unavoidably includes
informal and subjective components: in short, the QoMI is not
measurable. While surely acknowledging that the path that
leads to make QoMI a measurable property is long, we claim
that a framework, such as the one proposed in Section V, is a
useful tool to begin such a path.

V. QOMI FRAMEWORK

The framework we propose here can be useful to both
researchers and practitioners to identify and assess QoMI. It is
structured through a set of general-purpose quality criteria,
i.e., aspects along which judgments about the fitness for use
of MI can be carried out [22, Ch. 14], [29], [34]. As shown
in Fig. 3, criteria are classified according to the three layers
of semiotics: syntax, semantics, and pragmatics. Each criterion
enables the identification of one or more characteristics, which
are then operationalized and evaluated by means of one or
more domain-specific indicators (often called metrics in the
computer engineering field) whose range of acceptable values

is derived from user’s requirements and whose definition may
include the information elements. For example, considering a
possible “domain integrity” criterion, a characteristic can be
the presence of missing data and a related indicator can be the
percentage of missing data.

Observe that the proposed framework lists only
general-purpose criteria. It does not include the definitions of
characteristics and indicators shown in Fig. 3, as details on
these two other substructures are related to operationalization
procedures and are usually domain-specific.

The framework is also a QoMI metamodel that can sup-
port effective identification and communication of information
needs, quality-related defects, causes, and consequences of
defects, so enabling information quality improvement. Using
the framework, a QoMI tailored to a particular IEDM prob-
lem can be obtained by both omitting some criteria that do
not fit with the situation at stake or including new specific
criteria believed relevant. For generality, we assume that
the IEDM problem may require the measurement (or in
some cases more generally the evaluation [33]) of several
properties, and therefore the multiple measurement results
may be exploited to support the IEDM process, where the
framework supports the process of taking the information
acquired on such “intermediate” measurands into account and
combining it to produce a measurement result for the “final”
measurand.

The framework is finally operationalized as a procedure that
develops in a top-down analysis, leading to the identification
and the evaluation of a set of relevant domain-related indica-
tors, complemented with a bottom-up synthesis.

A. Framework Criteria Identification

The identification of the QoMI criteria was based on an
extensive review and analysis of papers about QoI, published
mainly in the fields of computer science and computer engi-
neering. It is worth noticing that no consensus emerges in the
literature on what constitutes a good set of QoI criteria or even
on the names assigned to criteria (e.g., different authors asso-
ciate different meanings to the same name) [29], [34], [35].
Thus, in order to identify a consistent framework, the various
criteria found in the literature were analyzed, reorganized, and
redefined according to the authors’ knowledge in the instru-
mentation and measurement field, according to the following
principles.

• Criteria should be general, i.e., applicable across different
application domains.
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• Criteria should be clearly defined; their names should be
unambiguous, easy to understand, and intuitive, i.e., cor-
responding as closely as possible to common usage.

• The set of criteria should be comprehensive, i.e., all
aspects of QoMI that can be relevant for a generic IEDM
activity should be included.

• Criteria overlapping should be minimized; in particular,
redundant criteria should be avoided.

The obtained general-purpose criteria were then clustered into
the three semiotic layers described in Sections II and III,
as also suggested in the ISO 8000-8:2015 standard [29].
Of course, the proposed framework should be considered only
as a possible basic, partial, and flexible structure that needs to
be tailored to a specific usage: criteria and characteristics not
included in the proposal may be relevant for a given IEDM
problem. Conversely, some criteria may be unnecessary for
specific user’s needs.

B. Framework Criteria Definition

The general-purpose QoMI criteria belonging to each semi-
otic layer are reported in Table I and shortly discussed in the
following.

1) Syntactic Quality: Syntactic quality is the degree of
integrity and usability of instrument indications for produc-
ing measurement results. Relevant general-purpose syntactic
criteria are as follows.

