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System for Wearing Mask Detection
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Abstract— In the era of Corona Virus Disease 2019
(COVID-19), wearing a mask can effectively protect people
from infection risk and largely decrease the spread in public
places, such as hospitals and airports. This brings a demand for
the monitoring instruments that are required to detect people
who are wearing masks. However, this is not the objective of
existing face detection algorithms. In this article, we propose
a two-stage approach to detect wearing masks using hybrid
machine learning techniques. The first stage is designed to
detect candidate wearing mask regions as many as possible,
which is based on the transfer model of Faster_RCNN and
InceptionV2 structure, while the second stage is designed to
verify the real facial masks using a broad learning system. It is
implemented by training a two-class model. Moreover, this article
proposes a data set for wearing mask detection (WMD) that
includes 7804 realistic images. The data set has 26403 wear-
ing masks and covers multiple scenes, which is available at
“https://github.com/BingshuCV/WMD.” Experiments conducted
on the data set demonstrate that the proposed approach achieves
an overall accuracy of 97.32% for simple scene and an overall
accuracy of 91.13% for the complex scene, outperforming the
compared methods.

Index Terms— Broad learning system (BLS), Corona Virus
Disease 2019 (COVID-19), transfer learning, wearing mask
detection (WMD).

I. INTRODUCTION

S INCE the first patient infected by Corona Virus Disease
2019 (COVID-19) has been identified in 2019, the virus

spread the world very fast. It is quickly declared as a global
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Fig. 1. Some results of WMD by the proposed approach.

pandemic by the World Health Organization. By the end
of March 4, 2021, more than 115.22 millions of humans
were infected by the virus, and more than 2.56 millions of
people were dead by the virus or the disease caused by
COVID-19 across the globe, with more being added every
day, according to the COVID-19 dashboard released by the
Johns Hopkins University of Medicine [1].

In the fight against the pandemic coronavirus, many doctors
and epidemiologists hold a view that the transmission of
COVID-19 can be effectively restricted if people wear a mask,
keep social distance, wash hands, and active quarantine. It has
been verified to be very effective that wearing a mask is one
of the main precautionary measures for the public [2]. As a
result, people are encouraged, even forced by laws and rules,
to wear a mask when they need to enter public areas, such as
supermarkets, hospitals, and airports [3], [4].

To beat COVID-19, governments need to guide and monitor
people in public places, for example, noncontact temperate
measurement through monitoring instruments [5]–[8]. How-
ever, monitoring a large number of people in many places is a
challenging task. It involves the detection of wearing masks.
Most of the monitoring instruments lack this function, which
can be implemented by the integration between monitoring
devices and machine learning techniques.

The objective of this article is to design an approach to
detect people who wear a mask, as illustrated in Fig. 1.
The wearing mask is the primary focus in this article
because wearing a mask can effectively protect one from
the infection risks and largely decrease the spread in public
places. Given an input image, the wearing mask regions
will be labeled in the output image by the developed deep
transfer learning model [9], [10] and the broad learning
system (BLS) [11], [12].

To realize the objective, some problems should be
addressed. The first problem is that facial masks have various
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styles, such as orientations and stochastic noise. It easily
results in the lack of facial features and causes the failures
of even state-of-the-art face detection algorithms or models
[13]–[17]. Second, although many face data sets have been
created for face detection [18]–[20], it still lacks data sets for
wearing mask detection (WMD) in realistic scenes. All these
factors lead to WMD a challenging task.

In this article, we propose a two-stage method to detect
masked faces. This can be regarded as rewarding support
for special face detection. The main contributions include the
following.

1) This article proposes a two-stage method for WMD.
It explores the Faster_RCNN framework with Incep-
tionV2 as a predetection stage and uses BLS as a
verification stage. It is verified to be effective by the
combination of two stages.

2) We create a novel data set for WMD from scenes of
struggling against the pandemic. It has 7804 realistic
images with 26 403 masked faces, varying from easy to
hard. The data set will be available to the public soon.

