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ABSTRACT

In a thermal power plant online measurement of the size distribution of pneumatically conveyed
pulverized fuel is essential for the improvement of combustion efficiency and the reduction of
pollutant emissions. In this paper, an innovative instrumentation system based on acoustic
emission (AE) detection and triboelectric sensing is proposed for the on-line continuous
measurement of particle size distribution. With a waveguide protruding into the flow, the AE
signal is generated from the impacts of particles with the waveguide. The peak voltage of the AE
signal is related to the particle size and impact velocity. For the first time, two triboelectric sensor
arrays each with three arc-shaped electrodes near to the waveguide are used to measure the impact
velocity. Meanwhile, a novel particle sizing algorithm with Gaussian prediction is proposed to
reduce the effect of overlapping impacts and environmental noise on the peak distribution. With
the known impact velocity measured from the triboelectric sensor arrays and the modified peak
distribution, the measurement of particle size distribution is achieved. Experimental tests were
conducted on a gas-solids two-phase flow rig to assess the performance of the developed
measurement system. Silica sands in three size ranges of 116-750 um, 61-395 um and 10-246
um, respectively, were used as test particles. The experimental results demonstrate that
Spearman’s rank correlation coefficient between the measured and reference size distributions for
all test particles is all greater than 0.8, while the discrepancy for each particle size segment is

within 34.8%.

Index Terms— Particle flow, particle size distribution, acoustic emission, triboelectric sensor



|. INTRODUCTION

Size distribution is an important physical characteristic of particles in many industrial processes.
During power generation pulverized coal is transported from pulverizing mills to burners through
a network of pneumatic conveying pipelines. Online measurement of the size distribution of
pneumatically conveyed particles is important for smooth fuel delivery and optimized combustion
processes [1, 2]. On the one hand, the presence of large particles in the pipelines will cause
unbalanced distribution of fuel to burners, leading to excessive NOy emission, flame oscillation,
slagging, etc. Meanwhile, since it takes longer to burn out larger particles, the chance of incomplete
combustion will increase, which reduces the boiler efficiency. On the other hand, it is also
uneconomical with the pulverizing system to produce unnecessarily fine particles. Furthermore,
excessively small particles will increase the risk of explosion due to spontaneous combustion.

Current practice in the particle sizing of pulverized fuel is performed off-line, usually through
isokinetic sampling and sieving [3]. For years, various on-line measurement techniques have been
proposed to realize particle sizing, including laser diffraction, digital imaging, electrostatic sensing,
microwave scattering and acoustic emission detection [4-8]. However, as the particle flow in a
pneumatic pipeline is very complex in terms of gas-solids two-phase flow nature, such as
inhomogeneous particle distributions, irregular velocity profiles, variable particle size and shape
distributions, moisture content and etc., the particle flow measurement is recognized as a long-
standing industrial problem [9, 10]. Due to the inherent complexity of gas-solids two-phase flow
in a duct, harsh environmental conditions and high installation and maintenance costs, there have
been very few on-line particle sizing instruments currently operating in industry.

Acoustic emission (AE) is the phenomenon of radiation of transient elastic stress waves in solids

that occurs when the energy from localized sources within a material rapidly releases. As AE



method is insensitive to environmental conditions with high sensitivity and cost-effectiveness, it
is considered as a promising approach to online measurement of the size distribution of
pneumatically conveyed particles. Particle size information is deduced through the analysis of the
signal due to the impact of particles with the acoustic waveguide. The typical AE signal from a
single particle impact and overlapping impacts and the parameters commonly used for analysis are

illustrated in Fig. 1. The description of the parameters is given below.
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Fig. 1 Typical AE signals and definitions of the key parameters.

Preliminary research by Buttle ef al. [11] demonstrated the relationship of the peak voltage and
rise time of the AE signal with the particle size through theoretical analysis. Practical experiments
were conducted on a free-ball particle drop rig with an AE sensor attached on a target plate. From
a series of experiments on a slurry impingement erosion test rig, Droubi et al. [12] observed that
the AE energy was proportional to the mean particle diameter (d) cubed, i.e. &°. Coghill [13]
designed a portable impact size monitor to intermittently measure the particle size of pneumatically
conveyed particles. In their work a built-in AE sensor masked by a metal cap with a 2 mm diameter

hole was temporally inserted to the flow line. As stated by Coghill, particles smaller than 50 pm



