
Abstract— The wave propagation property of the catenary 
directly affects the pantograph–catenary interaction performance. 
Specifically, wave reflection and transmission occurring at 
waveguide discontinuities, particularly at dropper junctions, 
directly impact the pantograph–catenary interaction performance. 
In this study, wave reflection occurring at the dropper junctions 
are investigated using both analytical and experimental 
approaches. First, a partial catenary model is established to 
analyze the catenary wave propagation by considering the wave 
reflections at the dropper junctions. Result indicates that the wave 
reflection in the contact wire (CW) affects the contact 
performance more significantly than that in the messenger wire. 
Two types of experimental tests are performed to analyze the wave 
reflection in the catenary—single CW and full-scale catenary tests. 
An analytical method considering back-and-forth reflections 
between the adjacent droppers is proposed to identify the actual 
reflection coefficients and extract the wave components from the 
measured data. The single CW test result shows that the dropper 
mass has a negligible influence on the wave reflection. The full-
scale catenary test result indicates that the catenary reflection 
coefficient obtained from the measured data can match the design 
value with an acceptable error using the proposed method. 
Moreover, the measured data can be decomposed into wave 
components with different reflection orders, in which less energy 
is centered in the higher-reflection-order component. The 
proposed methods have been justified effective in reflection 
coefficient identification for the actual catenary structure. 

Index Terms—Electrified railway, Catenary, Vibration 
measurement, Wave reflection, Wave decomposition, Reflection 
coefficient 

I. INTRODUCTION 

ENSIONED cable systems are widely used in many 
engineering structures, most of which are subjected to 

uniform loads such as gravity and wind loads. The electrified 
catenary is a special application of the tensioned cable system 
subjected to moving loads induced by pantographs. Owing to 
the high flexibility of railway catenaries, wave propagation 
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Fig. 1 Electric railway pantograph and catenary system 

plays an important role that affects the contact quality between 
the catenary with pantographs. 

Typically, a catenary is a two-level tensioned cable structure 
established along the railroad and mainly comprises the contact 
wire (CW) and messenger wire (MW) connected by several 
droppers (Fig. 1). The catenary is often the only source of power 
for electric locomotives. The current collection quality 
primarily depends on the sliding contact performance between 
the moving pantograph and catenary, which can be evaluated 
by the contact force fluctuation between the registration strip of 
the pantograph and CW of the catenary. The contact force 
fluctuation must be retained as low as possible to ensure a stable 
electric transmission from the catenary to the locomotive 
engine. Nowadays, the dynamic behavior of the tensioned cable 
system subjected to a moving load has attracted considerable 
research attention, as it has the potential to solve practical 
problems in various engineering phenomena, such as the 
pantograph–catenary and vehicle–bridge interactions. 

The contact quality between the tensioned cable and moving 
load is generally affected by the vibration at the contact point 
caused by the moving load and mechanical wave traveling 
along the cable [1]. Several studies have provided theoretical 
foundations for investigating the dynamic contact problem 
between the tensioned cable structures and moving loads [2-6]. 
For high-speed railways, the mechanical wave in the catenary 
is initiated by the moving pantographs and travels along the CW, 
with reflections and transmissions at discontinuities. Recently, 
many researchers have investigated pantograph–catenary 
dynamic responses based on numerical simulations. Among 
them, the finite element method is the most preferred method to 
model the catenary [7-12] because it can effectively describe 
the initial configuration and geometrical nonlinearity. Some 
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environmental perturbations have been involved in the 
numerical model, such as the wind load [13,14], track 
irregularities [15,16], and wire corruption [17-19]. Apart from 
numerical approaches, experimental tests have been performed 
to identify the structural damping [20], detect catenary part 
defect [21], and analyze CW irregularity [22,23]. To improve 
the current collection, Xu et al. [24] optimized the interval of 
double pantographs. Some studies have focused on improving 
the catenary dynamic response measurement methods, which 
include the contact-type and noncontact methods. The contact-
type sensors have been widely used to determine the catenary 
acceleration under different impacts [20, 25-27]. Further, the 
noncontact methods based on photogrammetric devices have 
been established to measure the catenary uplift without 
interrupting the railway operation [28,29]. In our previous 
publications, both the contact-type [30] and noncontact 
methods [31] have been developed for catenary dynamic 
behavior measurements. And the work in this paper can be 
regarded as a follow-up research on our previous work in [30] 
and [31]. 

