
1

 

Abstract—This paper presents a new method for effective 
detection of AC series arc fault (SAF) and extraction of SAF 
characteristics in residential buildings, which addresses the 
challenges with conventional current detection methods in 
discriminating arcing and non-arcing current due to their 
similarity. Different from the traditional method, in the proposed 
method, the differential magnetic flux is coupled to obtain 
high-frequency signals by putting the live line and the neutral line 
through the current transformer, which can effectively solve the 
problem of SAF features disappearing in the trunk-line current. 
However, similar to the traditional method, the effectiveness of 
the proposed coupling method could also be compromised when 
being used in cases with dimmer load and load starting process. 
This is found to be caused by the presence of high-amplitude pulse 
phenomenon in the non-arcing signals in these scenarios, which 
are incorrectly detected as arcing signals in other loads. To 
address this issue, a short-observation-window singular value 
decomposition and reconstruction algorithm (SOW-SVDR) is 
used to enhance the capability to identify SAFs by the coupling 
method. The proposed method has been implemented and 
validated according to UL1699 standard with different types of 
loads connected to the system and also tested under their starting 
processes. The experimental results show that the proposed 
approach is more effective in detecting arc faults compared with 
existing methods.  

Index Terms—Series arc fault, coupling signals, short- 
observation-window singular value decomposition and recon- 
struction (SOW-SVDR), UL1699.  

I. INTRODUCTION

C arc faults (AFs) often appear in residential buildings due 
to non-standard operation of appliances, aged cable 

insulation, etc. During AFs, the temperature can reach a very 
high level, i.e. in the range of thousands of degrees Celsius, 
which can easily lead to fire hazards. According to the latest 
electrical fire reports from China Fire Yearbook and U.S. Fire 
Administration, the proportion of casualties and property losses 
caused by electrical fires still keeps very high. Therefore, it is 
critical to effectively detect arc faults in a timely manner in 
order to minimize the risk of fire accidents. AFs are divided 
into series arc faults (SAFs) and parallel arc faults (PAFs). For 
PAFs, the current signals are relatively obvious and can be 
easily discriminated from normal (non-arcing) ones [1]. 
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However, correct detection and identification of SAFs remain 
to be challenging [2]. The reasons can be listed as follows. 
Firstly, SAF current waveforms can be significantly different 
when different loads and their combination are connected in the 
system and the SAF characteristics can be very similar to the 
current waveforms in some normal-operating appliances, such 
as resistive loads and dimmer loads. Secondly, SAF 
characteristics are susceptible to the parallel circuit and often 
disappear especially when the fault branch is in parallel with 
the resistive load. Moreover, SAF current waveforms are 
impossible to stay invariable even with the same load, which 
makes SAF identification extremely challenging. Therefore, 
most researchers focus on not only current signals, but also 
other types of signals for SAF detection. In general, the SAF 
detection methods can be divided into two main categories, i.e. 
the physical signal detection methods and the electrical signal 
detection methods. The former methods use signals including 
voice, light, heat, electromagnetic radiation and ultraviolet for 
SAF detection [3]. The latter methods are mainly based on 
current and voltage signals [4-5]. 