will deviate from striking the impact probe at typical transport velocities of 25 m/s and cannot
produce effective AE signals. As shown in Fig. 1, the duration of an AE signal, as a key parameter
in their study, is susceptible to interference from overlapping impacts, which will give spurious
measurements. The lack of information about the particle impact velocity will also adversely affect
the measurement accuracy. Moreover, the mask is easily blocked by particles and hence regular
maintenance is required. Therefore, the impact size monitor is not suitable for long-term, routine,
online, continuous measurement of particle size distribution. Uher et al. [14] established an
analytical model describing the relationship between the particle size, velocity and AE signal based
on the Hertz theory of impact. The Hertz theory of impact is a classical theory, which assumes that
the contact is perfectly elastic during the impact. The test rig consisted of a hopper for solid
particles placed over a retention dish, where the variation in particle impact velocity was achieved
by varying the height of the hopper.

Zhang et al. [15] focused on the study of single particle impacts to reveal the AE sensing
mechanism. In consideration of plastic deformation, the Stronge impact theory was applied to
describe the particle impact process. Meanwhile, a new model of the relationship between AE
signal and particle size was established based on the theory. The experiments were conducted on
a single-particle test rig with glass beads to validate this model. Individual glass beads were
injected through a small metal rings to obtain the impact velocity which is required in the analysis.
However, the particle flow in pneumatic pipelines is very complex, the model cannot be directly
used for online size measurement of particles in pneumatic pipelines. Hu et al. [8] developed an
algorithm for the detection of AE peak voltage. Compared to peak detection algorithms based on
maximum search and threshold, the algorithm based on the smoothed local energy is more effective

to reduce false detection due to noise corruption to the signal and overlapping of the ringing.



However, for signal peaks due to simultaneous impacts of multiple particles and those submerged
in background noise, the peak detection algorithm is no longer effective. Under a range of test
conditions, the maximum deviation of the sizing results for the particles of the same-size exceeds
25%. Meanwhile, the maximum discrepancy between the measured and reference size also
exceeds 25%. So the accuracy and repeatability of the particle sizing system are unsatisfactory.

Particle impact velocity is the local particle velocity at which the particles collide with the
waveguide, which is a key parameter that needs to be measured in on-line particle sizing. The
relationship between the AE signal (peak voltage), particle impact velocity and particle size is
described in Section II.B. However, measurement of particle velocity is also a challenging problem
in pulverized fuel fired power plants [16], not to mention particle impact velocity. In some studies,
conveying air velocity as an easily available parameter was often used instead of particle velocity
or particle impact velocity [17]. For gas—solid two-phase flow, there is a slip velocity between the
solids and gas phases. The relative deviation between the air velocity and the particle velocity
across the entire pipe section is usually greater than 5% [18].

Triboelectric phenomenon exists widely in our daily lives or industrial activities [19, 20]. The
transportation of particles in a pipe generates triboelectric charges on the particles due to inter-
particle interactions, particle-air frictions and particle-wall collisions [9]. For the particle velocity
measurement, triboelectric sensing is regarded as the most cost-effective method [9, 16]. Hu et al.
[8] and Zhang et al. [15] used a set of ring-shaped electrodes to measure the particle impact velocity.
As its sensing area covers the whole cross sectional area of the pipe, a pair of ring-shaped
electrodes can only measure the circumferentially averaged particle velocity across the entire pipe
section. However, the impacting area of the AE probe occupies only a very small fraction of the

pipe cross section. In view of the complex nature of particle flow in a pneumatic conveying



pipeline, in particular, inhomogeneous particle distribution and irregular velocity profile [9], the
circumferentially averaged particle velocity is different from the particle impact velocity which is
local to the waveguide. Therefore, the use of air velocity or circumferentially averaged particle
velocity as the particle impact velocity will introduce significant errors in particle size
measurement.

As shown in Fig. 1, overlapping impacts mean that when the AE pulse generated by the impact
of the previous particle has not completely attenuated, another AE pulse is produced. There must
be cases where two or more particles impact on the waveguide simultaneously, causing several AE
pulses to overlap. When the impacting time intervals of two or more particles are very small, or
the signal amplitude of the second particle is too low to submerge in the attenuation signal of the
previous one, it is impractical to distinguish the peak voltage of each impact event. For very small
particles or those with a low impact velocity, AE pulses are submerged in the environmental noise,
so the impact events may be missed. Due to overlapping impacts and environmental noise, the
detected peak distribution is different from the expected peak distribution, which will affect the
measurement accuracy of particle size distribution.