3) Quantitative and visual experiments on the data set
indicate the designed method’s effectiveness, with an
overall 94.19% accuracy outperforming the compared
methods.

II. RELATED WORK

In the past years, facial mask detection is attracting more
and more attention. We will give a brief review of these
detection techniques from two parts: the facial mask detection
methods and the related data sets.

A. Facial Mask Detection Methods

Traditional methods usually used handcrafted features for
face detection. One of the most used features is a haar-like
feature, which can be trained by the AdaBoost algorithm for
face detection [21]. Dewantara and Rhamadhaningrum [22]
exploited the AdaBoost algorithm with Haar, LBP, and HOG
features to train a cascade classifier for multipose masked
face detection. It is reported that using the Haar-like fea-
ture achieves a higher accuracy of 86.9%. Petrovic and
Kocic [23] introduced an affordable IoT-based system for
COVID-19 indoor safety. The mask detection method is based
on three libraries in OpenCV: frontal face, mouth, and nose
classifiers. It detects face first and then verifies it using the
characteristic of mouth and nose.

Deep learning methods based on convolutional neural net-
works (CNNs) have achieved great success in the field of
object detection [9], [10], [24]. Recently, some techniques
have been applied to the field of facial mask detection.
Ge et al. [18] proposed LLE-CNNs for masked face detection.
It includes a proposal module to extract candidate facial
regions, an embedding module to turn a high-dimensional
descriptor into a similarity by using the locally linear embed-
ding (LLE) algorithm, and the verification module to identify
candidate facial regions and refine their positions. It is reported
that the method outperforms six algorithms by more than
15%. Jiang and Fan [25] designed a face mask detector:

RetinaFaceMask. It is comprised of three parts: a feature
pyramid network to fuse multiple semantic feature maps,
a novel context attention module to concentrate on detecting
masked faces, and a cross-class object removal algorithm.
The method [26] explored a transfer learning of inception
structure to detect mask faces. The approach [27] exploited
a deep learning architecture to detect masks and faces and
applied it to the CCTV system to help the authority to take
necessary actions. It achieves 98.7% accuracy on a test set
with 308 images. However, it can only process a fixed size of
64 × 64 images under simple scenes.

Loey et al. [28] proposed a hybrid deep transfer learning
model and machine learning method for masked face detec-
tion. It utilized ResNet50 [29] to extract feature maps and
employed decision trees, support vector machine (SVM), and
ensemble algorithm for recognition. Finally, SVM is selected
as the classifier and achieves 99.49% accuracy on the given
data set. Qin and Li [30] combined image super-resolution
and classification networks as a new condition identification
of face mask-wearing. Experimental results indicate that the
addition of image super-resolution can improve the classi-
fication accuracy by 1.5% than the deep learning method
without a super-resolution module. Militante and Dionisio [31]
used a VGG16 [32] structure for the face mask and physical
distancing detection, which can send out an alarm and a voice
notice if one does not wear a mask or observe the social
distance. The method reached a 97% accuracy on fixed size of
224 ×224 images. The approach designed by Loey et al. [33]
utilized ResNet-50 and YOLOv2 techniques to train a model
for medical masked face detection. By introducing mean IoU
to estimate the best number of anchor boxes, it achieves an
average precision of 81%.

In addition, there are many other techniques [34]–[38]
developed for face and WMD. Accurate locations of facial
masks can improve the accuracy of face recognition algo-
rithms [39]–[43]. In this article, our main concern is WMD,
as shown in Fig. 1.

B. Related Data Sets

Some data sets were created for occluded face or facial
mask detection. Ge et al. [18] created an occluded face
detection data set from the Internet by keywords search “face
mask occlusion cover.” It consists of 25 876 train images and
4935 test images. Each masked face has multiple property
labels: face location, eye location, face direction, occlusion
degree, and occlusion type. Wang et al. [44] proposed a Real
World Masked Face data set. It encompasses 4342 images
and these images are divided three groups according to image
size: smaller than 256 × 256; a fixed size of 256 × 256 and
most of the images are distorted; different sizes of images
without distortion. However, the data set does not provide label
information.