• Domain integrity, the degree to which MI is reported
with values belonging to the scales of instrument indi-
cations and with no missing values. While, in traditional
applications, MI and IEDM are strongly coupled and
instrument indications are immediately available and,
therefore, domain integrity is not usually a problem, in big
data contexts, data sets might origin from noisy situations,
in which data corruption is possible.

• Indication scale resolution, the degree to which MI allows
the detection of small changes in the instrument indi-
cations. For instruments with analog indication, scale
resolution is also related to the error of indication. Con-
versely, for instruments with digital reading indication,
scale resolution is basically determined by the number of
displayed digits.

Syntactic quality assessment is performed by comparing
MI characteristics with the corresponding requirements,
thus detecting corrupted data. It is a completely objective
process, usually performed by current data quality manage-
ment systems. Its effectiveness depends also on the qual-
ity of the adopted syntactic rules that may need to be
updated, for instance, using time- or event-based updating
policies.

2) Semantic Quality: Semantic quality is the degree of
trustworthiness of measurement results in providing an accu-
rate description of both the measurand and the measurement
context. Thus, it ensures the credibility customarily asso-
ciated with MI [1], [22], which may be (inversely) sum-
marized by measurement uncertainty, “parameter, associated
with the result of a measurement, which characterizes the
dispersion of the values that could reasonably be attributed

to the measurand” [39]. The overall measurement uncertainty
(called combined standard uncertainty by the GUM) can
be obtained as a suitable combination of the contributions
associated with relevant general-purpose semantic criteria as
follows.

• Object identification, the degree to which MI is univocally
referred to the objects under measurement and not to
other objects in the empirical context. The widely used
indicators associated with this criterion are the detection
probability (i.e., the probability of correctly detecting the
objects under measurement) and the false alarm proba-
bility (i.e., the probability of wrongly declaring an object
identification).

• Measurand identification, the degree to which MI is about
the measurands and therefore is independent of other
properties in the empirical context, called “influence prop-
erties,” which may affect the behavior of the measuring
instrument. An indicator of immunity of a measuring
instrument from influence properties is called in some
contexts, selectivity, which contributes to instrumental
uncertainty [32].

• Intersubjectivity, the degree to which MI has a meaning
that is unambiguously interpretable by all potentially
interested persons. Metrological systems, and in particular
the traceability chains that allow the calibration of mea-
suring instruments, have the fundamental purpose of guar-
anteeing the intersubjectivity of measurement results [37].
The level of intersubjectivity of a measuring instrument
assured by calibration is expressed by the so-called
calibration uncertainty. Observe that intersubjectivity is
strictly related to the user knowledge. In particular, this
criterion requires the user awareness about the meaning of
the kind of property and measurement unit [29] involved
in MI.

• Measurement scale resolution, the degree to which MI
allows the detection of small changes in the measurand.
This derives from some basic features of the measur-
ing instrument, including its sensitivity and its resolu-
tion [32]. A common indicator for this criterion is the
smallest change of the measured quantity that causes a
perceptible change in the measuring instrument indica-
tion.

• Context awareness, the degree to which MI provides
an effective description of the empirical context in
which measurement is performed. Such a description
usually consists in a model of the context as char-
acterized by the values of some identified influence
properties and the relationships describing the mutual
interactions between these properties [40]. This crite-
rion allows measurement and IEDM contexts align-
ment and it ensures measurement verification and
reproducibility.

• Domain consistency, the degree to which MI conforms
to property-related domain conditions. Some examples
are the coherence with the range of admissible val-
ues (e.g., only positive values are allowed for length
measurement), the coherence between measurement val-
ues of mutually related properties (e.g., simultaneous
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TABLE I

QOMI FRAMEWORK: SYNTACTIC, SEMANTIC, AND PRAGMATIC GENERAL-PURPOSE CRITERIA

measurement of voltage, current, and resistance of a
resistor), and the conformance to the ranges of admissible
values for the properties of the measurement context
(e.g., values for position coordinates, time, and influence
properties).