In summary, despite the various advances in recent years, on-line particle size measurement
through AE sensing is still in its early stage of development and many problems remain to be
resolved. For instance, it is difficult to identify the peak, duration or rise time of an AE signal when
the signals of two particles overlapped. The particle impact velocity is another important factor
that affects the AE signal, while the actual velocity of particles that impact the waveguide is
difficult to obtain. Moreover, as pulverized fuel particles are rarely spherical, the relationship
between the AE signal characteristics and the impact velocity and particle size for spherical

particles [8, 14, 15] should not be directly applicable to irregular shaped particles.



In order to overcome the challenges mentioned above, this paper presents a novel
instrumentation system for the online measurement of size distribution through AE detection and
triboelectric sensing. A waveguide protrudes into the particle flow to generate the AE signal
through particle impacts. The peak voltage of the AE pulse contains the information about the
impact particles such as the particle size and impact velocity. The novel contribution of this paper
includes the following two folds. Firstly, two sets of arc-shaped triboelectric sensor arrays next to
the waveguide are used for the first time to measure the impact velocity of particles close to the
waveguide. Arc-shaped electrodes are suitable for the measurement of local particle velocities as
they are sensitive to particles in its vicinity [9], which is more representative of the particle impact
velocity than that from the ring-shaped electrodes. Secondly, the Gaussian model is used for the
first time to predict peak distribution generated by large and small particles in order to reduce the
deviation between the detected peak distribution and expected distribution due to overlapping
impacts and environmental noise. The relationship between the peak AE voltage, impact velocity
and particle size, which was established for spherical particles, should be extended for irregular
shaped (non-spherical) particles through experimental calibration. With the particle impact
velocity obtained from triboelectric sensor arrays and the modified peak distribution, the

measurement of particle size distribution is achieved.

Il. METHODOLOGY

A. Sensing Arrangement and Sensor Design
When solid particles impact on a plate, transient elastic stress waves are generated and propagate

away from the impact points. The AE signal signatures are closely related to the impulsive forces

that the particles impose on the plate. The impact force is dependent on particle characteristics,



especially particle size and impact velocity.

The sensing head is composed of an AE probe and three triboelectric sensor arrays each with
three arc-shaped electrodes (Fig. 2). An intruded waveguide is employed for both generation and
transmission of the elastic stress waves due to the impact of particles. In view of the wear and tear
of the waveguide due to the impact by particles, it is made of a wear-resistant material, zirconia
ceramic. As shown in Fig. 3, the inside section of the waveguide is semi-cylindrical with a diameter
of 10 mm. The flat surface faces the direction of the flow, allowing normal impact of particles with
the waveguide. The thickness of the inside section of the waveguide is 5 mm. In this study, the
waveguide is made with a width of 10 mm and a penetration length of 7 mm in the pipe cross
section, so the effective impact area is 70 mm?. Since the inner diameter of the test pipeline is 72
mm, the blockage of the waveguide is 1.7% of the pipe cross-sectional area. The rubber bushings
embracing the middle section of the waveguide can damp the interfering vibrations of the pipe
section [21]. Attached on the outer end of the waveguide is an AE sensor (RS-2A, Softland). The
AE sensor converts the elastic stress waves into electrical signals. Since the impact velocity and
particle size both affect the elastic stress waves, it is necessary to decouple the effect of the impact
velocity on the AE signal in order to infer independent particle size information. Unfortunately,
the impact velocity cannot be determined from the AE signal while particle size is unknown and
an independent measurement of the impact velocity has to be made. The triboelectric sensing
technique is a simple but effective approach to particle velocity measurement [9]. As illustrated in
Fig. 2, three identical triboelectric sensor arrays are symmetrically embedded in the pipe wall
adjacent to the waveguide. Each triboelectric sensor array has three identical arc-shaped electrodes
which are made of stainless steel. The center-to-center spacing between the adjacent electrodes is

20 mm, whilst the axial width of each electrode is 5 mm and the length of each electrode is 36 mm.



For each triboelectric sensor array, the particle velocity is determined by multi-channel correlation
of the signals from every pair of the three electrodes and fusion of the three measured velocities.
The particle velocity across the entire pipe cross section is derived by fusing the three independent
velocities the three sets of triboelectric sensor arrays. The impact velocity required for the on-line

particle sizing is the average of the two particle velocities measured from the two sensor arrays (A

and C).
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Fig. 2 Design and installation of the sensing head. (a) Schematic diagram. (b) Photo of the installed sensing
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Fig. 3 Photo of the waveguide and AE sensor.