Since AFs can generate light and voice when they occur, 
reference [6] has used the two signals to identify AFs, which 
can achieve a detection time within 4ms in industries. 
Reference [7] has made use of the length of ultraviolet and 
acoustic emission to detect arcs in the low-voltage 
switchboards. However, these methods have certain 
shortcomings as their performance can be severely affected by 
other normal signals and the place where arcs occur. To solve 
the problems, the detection on electromagnetic radiation is 
proposed to acquire useful signals produced by AFs [8-10]. 
Compared with the above-mentioned methods, the current 
signal-based AF detection method is considered to be more 
promising, because many references prove that there is more 
abundant information in current which can directly reflect 
whether there is an arc. To extract unique arcing current 
characteristics, researchers have introduced a wide range of 
algorithms, which can be classified into three types: 
time-domain analysis, frequency-domain analysis and 
time-frequency-domain analysis. In the time domain, arcing 
current has the shoulders, which mean current value is nearly 
zero when it is around normal zero crossing [11]. However, this 
feature is not suitable to be used for AF detection, because there 
is the same phenomenon in the current when the dimmer load is 
working under the normal state. Some papers extract 
high-frequency pulses by derivative of current, but fail to work 
in the dimmer loads or the corresponding combination loads 
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[12-13]. Although RMS of arcing current is also a noticeable 
feature and is lower than that of normal current, it can easily 
lead to mal-detection of AFs when there are normal voltage 
fluctuations. Due to the limit of the time-domain signals, some 
papers turn to the frequency-domain analysis, because the 
frequency range of AFs is wide, which can reach almost MHz 
[14]. Fast Fourier Transformation (FFT) is commonly used in 
frequency-domain analysis [15]. However, AF detection 
requires a relatively short observation window for fast 
identifying arcs. In FFT, a short observation window will result 
in a low frequency resolution and can cause spectrum leakage. 
Therefore, frequency refinement technology, known as zero 
padding, Zoom-FFT (ZFFT) and Chirp-Z Transformation 
(CZT), is often used to replace FFT. Actually, only 
time-domain analysis or frequency-domain analysis is not 
sufficient, and most papers prefer to combine both of them. 
Reference [16] has analyzed low-frequency harmonic 
components based on CZT, from 0Hz to 500Hz, and difference 
of current signals. Reference [17] proposes to detect SAFs in 
some loads by current amplitude spectrum and norm-based 
sparse representation. Final tests show L3/4 norm is the best 
parameter and its detection accuracy can reach a high level. In 
addition to the aforementioned transformation algorithms, 
Wavelet Transformation (WT) and Stockwell Transformation 
(ST) are also used to detect SAFs, as they can retain the 
time-domain information [18-21]. In WT, wavelet basis 
selection is critical for the detection performance. Reference 
[22] proves that Db13 is a better choice for SAF detection. 
Reference [23] has analyzed arcing waveform distortion by 
Db4-based WT and an improved arc model. In addition, it has 
also analyzed harmonic energy by FFT. Recently, artificial 
intelligence-based (AI) algorithms become increasingly 
popular. In machine learning (ML), softmax regression, neural 
network (NN) with softmax activation function, is often used 
for binary classification, which means that 1 and 0 stand for 
arcs and no arcs, respectively. Reference [24] has decomposed 
current signals by wavelet package. Then, the fault features 
extracted from reconstructed current signals are used as the 
input of support vector machine. Reference [25] has proposed 
to recognize current category before the customized features 
are imported to the full-connected NN. Due to the complexity 
of arcing signals, the NN could be highly complicated, to some 
extent, to enhance detection accuracy by increasing the number 
of input characteristics, units and layers, which could require 
significant computation capability and storage capacity to run 
the algorithms [26-29]. In order to extract more features, NN 
with convolutional layers (CNN) is proposed, e.g. VGG, 
AlexNet, etc. [30], and these methods could make the AF 
detection task more time-consuming. It should be noted that, in 
these methods, hyperparameters need to be constantly adjusted 
so as to find out relatively appropriate values for identifying 
SAFs and solve over-fitting and under-fitting issues, which 
could be significantly time-consuming. Furthermore, it is also 
likely that the proposed NN or CNN might not work not well 
after a certainly period of time because of variable circuits. As a 
result, the NN or CNN has to be re-adjusted, along with a series 
of actions, e.g. data augmentation [31]. 

To solve the problem that SAF characteristics change with 
loads, reference [32] has preliminarily proposed a coupling 
method to pass the live line and the neutral one through the 
current transformer to obtain the high-frequency oscillating 
pulses of SAFs. The currents of the two line are with same 
magnitude but opposite directions. In reality, the positions of 
the two cables are asymmetrical, so there is low-amplitude 
differential magnetic flux. When there are no arcs, 
high-frequency components of current are few, and the 
secondary output is nearly zero. On the contrary, the output 
shows many pulses. However, some vital problems, which 
cause a severe limitation on the general applicability of the 
coupling method, are still not addressed: 

(1) The coupling method is not effective when there is 
presence of the dimmer loads and it could mal-detect AFs 
during normal operation, because the output waveform 
contains high-amplitude pulses, which can be confused with 
that in the fault condition. 

(2) Similar to the traditional current detection method, the 
coupling method also experiences mal-detection of AFs during 
in the starting process of loads. Many papers have to increase 
the number of detection cycles to avoid misjudgment from the 
starting process. 

Therefore, in this paper, the aforementioned limitations have 
been fully addressed, and the proposed method offers a 
promising solution for effective SAF detection while being 
capable of avoiding mal-detection in systems with dimmer 
loads and during load staring processes. The main contributions 
and are summarized as follows: 

In Section Ⅱ, the main contribution of the coupling method 
is clearly demonstrated by introducing the flaws of the current 
detection method, which is totally different from reference [32]. 
Then, although the coupling method can realize classification 
effect to distinguish between arcing signals and non-arcing 
ones in most loads, it fails to work in the dimmer loads, where 
the normal signals are similar to the fault ones. Therefore, in 
Section Ⅲ, the coupling method based on a short-observation 
-window singular value decomposition and reconstruction 
algorithm is proposed to achieve correct classification for arc 
fault detection. The algorithm can filter out the non-arcing 
pulses and retain the arcing pulses to promise the detection 
reliability. Meanwhile, SOW-SVDR can weaken the influence 
from the appliance staring process to a large extent and 
decrease the additional detection cycles used for it. Finally, the 
experimental results show that the proposed detection strategy 
can effectively identify arc faults in Section Ⅳ.     