• Time consistency, the degree to which MI is coherent
between repeated measurements of the same property
or between measured values of mutually compatible
properties. Instrument stability affects instrumental uncer-
tainty, which is the basic indicator associated with this
criterion.

• Conciseness, which is the degree to which MI is free
of useless content that could challenge the user’s inter-
pretation (e.g., nonsignificant digits or a uselessly high
reporting rate).

Like syntactic quality, also semantic quality assessment can be
performed through objective processes. Moreover, it relies on
metainformation related to the employed measurement system
and its behavior (e.g., information about instrument calibration
and operating conditions). Anyway, semantic quality assess-
ment involves some degree of subjectivity in which modeling
of the object under measurement and the measurement context
depends on measurement purpose [36], [40].

3) Pragmatic Quality: Pragmatic quality is the degree
of usability of measurement results for supporting IEDM
processes and is generally affected by both user knowledge and
IEDM context. Examples of standards dealing with pragmatic
QoMI are [41] and [42], in which procedures considering the
effect of measurement uncertainty on the probability of wrong
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decision are given. The relevant general-purpose pragmatic
criteria are as follows.

• Specificity, the degree to which MI is sufficiently specific
to support IEDM because measurement uncertainty is less
than target uncertainty [32].

• Relevance, the degree to which MI is relevant to sup-
port effectively IEDM activity. Assessment of relevance
requires user’s knowledge about the significance of the
kind of property involved in the IEDM problem at stake.
Relevance may also exhibit location and time depending
aspects.

• Sufficiency, the degree to which MI is meaningful and
covers all aspects needed to support IEDM. Its assessment
requires the user’s knowledge about the different aspects
involved in the IEDM problem. Of course, when the
measurement result is about a measurand derived from
multiple “intermediate” measurands, sufficiency applies
only to the “final” measurand.

• Confidentiality, the degree to which MI is accessible only
by authorized users. In particular, information is fully
disclosed when anyone with standard knowledge levels
can access to it using wide available technology.

• Security, the degree to which MI is protected against
unauthorized access, use, corruption, damage, or modi-
fication.

• Timeliness, the degree to which MI is available to the
user within the time intervals required by IEDM. Indeed,
information available at the wrong time is of no value or it
may lead to wrong conclusions (e.g., suitable constraints
on measurement reporting rate need to be satisfied when
dealing with dynamic systems). Usual timeliness charac-
teristics are: latency, defined as the delay between the time
when the measurement is performed and the time when
information is available to the user; currency, which is
related to the time elapsed from the conclusion of mea-
surement execution; and volatility or obsolescence, which
expresses the duration of information meaningfulness.
Timeliness is also relevant to the concept of real time,
according to which MI must be always (hard real time)
or mostly (soft real time) available within predefined time
constraints.

• Accessibility, which is the degree to which MI is easily
and quickly retrievable by authorized users. Low acces-
sibility can reflect technology system incompatibility,
poor user knowledge, or poor information presentation
(e.g., proper visualization enables users to gain better
insights and understanding of information or to identify
relevant details). This criterion is also affected by the
cost for accessing MI, expressed as either monetary
and/or nonmonetary terms (e.g., energy consumption).
Observe that accessibility directly impacts on the level of
system adoption and user acceptance. Indeed, if access to
information is not easy, the user may ignore it.

• Immediate usability, defined as the degree to which MI
can be used directly to support IEDM activity, without a
need of organizing or processing it.