As shown in Fig. 4, the AE and triboelectric signals from the sensing head are connected to a
multi-channel signal conditioning unit that performs amplification and filtering. The analog signal

from the AE sensor is amplified with a voltage gain of 35 dB and then filtered through a bandpass
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filter over a frequency range of 1 kHz — 1 MHz. It should be noted that, since useful particle sizing
information may exist in the lower frequency band of 1 kHz to 10 kHz, the lower limit of the band-
pass filter is set to 1 kHz instead of 10 kHz (the recommended lower limit by the AE sensor
manufacturer). The triboelectric signal from each electrode is converted into a voltage form via an
I/V converter, then amplified with a voltage gain of 50 dB and filtered with a cut-off frequency of
2 kHz [9]. With the known impact velocity from the triboelectric sensor arrays, the particle size

distribution is derived with the use of a particle sizing algorithm.
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Fig. 4 Principle and structure of the measurement system.

B. Measurement of Particle Impact Velocity

In order to prevent the bounce-back of particles from interfering with the particle impact velocity
measurement, the arc-shaped electrodes were not installed in the upstream of the waveguide.
Instead, two sets of triboelectric sensor arrays each with three identical arc-shaped electrodes are
designed and installed next to the waveguide (Fig. 2). The three-electrode sensing unit has a good
reliability on the basis of redundant configuration. By cross-correlating the signals from upstream
and downstream electrodes, three independent particle velocities are obtained.

The correlation functions between the three signals are expressed as

11



Ry(7)=2 [ % (0 (t+ 1)t (1)

where i, j = 1, 2, or 3, xi(¢) and x;(?) are the signals from upstream and downstream electrodes,
respectively, and T is the integration time. The transit time is the time delay for particles to move
from the upstream electrode to the downstream electrode, which can be determined by locating the
dominant peak of the correlation function. With the known spacing (L;) between each pair of
electrodes and the corresponding transit time (z;), the particle velocity measured by each pair of

electrodes is calculated from
vV, = — (2)

The local particle velocity of each triboelectric sensor array, v, where k is 4 or B, is determined

by fusing the three individual velocities [16]

— r.12\/12 + IF23V23 + r;L3V13

Vi 3)

rZI.2 + r23 + r;I.3

where 7}, 723 and r;3 are the amplitudes of the dominant peaks in the cross-correlation functions
respectively. As the two identical triboelectric sensor arrays are symmetrically installed adjacent
to the waveguide. The particle impact velocity (v) required for the on-line particle sizing is the
average of the two local velocities, vi and v».

C. Particle Sizing Algorithm

Fig. 5 shows the flow chart of the online particle sizing algorithm. The primary peak during each
particle impact event is related to the particle size and impact velocity [8]. A peak detection
algorithm is used to identify the peak AE voltage. Owing to the simultaneous impact of multiple
particles on the waveguide as well as environmental noise, the apparent peak distribution of

particle flow obtained from the AE signal deviates from the expected distribution and needs to be

12



modified. Since particle size distribution in vast majority of practical cases follows the Gaussian
distribution, a Gaussian model is thus used to predict peak distribution generated by large and
small particles, which can reduce the deviation between the detected peak distribution and
expected distribution due to overlapping impacts and environmental noise. With the impact
velocity from the triboelectric sensor arrays and the modified peak distribution, the expected

particle size distribution is thus obtained by using the impact model. The details of this process are

. Triboelectric

l l

Multi-channel
Correlation

given below.

Peak Detection

l

Gaussian . .
Modification Particle Velocity

Impact Model

Particle Size
Distribution

Fig. 5 Flow chart of the particle sizing algorithm.

1) Impact model

The AE signal depends on a sequence of impact events, including the AE source, wave

propagation and sensor response. The AE signal can be expressed as [11]
V)=S®)*G1)*D(1) “4)

where V(2), S(t), G(t) and D(t) are the functions of the AE signal, acoustic source, wave propagation,

13



and sensor response, respectively, and ¢ is time. V), S(z) and G(?) are also functions of the position
where impact takes place. The symbol * represents convolution.
With the Hertz theory of contact [22] and derivation by J. Reed [23], the impulsive force that a

spherical particle impacts on an elastic plate can be calculated from

3
. (xt))?
S(t) = F o (smLZJ] O<t<t, 5)

0 otherwise

where 7. is the contact time and the maximum compression force Fiu.x is given by

3 6
0.479 p5vsd?
I:max: 2
S5 +38,)5
(o, 2) ©)
5
Fmax=°'L9”2
(6,+46,)°

where p, v and d are the mass density, impact velocity and diameter of the spherical particle,

respectively. J; is a constant depending on the type of material, which is defined by

1-u
0, =—— 7
e ™

where i is 1 or 2 and stands for the materials of the particle and plate, respectively. £ and u are
Young’s modulus and Poisson’s ratio, respectively. For the particles of the same material properties,

Fmax 1s approximated as

6

Foo = Kpved? (®)
where Kr is a proportionality constant. Eq. (8) indicates that, for a given particle material, the
maximum compression force depends only on the impact velocity and particle size.