II. ARC FAULT DETECTION METHODS  

A. Limitation of Traditional Current Detection Method 

When SAFs occur, there are some corresponding fault 
characteristics in the load current. In order to extract them, most 
papers analyze the difference between non-arcing current and 
arcing current in the time domain and the frequency domain. 
However, the authors have found that the arcing characteristics, 
in the detected current, tend to disappear when one branch 
where SAFs occur is in parallel with another normal one. To 
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illustrate the phenomenon, an incandescent lamp (200W) is 
chosen for the fault branch load, and a resistance (22Ω) is 
chosen for the normal branch load as shown in Fig. 1(a). The 
waveforms of the trunk current under no arcs and arcs are 
shown in Fig. 1 (b) and (c) respectively. It can be seen from Fig. 
1 that there is no clear difference between the arcing waveform 
and the non-arcing one, as the arcing characteristics are so 
small that they may not be noticeable in the trunk current when 
the trunk current amplitude is high. Under this circumstance, 
whether time-domain analysis or frequency-domain analysis 
will fail to extract arcing features. Fig. 2 presents the methods 
based on the first derivative and CZT respectively, which try to 
obtain unique features of arcing current in Fig. 1 (c). The first 
derivative is an algorithm commonly used to obtain arcing 
pulses in many papers [12-13]. The amplitude in Fig. 2 (a) and 
(b) is limited to 1x106 because of the 1MHz sampling rate. In 
CZT, high frequency resolution (FR) is adopted to obtain 
detailed information of SAFs in the frequency band of [0-500] 
Hz, which has been used in [16]. The observation window is 
0.1s, and the sampling rate is 1MHz. The refining multiple is 
100000 (0.1×1000000). The interesting frequency band is 
[0-500] Hz. Therefore, FR is 5mHz (500/100000). However, 
the capability of identifying SAFs are not satisfactory with 
either the time domain or the frequency domain. In Fig. 2, the 
non-arcing signals are almost the same as the arcing ones. 

 
(a) 

   
(b)                                                            (c) 

Fig. 1.  Trunk current waveforms under arcs and no arcs to show the limitation 
in the traditional method. (a) Schematic of the experimental platform. (b) 
Non-arcing waveform. (c) Arcing waveform. 

  
(a)                                                          (b) 

 
     

 

(c)                                                          (d) 
Fig. 2.  Time domain analysis (di/dt) and frequency domain analysis (CZT) to 
show the limitation in the traditional method. (a) Waveform of the first 

derivative of non-arcing current. (b) Waveform of the first derivative of arcing 
current. (c) Spectrum of non-arcing current. (d) Spectrum of arcing current. 

B. Advantage of the Proposed Coupling Method 

In order to solve the problem mentioned above, a coupling 
method is proposed to extract the small fault characteristics. In 
Fig. 3, the live line and the neutral line are passed through the 
current transformer. Their current amplitudes are equal, but 
with opposite directions. It is noted that the transformer 
aperture just accommodates two wires. 

 

 
Fig. 3.  Schematic of the coupling method. 
 

The two detected currents can be expressed by Fourier 
expansion: 
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Therefore, their corresponding magnetic flux can be 
approximately expressed below:  
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the law of electromagnetic induction, the output voltage ( )u t  
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In reality, 
m
k   is not equal to 

m
k   due to the asymmetrical 

positions of the two cables, and their difference value is 
expected to be very small. Assuming the value can be replaced 
by a small-value constant   which is not related to the 

harmonic order: 

                                    1
( )

( )
di t

u t
dt

                                   (5) 

As it can be seen from the above mentioned equation, the 
coupling output voltage is a small-value constant multiplies the 
derivative result of the trunk current. It means that the coupling 
method can extract high-slope arcing pulses (high-frequency 
components) and filter out low-frequency current, which is 
verified in Fig. 4. 

  
(a)                                                           (b) 

Fig. 4.  Verification of the equation (5). (a) Arcing current waveform of the 
vacuum cleaner. (b) Corresponding coupling voltage waveform. 