Unlike syntactic and semantic layers, pragmatic quality cannot
usually be objectively assessed. Indeed, user-subjective and

user-based judgments are normally required since pragmatic
quality is strictly related to the user’s information needs.
All syntactic, semantic, and pragmatic criteria of the QoMI
framework contribute to the overall, metacriterion of validity
of MI for a specific IEDM problem

C. Factors Related to Information Producers and
Information Users

It is well known that product quality strongly depends on
both production process and organization quality levels [43].
Thus, QoMI issues should consider not only measurement
results but also the features of both the measurement process
(i.e., the set of all activities performed from empirical property
sensing to measurement result delivering) and the organization
responsible for that process. The quality of the measure-
ment process depends on the adopted method and procedure,
the performance of employed instrumentation and, for not fully
automated processes, the qualification of operators. Regarding
the organization, qualification and reputation are relevant fac-
tors. Qualification derives not only from certification but also
from past satisfactory interactions with the user and generally
depends on the kind of measurement (e.g., qualification con-
cerned with temperature, pressure and humidity measurements
does not guarantee that the organization is qualified to measure
air-pollutant concentrations). Conversely, reputation refers to
a publicly held opinion about the organization’s competence
and trustfulness.

Regarding the impact of MI on decision confidence,
it depends not only on quality but also on how the MI is used.
When human decision-makers are involved, relevant factors
are as follow.

• Experience Level: If the user is familiar with the received
information, her experience facilitates the detection of
possible errors; conversely, she could rely too much
on experience, so paying less attention to unexpected
information.

• Time Constraints: Time pressure can promote the adop-
tion of simplifying heuristics, which can cause decision
flaws.

• Information Overload: In the presence of a large amount
of information, the user might process it superficially or
process only parts of it, especially if there are time con-
straints; a proper balance between available processing
time and information amount mitigates the risk of wrong
conclusions.

D. Application of the Framework

The proposed framework supports the operational definition
of QoMI for a specific IEDM activity, even if it does not
provide a complete set of QoMI-related criteria. To better
clarify this concept, once the properties considered relevant
for a given IEDM problem have been identified, consider that
assessment of QoMI requires performing the three following
subsequent steps.

• Quality Identification: In this step, criteria recognized
useful for a given IEDM problem are selected; then each
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selected criterion is specified by identifying one or more
appropriate characteristics and the related indicators (e.g.,
the criterion of object and measurand identification can
be evaluated by some components of measurement uncer-
tainty, which can be quantified as standard deviations);
also, the range of acceptable indicator values is derived

• Quality-Related Indicator Evaluation: During this step,
each identified indicator is evaluated, but no judgment is
expressed about the obtained values

• Quality Assessment: For each indicator, the obtained
value is compared with the corresponding range of
acceptable values; a judgment is then applied to establish
its level of quality and possible quality deficiencies, and
improvements are also identified

The proposed framework can be advantageously applied dur-
ing the design stage of an information gathering system as
well as for checking a posteriori possible design deficiencies.
In this respect, some criteria listed above can be unimportant
for a specific IEDM problem, while others, not included
in Table I, could be of crucial importance.

Moreover, not all criteria have necessarily the same impor-
tance. If, for example, IEDM is related to long-term planning,
then ensuring low measurement uncertainty is not a primary
issue, given that decisions will be strongly affected by uncer-
tain forecasts. Conversely, short-term planning decisions with
potentially severe consequences often require low measure-
ment uncertainty.

E. Information Updating

The whole pragmatic information about the measurands
used to support IEDM exhibits two components as follows.

• a priori information, which is related to the (explicit or
tacit) knowledge already owned by the user about the
context of MI and its relevance for the specific IEDM
at stake. This information is retrieved from the user
knowledge base by exploiting the syntactic and semantic
information, possibly through processing or performing
auxiliary measurements.

• a posteriori information, which represents the user under-
standing of the meaning of MI.

Representing the syntactic, semantic, and a priori information
about the measurands x as s(x), m(x), and p(x), respectively,
the a posteriori pragmatic information p∗(x) can be obtained
by mapping the triple (s(x), m(x), p(x)) into the pragmatic
space through an abstraction process based on the user knowl-
edge as shown in Fig. 4, that is

p∗(x) = k(s(x), m(x), p(x))

where k(·) is the so-called knowledge function [31]. By chang-
ing k(·) or a priori information p(x), the same syntactic
information s(x) can be interpreted in a different way. Also,
to ensure that data are univocally interpreted, the knowledge
function and a priori pragmatic information have to be prede-
termined, as required by the intersubjectivity criterion. Con-
versely, if the knowledge function and/or a priori information
are fuzzy, also data interpretation is fuzzy.