Since the wave propagation medium and the sensor can be modelled as linear, time invariant

14



systems, the peak voltage of an AE signal is proportional to the maximum compression force [8],
Le.

6

Viom = Ky vod? )
where V,ax 1s the peak voltage of the AE signal and Ky is a proportionality constant, which is
obtained through calibration with particles to be measured and of known sizes.

The derivation process of Eq. (9) assumes that the particle is spherical, the plate is perfectly flat,
and the impact is normal and elastic. However, in practical situations there are many non-ideal
factors, including the irregular shape of particles and plastic deformation. In consideration of such
non-ideal factors, Vi in Eq. (9) should be generalized

V. =K,v"d" (10)
where indexes m and n can be obtained through experimental calibration with particles of different

size distributions over a range of velocities.

2) Peak detection algorithm

In order to achieve the size distribution measurement of particle flow, the peak voltage of the
impact event of each particle should be detected. In this paper, an existing peak detection algorithm
based on the local energy is utilized [8]. Fig. 6 shows an example of the procedure, where the small
circles represent the identified peaks. Firstly, the local energy for all points is computed and the
local energy envelop is smoothed through a mean filter to eliminate some pseudo peaks (Fig. 6(a)).
Secondly, the peaks are identified in the energy envelope (Fig. 6(b)). Thirdly, the false peak
candidates due to environment noise are removed by applying a certain threshold. Finally, the peak
or valley in the AE signal is located by the instant with peak local energy (Fig. 6(c)). Compared to
the peak detection algorithms based on time interval [24] or threshold [25], the energy-based peak

detection algorithm is more effective in terms of detection success rate.
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(©)
Fig. 6 Signal waveforms illustrating the peak detection procedure. (a) Local energy envelope. (b) Smoothed
local energy envelope and identified peaks. (c) Identified peaks in the signal.

3) Gaussian prediction

In practical situation some particles hit on the ringing of the previous one or even multiple-
particle impact on the waveguide at the same time, resulting in the signal overlapping. For small
particles or those with a low impact velocity, the AE pulses are submerged in the background noise
and difficult to detect. For such reasons, some of the identified peaks are not valid for on-line
particle sizing whilst some impact events may be missed, both affecting the measurement accuracy
[8]. Based on the central limit theorem, a large number of particles in the natural state without
manual sieving or mixing in a certain ratio usually comply with a Gaussian size distribution [26,
27].

The fit function used to fit the Gaussian model is given by

_(x-b)®

y=ae 2¢ (11)
where x is a random variable, i.e. the peak in this case, y is the distribution probability of x, i.e.
relative frequency, a is the amplitude, b is the distribution center location and c is related to the
scale characteristics, i.e. distribution width.

Fig. 7 illustrates the process of Gaussian prediction. The calibration of the Gaussian model is
performed on the part of the peak distribution where the peaks are less affected by the
aforementioned factors and consistent with the expected distribution. The Gaussian prediction is
then applied to the entire peak distribution according to the fitting result. With the impact velocity
measured from the triboelectric sensor arrays and determined constant and indexes, the particle

size distribution is finally obtained from the modified peak distribution from Eq. (10).
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Fig. 7 Illustration of Gaussian prediction.

I1l. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup and Material Properties

To evaluate the performance of the prototype particle sizing system, experiments were carried
out on a 72 mm bore gas—solids two-phase flow rig. Fig. 8 shows the layout of the test rig. Stable
air flow is generated from an industrial suction system connected to the pipeline. Particles are fed
into the rig from an adjustable screw feeder at a controlled discharge rate. The sensing head was

installed on a vertical section of the stainless steel pipeline.
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Fig. 8 Layout of the gas—solids two-phase flow rig.