 
 

When the detected current waveform is smooth with only 
low-frequency components, the output voltage is nearly zero. 
On the contrary, the output voltage is not zero when there are 
high-frequency components in the detected current. This 
principle provides an ideal indicator for identifying SAFs in 
most loads, because there are abundant high-frequency pulses 

in arcing current [33]. In Fig. 1 (a), the resistance current is 
resi
i  

and its maximum angular frequency is 
1

 . The incandescent 

lamp current is 
inca
i  and its maximum angular frequency is 

2
 . 

When SAFs occur, 
2

  is much larger than 
1

 , and ( )u t  can 

be written as: 
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dt dt
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                      (6) 

In the equation (6), the derivative result of 
resi
i  is a 

small-amplitude signal, which can be neglected because of   

and its low-frequency components. Therefore, that is the reason 
why the coupling method can extract the arcing features which 
are not noticeable and difficult to detect in the trunk current. Fig. 
5 (b) shows that the proposed coupling method can solve the 
problems in the traditional current detection method of Fig. 5 
(a). By the coupling method, there is clear difference between 
arcs and no arcs in Fig. 5 (b). 

 
(a)                                                           (b) 

Fig. 5.  Comparison between the traditional current detection method and the 
proposed coupling method. (a) Trunk-line current waveform before and after 
arc occurrence. (b) Corresponding coupling voltage waveform. 

 TABLE I 
COMPARISON BETWEEN TRADITIONAL METHOD AND COUPLING METHOD 

Method                            
Ability to extract small- 

amplitude arcing features: 
(Earcing-Enon-arcing)/ Enon-arcing 

Current detection with time-domain 
analysis (di/di algorithm) 

 

<0.01 (Weak) 

Current detection with 
frequency-domain analysis (FFT 

algorithm: FR=1Hz) 

<0.01 (Weak) 

  
Current detection with 

frequency-domain analysis (CZT 
algorithm: FR=5mHz) 

 
Current detection with 

time-frequency-domain analysis 
(Db4/Db13-based WT algorithm) 

 
Coupling voltage detection 

<0.01 (Weak) 
 
 
 

<0.01 (Weak) 
 
 
 

=6.06 (Strong) 

 
Finally, in the aspect of extracting small-amplitude arcing 

features, the comparison between the traditional method and 
the proposed one is shown in Table I. In the traditional method, 
the authors have tried numerous algorithms proposed in 
existing publications, including FFT, WT and CZT, in order to 
solve the problem that arcing characteristics disappear in the 
trunk-line current, but none of them provides satisfactory 
performance. In Table I, a quantitative parameter is used to 
confirm the ability to extract small-amplitude arcing features. 
Since the arcing waveform contains many pulses, the difference 
value of the variance operation between the non-arcing 
waveform and the arcing one should be very large. The bigger 
value it shows, the more arcing features we can extract. As a 
comparison, the coupling method proposed in this paper shows 
much stronger capability in SAF detection, which successfully 
addresses the limitations in the aforementioned algorithms and 
provides a promising solution for effective SAFs detection. The 
comparison in Table Ⅰ can be also verified in Fig. 1, 2 and 5. 

III. COUPLING METHOD BASED ON SINGULAR VALUE 

DECOMPOSITION AND RECONSTRUCTION 

Fig. 6 shows the coupling waveforms under arcs and no arcs, 
respectively.  

 

 
(a)                                                          (b) 

 
(c)                                                          (d) 

Fig. 6.  Coupling voltage waveforms under arcs and no arcs, respectively. (a) 
Normal waveform in the computer load. (b) Fault waveform in the computer 
load. (c) Normal waveform in the load of fluorescent lamps. (d) Fault 
waveform in the load of fluorescent lamps. 

③ 
② 

① ③ 
② 

① 
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Just like Fig. 6 (a) and (c), in most loads, the non-arcing 
coupling waveforms are stable signals, nearly zero, because 
there are few high-frequency pulses in their current, which 
makes di/dt and u(t) to be a small value. Just like Fig. 6 (b) and 
(d), the arcing coupling waveforms show fluctuation 
phenomenon and contain lots of pulses, because di/dt and u(t) 
are very big, and the pulses in load current will be coupled by 
the proposed method. Thanks to the advantages of the proposed 
coupling method, it solves the problem (hard to obtain common 
features due to the different waveforms) in the traditional 
detection method mentioned in Section Ⅰ. Under the proposed 
coupling method, there are clear fault characteristics when SAF 
occurs, and it is easy to judge whether there is an arc fault by 
some simple algorithms, such as finite difference, variance, etc. 