Finally, quality assessment can be carried out in different
ways and stages, depending on the coupling between MI and
IEDM. For example, in the case of intentionally designed
information sources, some criteria (e.g., domain integrity,
domain and time consistencies, specificity, and timelines)
would be assessed at acquisition time, whereas other criteria
could be assessed at design time. The prioritization of criteria
and the scheduling of their assessment are among the several
possible extensions of the presented version of the framework.

F. Operationalization of the Framework

The conceptual structure presented so far is operationalized
as a procedure including two main stages: a top-down analysis
and a bottom-up synthesis, as shown in the flowchart in Fig. 5,
which also highlights that the synthesis, being strongly depen-
dent on the domain of the QoMI process, cannot be further
detailed in a general-purpose framework. In fact, the evaluation
of QoMI is a knowledge intensive endeavor, not a routine task:
this procedure, including Table II containing the key evaluation
factors of criteria identified as meaningful and sketched in
the application example below, should be considered only as
a blueprint that supports the elicitation of expert knowledge.
In this perspective, the information formalized in the procedure
should be acknowledged as always revisable, through feedback
loops (which are not explicitly included in the flowchart in Fig.
5 for keeping it simple).

VI. APPLICATION EXAMPLE: THE AIR QUALITY INDEX

We sketch here an example of the application of the
framework, related to the measurement of pollutants in the
air. According to [44], 92% of the world’s population lives
in places where air quality levels exceed the World Health
Organization (WHO) limits. Since human health conditions
and the environment are affected by air quality, nations,
governments and decision makers are interested parties in the
overall discussion on how to improve it. Accordingly, several
IEDM processes are based on the evaluation of an air quality
index (AQI), as it is for example the case of a city manager in
charge of deciding whether traffic in an urban area should be
stopped, in response to a concentration of pollutants exceeding
a set threshold. To this purpose, several pollutants monitoring
stations (PMSs) are dislocated in the considered city area, thus
forming a measurement station network (MSN) that collects
and transfers MI to a data collector. Each PMS measures
various kinds of physical quantities, such as concentrations
of PM2.5, PM10, SO2, CO, and NO2. However, not all PMS
measure the same set of quantities and update MI with the
same frequency. The measured values are then processed and
aggregated to produce an AQI [44]. For instance, the value of
concentration of each pollutant is normalized in the range (0,
500), and then, the obtained values are aggregated by means
of a weighed mean or the min-max operators [44]; in the
latter case, the largest normalized value is taken as the AQI
value. Usually, values resulting larger than 100 correspond
to violations of regulations and suitable decisions should be
made by the city administrators [44]. Several applications of
the AQI other than traffic-related decisions can be envisioned,
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Fig. 4. Model of the different aspects of MI and a posteriori pragmatic information generation.

Fig. 5. Procedural presentation of the framework.

such as allocation of resources, ranking of locations, or public
information [44].

In such a complex scenario, MI returned by MSNs is
an important asset, and the validity of the results of IEDM
processes critically depends on the related quality. Hence,
the proposed framework can be usefully exploited as a tool to
elicit and validate technical choices about the QoMI; it enables
a disciplined analysis of many relevant issues involved in the
problem, possibly including weaknesses and strengths of the
measurement infrastructure. The framework is customized by
identifying the most relevant criteria in the context and for
each of them the corresponding characteristics and indicators.
Thus, its application can result in the production of checklists,

rules, and guidelines, as outcomes of reasoning aimed at plan-
ning or revising the process handling MI for decisionmaking
purposes.