Silica sand is a chemically stable silicate mineral with a density of 2.65 g/cm’. Since the size,
shape and flow characteristics of the pulverized coal and silica sand are similar, silica sand is used
as a substitute of pulverized coal for health and safety reasons under laboratory conditions [28, 29].
Fig. 9 shows an image of the test material in this study. The particle shape of the material is
irregular (non-spherical). The reference size distribution of the test particles was obtained from a
commercial laser particle size analyzer (OMEC LS-POP9), which operates on optical diffraction
principles [30]. Fig. 10 depicts the typical size distributions of the three sets of test particles. The
smallest set - set I1I is similar to the particle size at thermal power plants whilst particles in sets 11

and III are larger because larger particles are a major concern to plant operators as they affect

adversely the combustion process in terms of combustion efficiency and emissions [31].
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Fig. 10 Size distributions of the test particles measured from the laser particle size analyzer. (a) Set I. (b) Set II.
(c) Set II1.

Experiments were carried out under different flow conditions by varying the impact velocity.
During the experiment period, the ambient temperature was measured to be between 24.0°C to
26.2°C while the relative humidity ranged from 50% to 53%. Table I summarizes the test
conditions along with the size ranges of the test particles. Peak size is the particle size
corresponding to the distribution peak, i.e. the highest proportion of particles. The sampling rate
of the AE signal is 2 MHz, while the triboelectric signals are sampled at 20 kHz. The window size
of data for the triboelectric signals is 1024 data points (51.2 ms). Peak detection is performed on
the AE signal every 51.2 ms and the detected peaks are stored. When the sizing system started
initially, it takes 8 s to obtain the particle size distribution, which is then refreshed every 51.2 ms.
The impact velocity was displayed on the host computer screen in real time. Variations in impact
velocity were achieved by changing the power of the industrial suction system (Fig. 8). Each test
run lasted for 8 seconds.

TABLE I. EXPERIMENTAL CONDITIONS

Particles Size range (um) Peak size (um) Impact velocity (m/s)

21



Setl 116-750 265.6 21.0, 24.0, 27.0, 30.0

Set I 61-395 175.0 21.0, 24.0, 27.0, 30.0

Set III 10-246 64.8 21.0, 24.0, 27.0, 30.0

B. Results of Particle Impact Velocity Measurement

Fig. 11 plots typical signals from triboelectric sensor array A and resulting correlation
functions. As can be seen, the signals from the three electrodes (Fig. 2) are similar with time delays
among them. The transit times measured from the correlation functions are 0.85 ms (z;2, electrodes
1&2), 0.81 ms (723, electrodes 2&3) and 1.64 ms (z;3, electrodes 1&3), respectively. With the
known spacing (L;2 = Lz3 = 20 mm and L;; = 40 mm) between each pair of electrodes, the
individual particle velocities are calculated to be 23.61 m/s (v;2), 24.58 m/s (v23) and 24.43 m/s
(v13), respectively. It is not surprising that there are small discrepancies in the three individual
velocities. Factors contributing for these discrepancies include the time-varying nature of the gas-
solid two-phase flow, mismatches between the three-channel signal conditioning units, mechanical
tolerance in the machining and assembly of the electrodes and insulators. With the known
correlation coefficients between electrodes 1&2 (712=0,72), 2&3 (r235= 0.72) and 1&3 (r13= 0.49),
the local particle velocity from sensor array A is calculated from the individual particle velocities
via Eq. (3), which is 24.18 m/s. It is evident that the fusion of the three individual correlation
velocities in each sensor array has led to more reliable and repeatable measurement of the local
particle velocity.

Fig. 12 presents typical particle velocity measurement results for Set I particles. It is clear
that the particle velocity measured from sensor array B is consistently smaller than those from

sensor arrays A and C. This result demonstrates that the velocity distribution of particles is indeed
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irregular even the sensing head is installed in the vertical section of the pipe. On this particular
occasion the difference in the measured local particle velocities is due to the effect of the
centrifugal force when particles passed through the lower bend on the test rig (Fig. 8), despite the
sensing head was positioned 15 times the pipe diameter away from the lower bend. As the pipe
diameter is small and the positions of sensor arrays A and C relative to the elbow are symmetrical,
the local particle velocities from sensor arrays A and C are close to each other. In fact, the measured

particle impact velocity as shown in Fig. 12 is almost exactly the desired value (Table I).
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Fig. 11 Typical triboelectric signals from sensor array A and their corresponding correlation functions. (a)
Signals from the three electrodes. (b) Cross-correlation functions.
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Fig. 12 Measured local particle velocities from the triboelectric sensor arrays and the resulting particle impact
velocities (average from arrays A and C).