One simulated masked face data set was created by [45].
It includes 826 masked face images and 825 face images.
Each image only has one mask with a large size, which
indicates that it is a simple data set. The authors of [46]
created a data set by selecting images from MAFA [18] and



WANG et al.: HYBRID TRANSFER LEARNING AND BLS FOR WMD IN THE COVID-19 ERA 5009612

Fig. 2. Framework of the proposed approach. Two stages, including predetection and verification, are designed. In the first stage, a detection model is trained
to detect candidate facial regions. In the second stage, a classification model is trained to distinguish realistic facial masks from the background. (a) Train
predetection model. (b) Train verification model.

WIDER FACE [47]. They corrected some errors and provided
labeled information. Adnane Cabani et al. [48] designed a
MaskedFace-Net including face region detection, facial land-
marks detection, mask-to-face mapping, and manual image
filtering to synthesize a total of 137 016 masked face images
with a size of 1024 × 1024. It contains about 49% correctly
masked faces and 51% incorrectly masked faces, which is the
biggest data set for the wearing mask classification task.

In summary, most of the abovementioned data sets were
created from simple scenes or synthesis, lacking labels or a
sense of reality to some degree. In this article, we create a
data set with labels where the original images are from realistic
scenes of fighting against COVID-19. Most of the images have
a variety of sizes and orientations.

III. PROPOSED METHOD

The flowchart of our method is illustrated in Fig. 2.
It includes two stages: predetection and verification. The first
is to use a trained Faster_RCNN model to detect candidate
facial masks, and in the second stage, a classifier trained by
BLS is applied to remove background regions.

A. Deep Transfer Learning Model for Predetection

We develop a deep transfer learning model for the pre-
detection of wearing masks. Wearing mask is the region of
interest (ROI). Detecting those ROIs requires a model that can
propose accurate and effective regions. The region proposal
network (RPN) introduced by the Faster_RCNN framework
can provide a series of candidate regions [9]. Moreover,
the framework offers a powerful new way to generate the
regions with their classification scores after a straightforward
process. Thus, it is a good choice as a predetection module
for our task. The primary principle of this stage is to locate
ROIs as many as possible. The predetection covers four steps
as follows.

1) Extract Feature Maps: A series of convolutional opera-
tions followed by relu and pooling layers is designed to
extract feature maps. The last layer of the feature map
will be used by subsequent RPN and ROI pooling steps.

2) Generate Proposals: It is implemented by RPNs, which
aims to produce sufficient proposals for selection and
is called anchor generator. Each point of the image
can be regarded as an anchor. Four scales (0.25, 0.5,
1.0, 2.0) and three aspect ratios (0.5, 1.0, 2.0) are
set empirically, which ensures that the network gen-
erates enough boxes. RPN includes the box-regression
layer and the box-classification layer. The goal of the
box-regression layer is to adjust the positions of pro-
posals, while the goal of the box-classification layer is
to determine whether a box belongs to an object or
background.

3) Obtain Fixed Dimension of Feature Map: This step
is realized by ROI-pooling. It receives a feature map
from convolutional layers (step 1) and the proposals
generated by RPN (step 2) and produces a fixed-size
feature map from every ROI by max-pooling operation.
It solves the problem of fixed feature map requirements
for subsequent classification and regression. The fixed
dimension of the feature map never relies on input sizes;
it merely depends on the layer’s parameters.

4) Object Classification and Location Regression: This step
receives a fixed dimension of the feature map and out-
puts the probability of classes. Meanwhile, the bounding
box regression is carried out to obtain accurate locations
of boxes. Predicted objects and their locations are gen-
erated finally.