Most current research works have focused on upgrading the 
modeling accuracy and numerical or experimental analysis 
results. The deterioration of the current collection quality has 
seldom been studied. The contact force directly originates from 
the relative vertical displacement between the panhead and CW 
at the contact point. For the catenary, the vibration of the 
contact point has two sources—the forced vibration initiated by 
the moving pantograph and propagating wave. The propagating 
wave contributes to the fluctuation of the contact point and 
directly affects the contact quality. An attractive topic in wave 
propagation in the catenary is investigating the wave reflection 
and transmission at the dropper point. For instance, Song et al. 
[32] adopted an analytical model to study the wave reflection at 
the dropper point and revealed the existence of dominant wave 
frequencies attributed to the Doppler effect, which can induce 
system resonance. Other studies have indicated that the contact 
force variation between the pantograph and CW is mainly 
caused by both the stiffness variation along the span and wave 
reflection at the dropper joints, where wave reflection majorly 
induces the contact loss [33,34]. 

Generally, for a dropper with negligible damping negligible 
and infinite stiffness, the wave reflection coefficient at the 
dropper junction in CW is defined as follows [35]. 

  (1) 

where the subscripts  and  denote MW and CW, 
respectively,  and  are the tension and linear density, 

respectively,  is the mass of the dropper clamp, and   

is the angular frequency, and i  is the imaginary unit. Equation 
(1) provides an essential reference for estimating the reflectivity 
of a single dropper with respect to the traveling wave. However, 
for catenaries in service, the classical equation cannot quantify 
the wave components, including the incident, reflection, and 

transmission waves, caused by multiple reflections and 
bidirectional transmissions within several adjacent droppers. 

Most existing studies on the catenary wave reflection have 
mainly focused on demonstrating the reflection phenomenon 
based on simulation methods [32][36]. In the work of Van et al. 
[37], a series of mass drop tests was performed on the catenary, 
based on which the wave reflection induced by droppers was 
effectively investigated in combination with an analytical 
model. Based on a combination of field tests and simulation 
model, Cho [25] proposed a formula to address nonlinear 
droppers and investigated the effects of wave reflection 
coefficients on the forces acting on the dropper. However, only 
limited studies have considered multiple reflections induced by 
droppers and the actual reflection coefficient identification 
from the field measurements. 

Based on these discussions, in this study, the wave reflection 
occurring in the catenary is analyzed using field measurements 
and analytical methods. The main contributions of this study are 
listed: 

(1) A novel analytical method is proposed for extracting the 
wave components from the composite acceleration history 
obtained in a single CW test, which can be used to evaluate the 
wave reflection induced by the discontinuity in the catenary 
mass. 

(2) The reassembled catenary models are established using 
adjacent droppers considering the reflective cavity with a finite 
reflection order. Based on the reassembled models and 
proposed analytical methods, the actual reflection coefficients 
of the catenary are identified and the wave components at the 
observation site with different reflection orders are extracted. 

The remainder of this study is organized as follows. In 
Section II, the influence of the reflection coefficients on the 
catenary uplift is analyzed using the partial model. The CW 
reflection coefficient has a more pronounced effect on the 
catenary vibration intensity. In Section III, a series of tests is 
designed to investigate the influence of the dropper mass on the 
wave reflection. The single CW is considered separately to 
avoid the mutual effect arising from MW. In Section IV, field 
measurements are performed on the full-scale catenary 
structure and wave reflections occurring at the droppers are 
analyzed considering the interaction between CW and MW. 

II. ANALYSIS OF WAVE TRANSMISSION BETWEEN MW AND 

CW 

Wave reflection and diffraction are known to occur at 
waveguide discontinuities, such as mass joints and stiffness 
mutation sites. Different from that in the isolated cable, the 
wave propagation in the catenary is considerably more 
complicated. For the catenary, CW is in direct contact with the 
moving pantograph, through which the electric current is 
transmitted to the locomotive. Thus, the CW vibration initiated 
by pantograph excitation propagates along the catenary, 
reflecting at the dropper joints and traveling to MW via the 
dropper connection (Fig. 2). 
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Fig. 2 Waves traveling in the catenary structure. 

 

Fig. 3 Waves propagating back and forth in a local catenary section. 