For instantiating the procedure described in the flowchart
in Fig. 5 in reference to a specific application of the frame-
work, an approach based on key evaluation factors can be
adopted for each criterion identified as meaningful.

• What needs are satisfied?—provides the reason for the
relevance of the criterion.

• Characteristics and indicators—lists relevant characteris-
tics and indicators.

• How can the requirement be trustworthy evaluated?—
specifies available tools and knowledge production



1003816 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

TABLE II

KEY EVALUATION FACTORS OF CRITERIA IDENTIFIED AS MEANINGFUL FOR THE AQI EXAMPLE
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TABLE II

(Continued.) KEY EVALUATION FACTORS OF CRITERIA IDENTIFIED AS MEANINGFUL FOR THE AQI EXAMPLE

mechanisms to provide decision makers with sufficient
information to decide about the criterion satisfaction.

• What if the evaluation fails?—lists the actions to be taken
when the evaluation of the criterion is negative.

Filling on this table is itself an activity that enriches the
MI user awareness about the properties of the specific deci-
sion problem and a knowledge management tool allowing
knowledge elicitation and sharing among interested parties.
Finally, it may inform about possible missing or redundant
activities in the production and analysis of MI for the specific
application.

VII. DISCUSSION

As stated in Section I, papers specifically dealing with
QoMI are virtually lacking in the literature. Thus, discussion
about differences and novelties proposed in this article with
respect to the existing literature will be focused on papers
concerned with QoI in sensor networks or IoT in their parts
involved with measurement. To that aim, the different perspec-
tives listed in the following are considered.

• Quality Dimensions, Criteria, and Characteristics: Most
papers published in the literature call “dimensions” the
different aspects along which judgments about the “fit-
ness for use” of information are carried out. Conversely,
the proposed framework shows that it is often advan-
tageous adopting a more structured approach by distin-
guishing three levels of entities, criteria, characteristics,
and indicators, in turn classified in the semiotic layers.

• Categorization: In the literature, a plethora of QoI
dimensions have been proposed, which are organized
in reasonable, but ad hoc defined, broad categories.
For example, some papers categorize QoI dimensions
in three main classes, called “intrinsic,” “external,” and
“context” [22], 43], [48], while others consider addi-

tional classes (e.g., accessibility, representational, and so
on) [10], [49]. Conversely, we think that the adoption of
a semiotic approach provides a well-defined, powerful,
and general-purpose categorization. The validity of that
approach is also recognized by the ISO 8000 family of
standards [9], [29], which proposes a categorization based
on semiotic layers, but dealing with the general topic of
QoI without considering the peculiar characteristics of
QoMI.

• Relationship Between Semiotic Layers of MI: To the
best of the authors’ knowledge, only very few papers
tackle the relationship between the three information
semiotic layers [23]. Considering the relevance of the
topic, in this article, a model that links a posteriori
pragmatic information with the syntactic, semantic, and
a priori pragmatic information has been proposed in
Section V-E (see Fig. 4).

• Relationship With the Real World: Information charac-
teristics related to the empirical world are usually of
highest interest when QoI in sensor networks or IoT
is of concern. In particular, trustworthiness is probably
the most investigated QoI characteristic, even if it is
generically named accuracy in the literature [43], [48].
Indeed, information returned by sensors and IoT devices
is often noisy, biased, and incomplete due to sensor
and transmission inaccuracies, possible power failures,
or wrong operating conditions. Some work refers also to
the concept of consistency, but it has an author-dependent
meaning [3], [50]. The need for information about
measurement context is discussed only in a few
documents [3], [39], [48].

The proposed framework emphasizes the relationship between
MI and the empirical world by assigning to it one of the
three semiotic layers: semantics. Moreover, whenever possible,
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the related characteristics are not defined ad hoc, but they refer
to official documents (such as [34]) and the literature in the
field of instrumentation and measurement [1], [40], [51].