However, when the dimmer load is connected and under 
normal operation, there are also high-amplitude pulses in the 
coupling waveform, and they are often incorrectly detected as 
arcing faults. The undesirable phenomenon could result in 
misjudgment if the aforementioned algorithms are used for 
identifying SAFs. As shown in Fig. 7 (a) and (b), the high rate 
of current rise which is caused by turning on the dimmer will be 
extracted by the coupling method. The non-arcing pulses in the 
dimmer load are similar to the arcing ones in the resistance and 
the air compressor. Furthermore, the frequency range of the 
non-arcing pulses is relatively wide (from 50Hz to the range of 
MHz), which makes it challenging to filter them out. 

 
(a)                                                          (b) 

 
(c)                                                          (d) 

Fig. 7.  Misjudgment caused by the dimmer load. (a) Normal current waveform 
in the dimmer load. (b) Normal coupling voltage waveform in the dimmer load. 
(c) Fault coupling voltage waveform in the resistance. (d) Fault coupling 
voltage waveform in the air compressor. 

A. Short-Observation-Window Singular Value Decomposition 
and Reconstruction (SOW-SVDR) 

Compared with eigendecomposition, SVD is a more flexible 
algorithm which can transform an arbitrary matrix into many 
components. These components stand for characteristics of the 
decomposed matrix. Assuming the number of samples is k (u1, 
u2, …, um, …, uk) for the measured coupling signals in a short 

window, and a matrix 
n m
P


 (k=n×m) can be composed of these 

samples: 
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Then, the matrix 
n m
P


 can be decomposed as follows [34]: 
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Where 
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W  and 
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G


 are orthogonal matrixes, and T 

represents the transpose operation. They can be obtained by the 
following equations [34]: 
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Since TP P  and TPP  are symmetric matrixes, they can be 
diagonalized. Meanwhile, they share the same nonzero 

eigenvalues (
1 i
  ), which constitute the matrix 

1  and the 

matrix 
2
 . The columns of the matrix G are composed of the 

eigenvectors (
1 m
g g ) of  TP P , and the columns of the matrix 

W  are composed of the eigenvectors ( 
1 n
w w ) of TPP . 

Assuming that m is bigger than n in the matrix 
n m
P


. Therefore, 

the equation (9) can be further expressed: 
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Where 
i

  is called the singular value. In the matrix V , the 

singular values are put in the descending order,  
1 n

   . 

The equation (10) indicates that the matrix 
n m
P


 can be 

expressed by n characteristics. Each of the singular values and 
its eigenvectors represent a feature. If a certain singular value is 
set to be zero and the new components are reconstructed, the 

matrix 
n m
P


 will lose the corresponding feature. It can realize 

the effect of filtering out unwanted signals.  

B. Proposed SOW-SVDR in Detail 

Firstly, the frequency information and the sampling rate of 
the measured signals should be confirmed. After arcing signal 
analysis under some loads, the authors have found that there is 
abundant arcing information in the frequency range of [0-400] 
kHz. For example, the frequency-domain analysis on the arcing 
signals is shown in Fig. 8, when SAFs occur under the dimmer 
load. Therefore, according to the sampling theory, the sampling 
rate is selected as 1MHz, and a low-pass filter (cut-off 
frequency: 400kHz) is used to suppress the information higher 
than 400kHz. The observation window will influence the time 
of identifying SAFs, which means it should be as short as 
possible. However, the arcing information will be insufficient 
for detection, if a too short observation window is used. Since 
the time-varying resistance of SAFs can be approximately 

① 

② 

① ② 
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regarded as a 0.01ms periodic function, the arcing waveform 
can be also regarded as a periodic waveform. The observation 
window is selected as the integral multiples of the period to 
cover the periodic features. We have analyzed 0.01s 
observation length, but it contains few arcing information. 
Therefore, the window length is selected as 0.02. Actually, 
according to UL1699, the observation length selection is not 
too strict, as long as the detection time is shorter than the 
required time. The observation window is selected as 0.02s. 
The number of samples (u1, u2, u3 … u20000) is 20000 (=k) in 
every observation window. In the matrix V, the smaller of the 
two parameters, n and m, influences the number of features. 
More features are helpful for correctly filtering out the 
non-arcing pulses. Thus, n and m are set as 100 and 200, 
respectively. The matrix P is written below: 

                           
1 200

100 200

19801 20000

...u u

P

u u


 
 

  
 
 

  



                     (11) 