TABLE I 
DEFINITIONS OF SUPERSCRIPTS IN FIG. 3 

Superscript Definition Superscript Definition 

cc 
Waves propagating 

in CW 
mm 

Waves propagating 
in MW 

cm 

Waves propagating 
from CW to MW 

through the 
dropper 

mw 
Waves propagating 
from MW to CW 

through the dropper 

Fig. 3 depicts the waves transmitting back and forth between 
the two wires, where numbers 1, 2, 3, and 4 refer to the dropper 
junctions in the wires. The subscripts I, R, and T denote the 
incident, reflection, and transmission waves, respectively. The 
superscripts cc, cm, mm, and mw denote the waves propagating 
in different directions (Table I). 

The incident wave can be expressed as I I
i tW A e  . For a 

catenary with an infinite stiffness dropper, the wire motions at 
Junctions 1 and 2 are synchronized. Then, the compositional 
waves at Junctions 1 and 2 can be expressed as follows: 

 , (2) 

where cw
dr  is the reflection coefficient at the dropper junction 

in CW,  is the amplitude of the incident wave,   is the 

angular frequency, and  is the wave traveling time. 
Similarly, the compositional waves at Junctions 4 and 3, 

which are generated by , can be expressed as follows: 

 , (3) 

where 
mw

dr  is the reflection coefficient at the dropper junction 

in MW. Note that the waves traveling in CW and MW have 
different speeds owing to different tensions and linear densities. 
Thus, Equations (2) and (3) can be modified as follows: 

  (4) 

 , (5) 

where  is the dropper interval and mwv  and  are the 

wave speeds in MW and CW, respectively. 
Point B is examined to observe the composite signal OW . 

Because of multiple wave reflections and diffractions between 
two droppers,  is a time-varying wave in different stages 

of wave propagation. In the first stage,  is the summation 

of the two waves transmitting from A → 1 → 3 → B and A→ 
1 → 2 → 4 →  3 → B. In this stage, the reflection wave 

between the adjacent junctions has no effect on . Thus,  

can be expressed as follows: 
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Fig. 4 The intensity of WO versus  and . 

Fig. 4 presents the intensity of  versus the reflection 

coefficients cw
dr  and . The wave intensity at Point B 

changes more significantly with cw
dr , while the wave reflection 

in MW has a lower influence on it. Thus, in Sections III and IV, 
the wave reflection is primarily investigated using the single 
CW and full-scale catenary experimental tests. 

III. WAVE REFLECTION IN ISOLATED CW 

The mass discontinuity of the catenary caused by the dropper 
clamps is an important factor contributing to the wave reflection. 
In this study, investigations are performed on the wave 
reflection occurring in the catenary starting with the single CW 
vibration tests. In these tests, contact-type sensors are used to 
measure the dynamic response of CW under impulse force and 
simulate the mass discontinuity by transferring the extra mass 
to CW. 

A. Experimental setup of single CW test 

The experimental setup of the single CW vibration test 
performed in the laboratory is presented in Fig. 5, in which a 
standard CW is used as the test object, with the ends of CW 
fixed [30]. Two fabricated wireless sensors are attached to the 
wire [20] and work as response collectors and lumped masses. 
In this test, an impulse is provided using a hammer and the 
acceleration is measured using the sensors. The main 
parameters of the tested CW are listed in Table II. The CWs 
with two tensions are evaluated in the experiment to analyze the 
effect of tension on the reflection coefficient. The weight of 
each sensor is 0.39 kg, which nearly corresponds to the weight 
of a real-life dropper and can be used to quantify the effect of 
lumped mass on the wave reflection in a real-life catenary. 

Fig. 5 Experimental setup of a single CW test with two attached sensors. 

TABLE II 
PARAMETERS OF THE SINGLE CW TEST 

Symbol Quantity Value 

 Tension 13/15 kN 
 Weight of a single sensor 0.39 kg 

x1 
Distance of Sensor 1 from 

the left side  
4.795 m 

x2 
Distance of Sensor 2 from 

the left side  
7.300 m 

L Cable length  10.136 m 
 Contact wire section 120 mm2 

B. Wave decomposition based on the analytical method 

The reflection coefficient of the traveling wave at the joints 
can be expressed as follows: 

 , (7) 

where  is the reflection coefficient and RA  and  are the 

amplitudes of the reflection and incident waves, respectively. 
However, only the composite wave is obtained in the 
experimental test shown in Fig. 5, which is a mixed signal of 
the incident and reflection waves. Fig. 6 presents a schematic 
of the complex wave propagation in the single CW test. The 
ideally fixed ends of CW allow it to work as an enclosed 
reflective cavity, in which multiple wave components exist 
because of the back-and-forth reflection of the initiated wave at 
both ends. Moreover, the wave components, which have the 
same frequency but different phases, reflect and diffract when 
passing the sensors. 