C. Peak Detection Results

Fig. 13 plots the typical AE signals for the three groups of test particles. As can be seen, most
individual impact events can be resolved in the time domain signal, while larger particles generate
higher peak voltages. Therefore, the particle sizing algorithm could be partially validated against
the individual impact events. The AE signals generated by small particles are difficult to detect
because the useful signals are immersed in the strong background noise, which is due mainly to
the strong airborne sound from the suction system (Fig. 8). The AE signals with abnormally large

peaks originated mostly from concurrent impacts of more than one particles on the waveguide.
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Fig. 13 Typical AE signals at an impact velocity of 30 m/s for different particle size groups. (a) Set L. (b) Set II.
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Fig. 14 shows the peak distribution results at an impact velocity of 30 m/s for different particle
size groups. Due to the overlapping of impact events, the number of large peak voltages (left region
of the distribution) is unexpectedly large, while the number of small peaks (right region of the
distribution) is incorrectly small due to the presence of the environmental noise and the
thresholding operation. It is evident from Fig. 14 that the average and median of the peaks are
relatively larger than the expected values. The data near the original distribution peak are little
affected by the missed detection or overlapping of impact events, so they correspond well with the

expected distribution.
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D. Validation of the Impact Model

The peak magnitude increases with both the impact velocity and the particle size. The average
values of the peak and impact velocity are used for curve fitting to obtain the index m in Eq. (10).
The coefficient of determination R’ is used to describe the closeness between the measurement
data and the curve fitting results. As illustrated in Fig. 15, each set of particles is associated with a
curve and a set of m and R are included in the legends. It is clear that there is a good agreement
between the fitted curves and measured data points with the R’ values all greater than 0.9.
Meanwhile, the values of m for the three particle groups are almost the same and unaffected by
particle size, which agrees with the theoretical analysis. For a fixed impact velocity, the particle
size and peak voltage of the AE signal corresponding to the distribution peak can be fitted to a
curve to determine the index » in Eq. (10). The fitted curves and the corresponding index » and
the R? values for four different impact velocities are plotted in Fig. 16. As the R? values are all
greater than 0.9, the fitted curves are consistent with the measured data. The non-monotonic

variations of n suggest that there is no definite relation between n and the impact velocity. Since
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the sets of indexes m and n vary only within a narrow range, the average values are used for the

determination of the particle size, i.e.

V. = vao.gsd 104 (12)
The index (0.98) of the impact velocity (m) in Eq. (12) is smaller than that in the analytical model
(Eq. (9)). This deviation is believed to be due to plastic deformation and energy loss in the actual
impacts between the silica sand particles moving at a velocity greater than 20 m/s and the zirconia
ceramic waveguide which is a high-hardness material [11]. Unfortunately, the analytical model
(Eq. (9)) is unable to consider the effects of plastic deformation and energy loss during the impact
process. Meanwhile, the index (1.04) of particle size (d) in Eq. (12) is significantly smaller than
that in the analytical model (Eq. (9)). This is due to the fact that the test particles are of slice type
with sharp edges and corners (Fig. 9), which differs considerably from the ideal spherical particles.
For a test particle and a spherical particle of the same size (i.e. maximum diameter across the
particle), the mass of the former is smaller than that of the latter, leading to a smaller impact force
and hence lower AE signal amplitude. Again, such complex factors of irregular particles cannot
be incorporated in the analytical modelling (Eq. (9)).
Substituting the peak voltages of AE signals and particle sizes corresponding to the

distribution peaks and particle velocities under the above test conditions into Eq. (12) yields

V. =6.02v°%d"* (13)
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E.Measurement Results Through Gaussian Prediction

The Gaussian prediction includes two steps, namely finding the location of the distribution
center and the determination of the volume of data used for fitting. As described in Section III.B,
the data near the original distribution peak are little affected by the missed detection or overlapping
of impact events, so they are used for the determination of the Gaussian model. According to the

reference distribution from the laser particle size analyzer, the calibration of the Gaussian model
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is performed on the peak distribution obtained under a typical test condition to determine the
volume of the distribution data that is required for the determination of the Gaussian model. These
distribution data are used to determine the Gaussian model and predict the peak distribution
generated by large and small particles.