After 
1

  and 
2

  is set as 0, the changed components are 

reconstructed, which can solve the problem in Fig. 7. Fig. 9 
shows the reconstructed waveforms from Fig. 7 (b), (c) and (d). 
The non-arcing pulses under the dimmer load are filtered out. In 
addition, most of the arcing ones are retained. Compared with 
other algorithms in Table II, the proposed method can enhance 
the identifying capability under the coupling method. In WT 
and reconstruction, the non-arcing pulses cannot be filtered out, 
because they exist in each decomposition layer by 
multi-resolution analysis. Then, correlation coefficient analysis, 
which is popular to evaluate waveform similarity for fault 
detection in power system, has been also tried to recognize the 
dimmer feature, cyclical fluctuation about 0.02s. In theory, the 
arcing coefficient should be small than the non-arcing one 
because of the low similarity among the arcing waveforms. 
However, the results are contrary to expectation, which 
indicates this algorithm has poor performance in practical 
experiments. 

 
Fig. 8.  Frequency analysis of coupling signals in the dimmer load. 

    
(a)                                                                    (b) 

 
(c)    

Fig. 9.  Reconstructed waveforms from Fig. 7. (a) Normal coupling voltage 
waveform of the dimmer load. (b) Fault coupling voltage waveform of the 
resistance. (c) Fault coupling voltage waveform of the air compressor. 

TABLE II 
ABILITY TO SOLVE THE PROBLEM IN FIG. 7 BY DIFFERENT ALGORITHMS 

Method 
Ability to recognize the non-arcing 

pulses 

Proposed SOW-SVDR 
 

Strong 
(can filter out the non-arcing pulses 
while retaining the arcing ones) 

WT and reconstruction Weak 
 (cannot filter out the non-arcing pulses 

while retaining the arcing ones) 
Correlation coefficient analysis 

based on Pearson, Spearman 
and Kendall, respectively 

Weak 
(no difference between the arcing 
coefficient and the normal one) 

 
The appliance starting process is a difficult problem for SAF 

detection. In traditional current detection, the starting current 
characteristics are similar to the arcing ones. There is also this 
problem in the coupling method. Many papers increase the 
number of detection cycles owing to the short starting time in 
order to avoid misjudgment caused by the staring process. This 
method increases additional time for identifying SAFs. 
Fortunately, SOW-SVDR can filter out the non-arcing pulses 
from the starting process and decrease the additional time used 
for it, which is proved in Fig. 10. 

 
  

 

 
 

(a)                                                          (b) 

     
(c)                                                           (d) 

Fig. 10.  Starting process in the resistance load. (a) Current waveform. (b) 
Coupling voltage waveform. (c) Coupling voltage waveform in a 20ms 
observation window. (d) Reconstructed waveform of (c). 

C. SAF Detection Strategy 

The coupling method based on SOW-SVDR realizes 
satisfactory classification between arcing signals and 
non-arcing ones. When no SAF occurs, the coupling waveform 
is stable, and each sample amplitude is approximately zero. On 
the contrary, there are some pulses in the coupling waveform, 
when SAFs occur. According to this feature of the 
reconstructed signals, the second order cumulant algorithm 
(variance) is used to identify SAFs: 

                                     2

1

1
( )

k

i
i

E X
k




                                   (12) 

Where k is the number of samples, and μ is the sample mean. 
The equation (12) is simplify as follows, because its division 
calculation plays a minor role here.  

                                    2

1

( )
k

i
i

E X 


                                  (13) 

The brief detection strategy is shown in Fig. 11. Finite 
difference that is sensitive to the arcing pulses is used for 
preprocessing the input data, which can enhance the ability to 
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identify SAFs. Since it will lose one point, one more sample is 
required based on one observation window (k=20000). Here, 
some loads are tested to verify the feasibility of the proposed 
strategy. The reason for selecting the 5A resistor, the air 
compressor and the dimmer with three 200W incandescent 
lamps (firing angle 90°) is that their waveforms under arcs and 
no arcs are very similar to each other, which provide a desirable 
testing scenario for validating the effectiveness of the proposed 
algorithm. Under each load, the arcing waveform and the 
non-arcing waveform are continuously calculated 10 times 
(200ms in total), respectively. The results are shown in Fig. 12 
(a). The non-arcing variances range from 0.3 to 0.4, and the 
arcing ones are above 1. The starting process of the three loads 
is also tested, and their results are lower than 0.4 in Fig. 12 (b). 
Therefore, the threshold can be set as 0.6. If the acquired 
variance is smaller than 0.6, it indicates there are no SAFs. 
Otherwise, it indicates there is a SAF. The experiments prove 
that variance recognizes the reconstructed signals well. 
Although the fourth order cumulant (kurtosis) also performs 
well in Table III, its computation is more complex than 
variance, because the computation complexity of k-th order 
cumulant increases with the increase of k. 