Fig. 7 shows the time history and spectrum of the 
acceleration obtained using Sensor 1 with 15-kN tension. The 
signal acquired using Sensor 1 is a superposition of different 
wave components. Thus, the most challenging aspect of 
reflection coefficient identification is separating the incident 
and reflection waves from the composite signal. 

Fig. 6 Waves traveling in the cable. Subscripts R and T denote wave reflection 
and transmission, respectively. Superscripts 1 and 2 denote the waves influenced 
by Sensors 1 and 2, respectively.
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Fig. 7 Cable vibration information obtained using Sensor 1. (a) Acceleration. (b) 
Frequency. 

 

Fig. 8 Waves traveling in the cable using a simplified model. 

For the single CW test, the wave components have two 
propagation directions—left and right. To simplify the 
calculation, the complex wave propagation in Fig. 6 is reduced 
to a simple model in Fig. 8. The waves traveling in CW are 
divided into two types based on their propagation directions, 

namely, the rightward propagation wave  and 

leftward propagation wave . 

According to wave propagation theory, when the dispersion 
occurring at a high frequency is not considered, different wave 
propagation directions have the same frequency but can have 
different amplitudes and phases [38]. Therefore, the composite 
signal at Sensor 1 can be expressed as follows: 

, (8) 

in which 

 , (9) 

where  is the wavenumber and subscripts R  and L  are the 
rightward and leftward propagation waves, respectively. 

The composite signal at Sensor 2 can be expressed in the 
same form: 

 , (10) 

in which 
 , (11) 

where  is the distance between the sensors. 
Equations (8) and (10) are converted into the following 

forms based on the Euler’s formula for derivation: 

  (12) 

 , (13) 

where     is the plural transformation operator,  is the 

imaginary unit, and  is the Euler number. Then, the 
rightward and leftward propagation waves at Sensor 1 can be 
obtained by coupling Equations (12) and (13): 

  (14) 

 . (15) 

The waves at Sensor 2 can also be obtained as follows: 

  (16) 

 . (17) 

Note that the signal  obtained using the sensors is 

the real part of  ,x t . The Hilbert transform is adopted to 

define the relation between the obtained and analytical signals 
to ensure that the presented decomposition process is applicable 
to the single CW test signal. 

 , (18) 

where  H   is the Hilbert operator. 

For Sensor 1, the rightward incident wave at  is denoted 

as . Then, the reflection coefficient  can be 

directly obtained as 

 , (19) 

in which 

 , 

where  is the travel time from Sensor 1 to Sensor 2,  is 

the wave speed at a certain frequency, and  is 

the rightward propagation wave obtained using Sensor 2 at 
. Based on the aforementioned derivations, the 

decomposition process of the composite signal in the CW tests 
can be described as shown in Fig. 9. 

In Fig. 7(b), the acceleration spectrum has three dominant 
frequencies that represent the first three natural frequencies of 
the single CW. The waves with these three frequencies are 
decomposed to extract the incident and reflection waves using 
the aforementioned decomposition process. According to 
Equations (14)–(18), the rightward and leftward propagation 
waves with a certain frequency obtained using Sensors 1 and 2 
are presented in Fig. 10. 
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Fig. 9 Decomposition process of the composite signal in the CW test. 
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Fig. 10 Wave components with the first-order frequency. (a) Rightward propagation wave at Sensor 1. (b) Leftward propagation wave at Sensor 1. (c) Rightward 
propagation wave at Sensor 2. (d) Leftward propagation wave at Sensor 2. 
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Fig. 11 Reflection coefficients of the single CW with 13-kN and 15-kN tensions. 
Pink area: reflection coefficient with 13-kN tension. Oliver area: reflection 
coefficient with 15-kN tension. Red solid line: theoretical results with 13-kN 
tension. Blue solid line: theoretical results with 15-kN tension. 

first-order second-order

third-order

0.00034
0.00058

0.00082
0.00106

0.0013

0.00034
0.00058

0.00082
0.00106

0.0013

0.00034

0.00058

0.00082

0.00106

0.0013

 

Fig. 12 Reflection coefficient ratios versus tension. 