• Objective and Subjective Aspects of Quality: While many
QoI frameworks proposed in the literature are con-
cerned with both subjective and objective quality dimen-
sions [43], frameworks dealing with sensor networks and
IoT are focused on objectivity [3], [10], [13], [48], 49].
The same occurs in the proposed framework. However,
this article highlights that only syntactic quality assess-
ment is a completely objective process, whereas semantic
quality assessment involves some degree of subjectivity
in which modeling of both the considered object and the
measurement context depends on measurement purpose.
Conversely, pragmatic quality assessment exhibits strong
subjective components.

• Information System Performance: Various published
papers concerned with sensor networks or IoT are focused
on the impact on QoI of the information system perfor-
mance related to acquisition, transmission, and visual-
ization [48], [50]. Conversely, although recognizing that
QoMI strongly depends on both the measurement system
and the measurement process, this article focuses on the
identification of general-purpose criteria characterizing
QoMI.

VIII. FRAMEWORK LIMITATIONS AND FUTURE

RESEARCH DIRECTIONS

The aim of the proposed framework is to provide a con-
tribution to identification, assessment, communication, and
improvement of QoMI. However, in pursuing this goal,
the framework has also some limitations that could be
addressed in future research.

First, an exhaustive analysis of QoMI should consider that
there can exist interdependencies between quality criteria (e.g.,
lack of domain integrity due to missing values can affect suffi-
ciency or strict requirements on timeliness can affect measure-
ment uncertainty). Explicit recognition of interdependencies
is crucial since they may affect quality assessment results and
may have implications on the selection of assessment methods.
Despite interdependencies that are often strictly related to
the specific IEDM problem, we expect that some general
guidelines to identify them and assess their impact on QoMI
can be developed.

A second limitation of the framework is that it considers
only objective characteristics. Indeed, even information rated
highly in terms of all considered quality criteria may still be
deficient with respect to some specific user’s needs. How-
ever, a further pragmatic characteristic—it could be called
“measurement value”—that considers a comprehensive user
perception of QoMI could be usefully added to the framework,
in order to assess the validity of the adopted quality criteria
and to confirm that no useless redundant criteria are included,
nor relevant quality aspects are neglected.

A third direction for framework development can be the
definition of guidelines to determine the impact of adopted
instrumentation performance on QoMI. This work could

be grounded on the existing literature on the topic, such
as [36], [39], [40], [51], and [52].

A last direction of research could consider the identifi-
cation of the sources of uncertainties raising in an IEDM
process, when considering all process steps, from decision
planning, to information gathering, decision-making, and deci-
sion implementation. A preliminary study on this topic can be
found in [1].

IX. CONCLUSION

When dealing with data-driven decision making, QoMI rep-
resents a critical factor. In fact, inadequate quality can result in
wrong decisions with unexpected and unintended, potentially
severe, consequences. To address this issue, a general-purpose
framework has been proposed in this article. It offers a
metamodel that can guide researchers and practitioners in
acquiring awareness when dealing with decisions based on
MI, so facilitating the definition, assessment, communication,
and improvement of the elusive concept of information quality.

The framework acknowledges that measurement uncertainty
is crucially important because strictly related to decision confi-
dence but also emphasizes that it does not suffice to guarantee
MI quality. Consequently, the framework includes a structured
set of general-purpose criteria, organized according to the
syntactic, semantic, and pragmatic layers of semiotics. Each
criterion is described in terms of one or more characteristics,
each one defined by means of one or more indicators, whose
ranges of acceptable values are derived from decision-making
requirements. The framework can be tailored to specific sit-
uations by neglecting general-purpose criteria that do not fit
with the considered situation or adding new criteria believed
relevant.

An example of application has been presented to enable
a deeper understanding of the framework, so clarifying its
advantages and limitations: the discussions about research
quality assessment and quality of IoT-based MI show that the
framework can provide a basis for the definition of common
concepts and terms and for gaining awareness of strengths and
weaknesses of decisions based on MI.
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