 
Fig. 11.  Flowchart of the proposed strategy. 
 

 
(a) 

 
(b) 

Fig. 12.  Calculation results under arc and no arcs. (a) Operation state. (b) 
Starting process. 

TABLE III 
COMPARISON AMONG CUMULANT ALGORITHMS 

Method 
Ability to recognize the 

arcing pulses 

Computation 
complexity 

Second order cumulant 
(variance) 

Strong O(3k) 

   
Third order cumulant 

 
Fourth order cumulant 

(kurtosis) 

Weak 
 

Strong 
 

O(4k) 
 

O(8k) 

IV. EXPERIMENTAL VERIFICATIONS 

To further verify that whether the proposed strategy is 
appropriate for other kinds of loads and their combination, an 
experimental platform has been established according to 
UL1699, which is shown in Fig. 13 [35]. The arc generator can 
generate SAFs by separating the two rods in it. If SAFs are not 
needed, the two rods will be in contact with each other. The 
current transformer with a maximum bandwidth of 10MHz is 
chosen for acquire the high-frequency signals of SAFs. A 
second-order Butterworth low-pass filter is used to suppress 
high-frequency components above 400kHZ. For correct data 
acquisition, the oscilloscope should be isolated from arc signals 
and connected to a 220V isolated voltage source. LOAD 1 and 
LOAD 2 include the 5A resistance, the dimmer with 600W 
incandescent lamps (firing angle 60°, 90° and 120°, 
respectively), the air compressor, the vacuum cleaner, the air 
compressor, the personal computer and the fluorescent lamps. 
In the single load experiments, the switch S1 is turned on, and 
the switch S2 is turned off to realize the trunk fault. Then, each 
of the above-mentioned loads is tested. In the combined load 
experiments, both of the two switches S1 and S2 are turned on 
to realize the branch fault, and one of the branch loads is 
selected as the dimmer with 600W lamps, because the circuits 
involving the dimmer load often lead to unwanted trips. 
Additionally, the 200W lamp is tested in parallel with the 10A 
resistance, where the failure-to-trip situations often occur. The 
test results are from the normal condition, the fault condition 
and the starting condition, respectively, and recorded in Table 
IV, where L1 and L2 mean that the corresponding loads are put 
in LOAD 1 and LOAD 2 of Fig. 13, respectively. For more 
analytical description of the experimental procedure, some 
typical examples in Table IV are taken to introduce how to do 
the experiments. “L1: Resistance (5A)” means that the 5A 
resistance is put in LOAD 1 after the switch S1 is turned on (the 
switch S2 keeps disconnected). “L1: res. 5A+L2: Dim. 600W 
lamps (60°)” means that the resistance and the dimmer are put 
in LOAD 1 and LOAD 2, respectively, after the switches S1 
and S2 are turned on. When the loads are working in the normal 
and arcing conditions, the acquired waveforms are calculated to 
obtain the corresponding variance results. After the loads are 
turned on, the starting waveforms are captured and calculated 
for obtaining the variance results during the starting process. 
All of the normal results and the starting ones are in [0.3-0.4], 
and the fault results are much bigger than 0.4. 

In Table V, the proposed strategy is compared with some 
other strategies published recently. Reference [32] utilizes 
kurtosis and counts the number of pulses to identify arcing 
signals. The proposed strategy appears to fail to work in case 
with the dimmer load, because either the first normal indicator 
(NI) or the second normal one will sometimes be very large, 
which is bigger than the threshold and misjudges there is a SAF. 
Reference [33] considers the non-arcing pulses distribute rarely, 
and the arcing ones distribute abundantly. It divides a long 
observation window into many small ones according to the time 
width of the normal pulses in the dimmer load. However, the 
time width of the normal pulses is changing, which sometimes 
makes the fault indicators (FI) smaller than the thresholds to 
cause missed judgment and probably results in detection 
instability. In appliance starting process, these references 

Input 
(k+1) data 

Finite 
difference 

SOW-
SVDR 

Variance 
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cannot solve the unwanted judgment and have to increase many 
detection cycles to avoid it, which will delay much time for 
detecting SAFs. 