The classical definition of the reflection coefficient in the 
single cable with attached mass is given as Equation (20): 

 
   2 2

= / 2
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 
 

 
 




， , (20) 

where m  is the weight of mass,   and v  denote the cable 

linear density and the wave speed, respectively.   is the wave 
angular frequency and i  is the imaginary unit. Then it is easy 

to obtain the theoretical reflection coefficients of the single CW 

at different frequencies with the collected parameters in Table II. 
Fig. 11 demonstrates the comparison of reflection 

coefficients between the theoretical results and the test results. 
It is reported that a larger tension in the CW leads to a smaller 
reflection coefficient. And it is also indicated by Fig. 11 that, 
although there are some differences between the theoretical 
results and the test results, the errors are all acceptable with the 
values being kept below 10%. Fig. 12 presents the ratios of the 
differences in the reflection coefficient versus the differences in  
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Fig. 13 (a) Schematic of full-scale catenary uplift detection. (b) Photogrammetric devices and test catenary line. (c) Identification results of the contact wire. 

the tension. The results indicate that the reflection coefficient 
related to the higher-order frequency is more sensitive to 
changes in tension. However, even for CW with 15-kN tension, 
the reflection coefficients related to the main frequencies are 
lower than 0.03. We conclude that the lumped mass is not the 
leading cause of the wave reflection. It is necessary to 
investigate the wave reflection occurring at a real-life dropper 
junction in a full-scale catenary. 

IV. ANALYSIS OF WAVE REFLECTION IN FULL-SCALE 

CATENARY 

Previous studies have shown that the wave reflection 
occurring at the dropper junction has a distinct impact on the 
pantograph–catenary interaction [35][37]. In Section III, the 
single CW test results indicate that the mass discontinuity 
caused by the dropper mass is not the main factor inducing 
wave reflection. For a full-scale catenary structure, which is 
different from the single CW, the wave is reflected and 
diffracted at the dropper clamp as well as transmitted upward 
along MW and back to CW through the dropper connection. 
Therefore, an experimental test is conducted on a full-scale 
catenary to investigate the complex wave propagation behavior 
in this section. Further, an advanced analytical approach is 
provided to extract wave components in different propagation 
stages. 

TABLE III 
PARAMETERS OF THE TESTED CATENARY LINE 

Parameter Value 

Tension force of the contact wire  15 kN 

Tension force of the messenger wire  13 kN 

Interval of adjacent droppers 6.5 m 

Linear density of the contact wire  1.3350 kg/m 

Linear density of the messenger wire 1.0680 kg/m 

A. Test setup of full-scale catenary 

The noncontact measurement approach is adopted to obtain the 
catenary dynamic response and reduce the disturbance of the 
contact sensors in the measurement results. The measurement 
equipment was developed in our previous work based on 
photogrammetry [31] (Fig. 13(a)). In this study, CW vibration 
images are captured using a high-speed linear camera with an 
acquisition frequency of 50 FPS. The photogrammetric devices 
and identification results of CW are presented in Fig. 13(b and 
c), and some of the catenary parameters listed in Table III. In 
this study, the observation position is set at the midpoint 
between Droppers 6 and 7. Then, CW is lifted at a certain height 
to apply impulse excitation near Droppers 8 and 9. The 
measurement results of the CW uplift are shown in Fig. 14, 
along with their spectra. For the full-scale catenary tests in this  
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Fig. 14 Dynamic uplift of the contact wire. (a) Excitation at Dropper 9. (b) Excitation at Dropper 8. (c) Frequencies of (a). (d) Frequencies of (b).

 

Fig. 15 Simplified model considering droppers hanging on CW. (a) Simplified contact wire with double droppers. (b) Simplified contact wire with three droppers. 

 
Fig. 16 Simplified catenary with waves transmitting from MW. (a) Simplified model with a single two-dropper system. (b) Simplified model with double two-
dropper systems. 

paper, only the waves with the first-order frequency are 
considered as the wave energy is mostly centered therein. 