It should be noted that RPN is an effective way to provide
sufficient proposals. It helps the detection model to reach a
good tradeoff between accuracy and computations. After a
straightforward pass of four steps, many candidate regions are
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generated. The loss function for an image is defined as

L({pi}, {ti }) = 1

Ncls

n∑
i

Lcls(pi, p∗
i )

+ λ
1

Nreg

n∑
i

p∗
i L reg(ti , t∗

i ) (1)

where i is the index of an anchor, and pi is the predicted
probability belonging to wearing mask. p∗

i represents the
ground truth; it is 1 if the anchor is positive and is 0 if the
anchor is negative. ti is the predicted coordinates of a box, and
t∗
i is the ground-truth coordinates of a positive anchor. Lcls is

the classification loss, and Lcls is the regression loss. p∗
i L reg

means that only positive anchors are computed. Classification
loss and regression loss are normalized by terms Ncls and Nreg.
λ is denoted as a weighted balancing

Generally, traditional convolution networks used in [9] have
higher complexity and computation. When convolution net-
works reduce dimensions too many, it may cause information
loss, which is called a representational bottleneck. To address
the issue, the InceptionV2 structure is designed [10], which is
enhanced from the original Inception module first proposed
by Szegedy et al. [49]. It aims to reduce representational
bottlenecks and decrease computational complexity.

Fig. 3 elucidates three modules of InceptionV2 structure.
Module A is designed by factorizing a 5 × 5 convolution
to two 3 × 3 convolutions, which obeys spatial
aggregation principle, as said in [10]. It can reduce
(5 × 5 − (3 × 3 + 3 × 3)/5 × 5) = 28% of computation by
the factorization, leading to a boost in performance.

What is more, spatial factorization into asymmetric convo-
lutions is another strategy to reduce complexity. Module B
illustrates that a n × n can be factorized by a combination of
1 × n and n × 1. For example, a 3 × 3 convolution is replaced
by a 1 × 3 convolution and a 3 × 1 convolution orderly. This
solution of two layers is (3 × 3 − (1 × 3 + 3 × 1)/3 × 3) =
33% cheaper than that of one layer.

Especially, filter banks are expanded to avoid representa-
tional bottlenecks. It means wider than deeper to promote the
high-dimensional representations, which helps process locally
within a network. In summary, three modules in Fig. 3 are
utilized in our predetection model.

In this article, our predetection model is transferred from a
pretrained detection model on the COCO data set [50], [51].
The training data set for mask detection is labeled by a tool
named “LabelImg” [52], as shown in Fig. 2. Candidate regions
with boxes and scores can be generated in the predetection
stage.

B. Broad Learning System for Verification

This stage is to verify the predetection results, whether they
are objects or background. Herein, BLS is exploited. It is
built up in the form of a flat neural network, which is the
main characteristic of BLS [11], [53]. For classification, input
images are first converted into random feature nodes in the
form of “mapped features”; then, all the mapped features are
expanded to feature nodes in the form of “enhanced features.”

Fig. 3. Three modules of the InceptionV2 structure.

This is regarded as a considerable means to explore essential
features from the wide dimension.

Herein, we define the i th group of mapped features by

Mi = ϕ(XWmi + βmi ), i = 1, 2, . . . , p (2)

where Wmi and βmi are generated weights randomly from
specified distribution, and ϕ is a mapping function. To explore
more essential features, the mapped features are fine-tuned by
sparse autoencoder [54]. After a series of mapping operation,
p groups of mapped features are generated, which can be
expressed by a concatenation of M p ≡ [M1, . . . , Mp]. Then,
all the processed features are expanded to enhanced features

E j = σ(M pWe j + βe j ), j = 1, 2, . . . , q (3)

where σ is a nonlinear activation function, e.g., tansig. The
terms We j and βe j are defined as weights generated from
given distribution. The first q groups of enhanced nodes are
expressed by Eq ≡ [E1, . . . , Eq].

All the mapped features and enhanced features are jointly
connected to the output layer

Y = [M1, M2, . . . , Mp, E1, E2, . . . , Eq ]W = [M p|Eq]W (4)

where W is the weights of whole network, and the term Y
represents output. In practice, the selections of parameters
p and q rely on the complexity of task and requirement
of computation cost. The weight W can be derived from
W�[M p|Eq]+Y , where [M p|Eq]+ can be computed by the
pseudo inverse of ridge regression approximation.