 
TABLE IV 

CALCULATION RESULTS IN DIFFERENT LOADS 

Load 
Number 
of cycles 
(times) 

Enormal 
(V2) 

Earcing 
(V2) 

Estartig-

process 
(V2) 

L1: Resistance (5A) 
 

200 <0.35 >0.82 <0.35 

L1: Dimmer with 
600W lamps (60°) 

100 <0.37 
 

>1.01 <0.38 

 
L1: Dimmer with 
600W lamps (90°) 

 
L1: Dimmer with 
600W lamps (120°) 

 
L1: Personal computer 

 
L1: Air compressor 

 
L1: Vacuum cleaner 

 
L1: Fluorescent lamps 
(80W)+5A resistance 

 
L1: res. 5A+Dim. 
600W lamps (60°) 
 
L1: res. 5A+L2: Dim. 
600W lamps (60°) 
 
L1: Dim. 600W lamps 
(60°)+L2: res. 5A 
 
L1: 200W lamp+L2: 
res. 10A 

 
100 
 
 
100 
 
 
100 
 
200 
 
200 
 
100 
 
 
100 
 
 
100 
 
 
100 
 
 
200 

 
<0.36 

 
<0.36 
 
 
<0.32 
 
<0.35 
 
<0.34 
 
<0.39 
 
 
<0.36 
 
 
<0.35 
 
 
<0.35 
 
 
<0.32 

 
>0.91 
 
 
>1.11 
 
 
>4.21 
 
>0.85 
 
>1.83 
 
>1.2 
 
 
>0.92 
 
 
>0.79 
 
 
>1.08 
 
 
>1.0 

 
<0.39 
 
 
<0.37 
 
 
<0.39 
 
<0.33 
 
<0.35 
 
<0.34 
 
 
<.0.36 
 
 
<0.36 
 
 
<0.36 
 
 
<0.34 

 

 
(a) 

          
 

(b)                                                         (c) 
Fig. 13.  Experimental introduction. (a) Schematic of experimental platform. (b) 
Fault-generation setup. (c) Data acquisition setup.    

TABLE V 
COMPARISON OF THE PERFORMANCE OF DIFFERENT DETECTION STRATEGIES 

Detection 
strategy 

Sampling 
rate 

Circuits with 
the dimmer 

Circuits with 
other loads 

Starting 
process 

[32] 
 

10MHz Fail to work 
(NI ≥ threshold； 

FI ≥ threshold) 

Work well 
(NI < threshold； 

FI ≥ threshold) 

 

Fail to work 
(NI ≥ threshold) 

[33] 1MHz Not reliable 
(NI < threshold； 

FI < threshold) 

Work well 
(NI < threshold； 

FI ≥ threshold) 

 

Fail to work 
(NI ≥ threshold) 

Proposed 
strategy 

1MHz Work well 
(NI < threshold； 

FI ≥ threshold) 

Work well 
(NI < threshold； 

FI ≥ threshold) 

Work well 
(NI < threshold) 

 

V. CONCLUSION 

In this paper, a coupling method based on SOW-SVDR is 
proposed to solve misjudgment and missed judgment caused by 
the similarity between arcing and non-arcing signals. The 
following key conclusions and findings were made from this 
work: 

(1) The traditional current detection methods, which are 
based on FFT, WT and CZT, are not capable of extracting the 
small-amplitude fault features from the trunk-line current, even 
if high frequency resolution is adopted. Compared with these 
methods, the proposed coupling method, which acquires 
differential magnetic flux in the iron core, can effectively solve 
the problem associated with the small-amplitude fault features 
in the trunk-line current. It is convenient for practical 
application to pass the neutral line and the live line through the 
current sensor without any additional hardware design. When 
most loads are working under normal conditions, the 
corresponding output shows flat waveform with approximately 
zero output. When they are working in the fault condition, the 
output shows a series of clear pulses. 

(2) Similar to the traditional method, the proposed coupling 
method experience mal-detection issues in the dimmer load and 
appliance starting process, where the normal signals also have 
fault-like features. Furthermore, it is difficult to filter out these 
undesirable features by some popular algorithms, such as WT 
and the like, because their frequency bands are wide. To solve 
this problem, the SOW-SVDR algorithm, which can 
decompose signals into many components and reconstruct them 
in a short observation window, is proposed to filter out the 
unwanted signals and retain the useful ones for fast detecting 
SAFs. The coupling method based on SOW-SVDR can realize 
the signal classification effect in SAF detection, which is 
suitable to recognize SAFs by simple algorithms. 

(3) According to the signal characteristics processed by the 
coupling method based on SOW-SVDR, the second order 
cumulant algorithm (variance), which is simpler than high 
order cumulant in computation complexity, is used to judge 
whether there is a SAF. The experimental verification has 
demonstrated that the proposed detection strategy can be used 
for effective detection and identification of SAFs. 
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