B. Analytical approach to identifying the reflection coefficient 

As the effect of wave propagation in MW has a negligible 
effect on the reflection in CW (Section II), the simplified model 
in Fig. 15(a), which contains one CW and two droppers, is used 

to analyze the wave propagation. The uplift excitation is applied 
to Point A, which induces traveling wave  in CW. Then, 

the wave is reflected and transmitted at every dropper joint. As 
shown in Fig. 15(a), the reflection and transmission waves are 

denoted by cc
R1W , , cc

T1W  and cc
T3W , respectively. 

The two droppers and one CW produce a wave reflective 
cavity, in which multiple wave reflections and transmissions 
occur. Therefore, the composite wave obtained at Point B can 
be divided into two parts: (1) the wave component directly 
transmitted through the cavity without any reflection and 
follows the propagation path A → 1 → 3 → B and (2) the wave 
component generated by multiple reflections in the cavity and 
follows the propagation path A → 1 → 3 → 1 →…→ 3 → B. 

Assuming that the droppers exhibit the same reflection 

property and the change in the phase is negligible,  in Fig. 

15(a) can be expressed as follows: 

 cc-1 0 1
O I I I... nW W W W    , (21) 

in which 

 , (22) 

where  is the number of reflections in the cavity between the 
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two droppers. Then, Equation (21) can be simplified to 
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O I d d1

n

n

W W r r   . (23) 

Based on this concept, more complex structures can be 
analyzed. The CW with three droppers is presented in Fig. 15(b), 
where two reflection cavities are formed. Each cavity comprises 
two adjacent droppers. According to Equations (21) and (22), 
the observation wave in Fig. 15(b) can be expressed as follows: 

 , (24) 

where  and  are the reflection numbers in the first and 
second cavities, respectively. 

Two models are established by considering the waves 
traveling in MW (Fig. 16). The waves are transmitted upward 
from CW to MW and then back to CW through the dropper 
connection. Based on this approach, the composite wave 

 in Fig. 16(a) can be divided into two parts: (1)  
mc

1-1W

—the wave components directly transmitted from MW and 
follow the propagation path A → 1 → 2 → 4 → 2→…→ 4 → 

3 → B and (2)  
mc

1-2W —the wave components generated by the 

multiple reflections of  in CW and follow the 

propagation path A → 1 → 2 →…→ 4 → 3 → 1 →…→ 3 → 
B. 

Then, the composite signal in Fig. 16(a) can be expressed as 
follows: 

 , (25) 

in which 

, (26) 

where  and  are the number of reflections in the cavity 

between two droppers in MW and CW, respectively. 
For the model shown in Fig. 16(b), the composite signal 

 can also be divided into two parts: 

  (27) 

, (28) 

where  and  are the number of reflections in the second 

cavity in MW and CW, respectively. 
Therefore, the composite signals of the two models can be 

expressed as follows: 

 , (29) 

where superscripts 1 and 2 denote the number of the two-
dropper system in the model. 

Because the droppers exhibit the same reflection properties, 
the wave will reflect in similar orders in both the two-dropper 
systems. Considering that the reflection coefficients of the 
catenary structure are always less than 0.5 [39], in this study, 
the maximal order of reflection in the two-dropper system is 
limited to 4, wherein the wave components that decay to less 
than 5% of the initial value are negligible. Then, Equation (29) 
can be rewritten using a given order of reflection . 
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in which 

 

where  and  are the two self-defined functions to 

simplify Equation (30). 
For Equation (30), the wave components arriving at the 

observation site at different times can be obtained using 
different   values. Note that the time differences between the 

wave components are mainly caused by the differences in the 
traveling speed and distance of the waves. The speed of the 
wave traveling in CW and MW is denoted as  and mwv , 

respectively, which can be calculated using their tensions and 
linear densities [40]. The interval between the two adjacent 
droppers is defined as . Then, the time delay caused by the 

reflection in one cavity can be expressed as follows: 

 , (31) 

where  and  are the time delays occurring in CW 

and MW, respectively. 
Considering the plural form of the waves with time delay, 

Equation (30) can be rewritten as follows: 

 , (32) 
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where  is the wave angular frequency and  is the 

operator shown in Equation (18). 

C. Analysis results of wave reflection in catenary 

As the energy of the obtained waves is mainly centered in the 
low-order frequencies (Fig. 14), only waves with first-order 
frequencies are extracted in this study. Based on the measured 
tension forces and linear densities, the traveling speed of the 
wave in CW is nearly similar to that in MW, thus yielding 
approximately similar time decays in the two wires, i.e., 

. 