Fig. 17 shows the peak distribution results and Gaussian approximations of Set I particles. As
can be seen, the Gaussian prediction not only reduces significantly the large peaks, thereby
minimizing the effect of the overlapping impacts on the results, but also supplements the small
peaks that have not been identified. The center location of the Gaussian model is aligned with the
peak of the detected peak distribution. According to the trend of the Gaussian prediction, the
modified peak distribution is obtained for on-line particle sizing. Fig. 18 is a comparison of the
measured particle size distributions before and after Gaussian prediction against the reference
distribution. It is evident that the modified particle size distribution agrees well with the original
particle size distribution around the distribution peak. The large particle size due to overlapping
impact events is eliminated, effectively supplementing other particle size segments in proportion.
In this study, Spearman's rank correlation coefficient is used to quantify the similarity between the
two distributions [32]. Spearman correlation coefficient is unity when the two distributions are
identical and is close to zero when the discrepancy between the two is very large. Over the size
range of 0—1800 um (Fig. 18), Spearman's rank correlation coefficient between the particle size
distribution without prediction and the reference distribution is 0.7374, while the coefficient

between the modified distribution and the reference distribution is 0.9190.
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In term of calibration results, the data with a relative frequency greater than 65% of the
distribution peak are used to predict the peak distribution due to the very large or small particles
under other test conditions and the results obtained are plotted in Fig. 19. As can be seen, the results
at different impact velocities are in good agreement with standard deviation no great than 1%. This
small variation in sizing results stems from the natural fluctuations in the impacting particles
during each test run. This implies that the on-line particle sizing system has a good repeatability.

Fig. 20 shows a direct comparison between the measured and reference particle size distributions

31



along with the absolute difference between the two for each particle size segment. In this case the
relative frequency of each size segment is the average value under all test conditions. Over the size
range of 0—750 um (Fig. 20), Spearman's rank correlation coefficient between the measured and
reference particle size distributions is 0.8396. The maximum discrepancy, i.e. the maximum
absolute difference between the measured and reference size segments is 4.81% while the average
discrepancy of all size segments is 1.73%. This deviation is partly due to the measurement error
and partly originates from the natural variations in the particles measured off-line with the laser

particle analyzer and those detected on-line in the pneumatic conveying pipeline.
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Fig. 20 The measured and reference size distributions of Set I particles. (a) Particle size distribution. (b)
Absolute discrepancy between the measured and reference distributions.

Similarly, the peak distributions of Sets I and III particles are modified with the Gaussian model

to predict the peak distribution generated by large and small particles. As shown in Fig. 21 and 22,
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the standard deviation of the measurements is no great than 1.5% under all test conditions, which
indicates the good similarity between the particle size distributions. Fig. 23 and Fig. 24 illustrate
the comparisons of the measured results against the reference distributions. Spearman's rank
correlation coefficient between the measured and reference particle size distributions is 0.9513
over the size range of 0—400 um and 0.9879 over the size range of 0—225 um, respectively. For
Sets II and III particles, the maximum difference between the measured and the reference segments
is 2.67% and 3.55%, respectively, while the average discrepancy of all size segments are 1.12%
and 2.33%, respectively. However, for materials with particle sizes smaller than Particles III, the
overlapping impacts will be more serious due to more simultaneous impacts of particles on the
waveguide. When most of the detected peaks are overlapped, the Gaussian prediction will be
ineffective, so the measurement results will be much larger than the actual particle size. In this
case, the impact area of the waveguide should be reduced significantly, thereby improving the

measurement accuracy.
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This paper has proposed an instrumentation system using AE detection and triboelectric sensing
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techniques for the online measurement of the size distribution of pneumatically conveyed particles.
A particle sizing algorithm based on the peak voltage of the AE signal has been developed. The
algorithm includes three key elements, peak detection, Gaussian prediction and impact model.
Silica sand with three different size ranges, 116—750 um, 61-395 pm, 10-246 pm, were used as
test particles. The experimental results obtained from the prototype instrumentation system have
validated the effectiveness of the Gaussian prediction to reduce the deviation between the detected
peak distribution and the expected distribution due to overlapping impact events and
environmental noise. The results have demonstrated that the measured and reference size
distributions agree well with each other with Spearman's rank correlation coefficient greater than
0.8 under all test conditions. For the three sets of test particles of different size ranges, the
discrepancy for each particle size segment is within +4.8%. The results have also indicated that
the repeatability of the system is within 1.5% for each particle size segment. It is envisioned that,
with the advantages of online continuous measurement, simple structure and cost-effectiveness,
the proposed technique should provide an effective solution to the problem of online particle sizing

in industry.
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