1) Reflection coefficients of the catenary structure 
For the catenary whose structural parameters are not 

available, extracting the actual reflection coefficient from the 
measured data can help evaluate the contact quality between the 
pantograph and catenary at the theoretical level. 

According to Equations (30)–(32), the reflection coefficient 
of the catenary can be obtained by plugging in the reflection 
order and observation wave. Fig. 17 shows the comparisons of 
the reflection coefficient in CW between the results obtained 
from the field tests and theoretical results. When the back-and-
forth reflections are ignored, i.e., the reflection order is set to 0, 
the reflection coefficient obtained from the measured data and 
the theoretical results differs by more than 50%. As the 
reflection order increases, the error tends to decrease, 
particularly when the value is set to greater than 3. The 
difference can be retained below 5%. 
2) Wave components at the observation site 

Extracting the wave components from the actual measured 
data is meaningful for future research on wave propagation 
characteristics in the catenary structure. For the catenary whose 
design reflection coefficient is available, the proposed 
analytical method provides a feasible approach for 
decomposing the composite signal into wave components with 
different reflection orders. 

According to Equations (30)–(32), the wave components at 
the observation site can be obtained by setting the reflection 
order  to different values when plugging in the design 

reflection coefficients and given incident wave. Based on the 
single CW test, the attached masses have an inconsiderable 
influence on the wave reflection. Thus, the imaginary parts  
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Fig. 17 Reflection coefficients with different reflection orders. Pink area: 
reflection coefficients obtained from the field test. Blue solid line: the 
theoretical value of the reflection coefficient. 
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Fig. 18 Signal extraction and intensities of the wave components. 

related to the clamp masses can be ignored when calculating the 
lower-frequency wave propagation, as shown in Equation (33): 

 .   (33) 

Fig. 18 shows the signal intensities of the wave components 
obtained using the proposed analytical method, all with first-
order frequencies, as shown in the spectrum result. The 
composite signal energy is mainly centered in the wave 
component without the back-and-forth reflections. When the 
reflection order increases, the intensity of the wave component 
rapidly decreases. When the reflection order is set to greater 
than 3, the wave component intensity decreases to a lower level  
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Fig. 19 Intensities of the composite signal obtained using different reflection 
orders. 

that is negligible for the catenary vibration analysis. Fig. 19 
presents the composite signal obtained using different reflection 
orders. Obviously, when the reflection order is set to greater 
than 3, the calculated results are approximately close to the 
measured results. 

V. CONCLUSIONS 

A catenary is a specific type of waveguide structure 
comprising two overhead cables connected by droppers. 
Waveguide discontinuities at the dropper junctions induce wave 
reflection, making the waves traveling in the catenary structure 
to behave more intricately. The catenary reflection coefficient 
at the dropper junction is an important index for assessing the 
contact performance between the pantograph and CW. 
However, obtaining the actual reflection coefficient of the 
catenary based on field measurements is challenging. 

In this study, two kinds of field measurements were 
conducted to obtain the dynamic responses of the single CW 
and full-scale catenary, respectively. On the basis of the 
measured data, a novel analytical approach is proposed to 
identify the catenary structure's actual reflection coefficient 
based on field measurements. The results in the single CW tests, 
which are designed to simulate wave reflection caused by the 
mass discontinuity, are justified effective in identifying the wave 
reflection coefficients with an acceptable error. It is also 
suggested that the dropper clamp has an insignificant influence 
on wave reflection, and the reflection coefficients related to the 
higher frequencies have more sensitivity to tension change. In 
the full-scale catenary test, the reassembled models are applied 
to separate the catenary wave propagation into the CW–CW 
part and CW–MW part, based on which analytical models of 
wave reflection at droppers are formulated. The analytical 
models were proven effective for reflection coefficient 
identification of the catenary and wave component extraction 
based on the measured data. The results also suggest that the 
back-and-forth reflection occurring in the adjacent droppers has 
a noticeable impact on wave propagation. 

In conclusion, this paper proposes an effective approach for 
reflection coefficient identification and wave components 
extraction in the railway catenary structure. The results can help 
reveal the wave propagation characteristics of the catenary 
system in future work and improve pantograph–catenary 
interaction by restraining wave reflection of the catenary 

structure. 
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