In particular, when a designed BLS cannot learn a task
well, an effective solution is to add mapped feature or
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Fig. 4. Verification process by the BLS classifier based on box score.

enhanced feature. This is treated as an incremental learn-
ing, which makes BLS structure built up without retraining
from the scratch. When adding a mapped feature Mp+1 =
ϕ(XWm p+1 + βm p+1), the concatenation of mapped features
become M p+1 ≡ [M1, . . . , Mp+1]. As a consequence,
the enhanced feature nodes can be updated as Eex j �
[σ(M p+1Wex1 + βex1), . . . , σ (M p+1Wex j + βex j )], where Wex j

and βex j j = 1, 2, . . . , q are random weights. If enhanced
feature is added, the new enhanced feature node can be
expressed by Eq+1 = σ(M p+1Wexq+1 + βexq+1).

Herein, we denote Aq
p � [M p|Eq] and Aq+1

p+1 �
[M p|Mp+1|Eexq |Eq+1]. The updated weights can be calculated
by

(Aq+1
p+1)

+ =
[
(Aq

p)
+ − DBT

BT

]
(5)

W q+1
p+1 =

[
W q

p − DBT Y
BT Y

]
(6)

where D = (Aq
p)

+[Mp+1|Eexq |Eq+1]

BT =
{

(C)+ if C �= 0

(1 + DT D)−1 DT (Aq
p)

+ if C = 0
(7)

and C = [Mp+1|Eexq |Eq+1] − Aq
p D.

As can be seen from above derivations, this update of
weight benefits BLS in a fast speed and ensures training
efficiency. This characteristic makes BLS have the flexibility
and adaptability to various application scenes. In terms of
wearing mask classification, a slight BLS model is adequate
for a simple scene, such as indoor conditions. For complex
scenes, one needs to train BLS judiciously to meet the appli-
cation requirements. In this article, the detailed processing in
the second stage is presented in Fig. 4. For a candidate region,
if its score is larger than τh , it will be regarded as a wearing
mask confidently. If its score is less than τl , it will be regarded
as background definitely. Only those regions whose scores are
between τl and τh will be verified by the BLS classifier. The
process does not consider those candidate regions with low
scores. Thus, it can reduce computation costs and is effective
for verification.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results and detailed
analysis for our approach and other methods. The compared
methods are all deep learning algorithms: MobileNet [37],
a commercial software called PaddlePaddle [55], and

TABLE I

DETAILED DESCRIPTION FOR OUR WMD DATA SET

TABLE II

DETAILED DESCRIPTION FOR TEST SET

two Faster_RCNN models: Faster_RCNN-ResNet50 and
Faster_RCNN-InceptionV2 [50], and SSD-InceptionV2 [24].
Details will be illustrated from four parts: self-built wearing
mask data set; evaluation metrics and parameter setting; quan-
titative analysis; and visual results and discussion.

A. Wearing Mask Data Set

As illustrated in Fig. 2, a data set of wearing masks is
created, which includes two parts: the WMD data set and the
wearing mask classification (WMC) data set. The WMD is
used to train a detection model. The WMC is used to train
a two-class classifier. Some of the wearing mask samples in
WMC are from WMD. They will be introduced orderly.

All the images for WMD data set are collected from the
Internet with different sizes and styles. Most of them come
from the realistic scenes of COVID-19 prevention, for exam-
ple, the communities, hospitals, sickrooms, railway stations,
meeting rooms, construction sites, factories, and so forth.
Some samples are shown in Fig. 5. There are three steps
in the process of creating data set. First, coarse images are
cropped from news reports, videos, and other similar small
data sets. Second, some bad samples are removed, and only
the samples having facial masks are chosen. Third, a label
tool named “LabelImg” is exploited to mark the rectangular
positions of wearing masks. By the operation repeatedly,
7804 images with 26 403 labeled masks are generated. The
data set is summarize in Table I. It is open to the public:
“https://github.com/BingshuCV/WMD.”

Especially, the test set is divided into three parts according
to task difficulty: DS1, DS2, and DS3. Table II gives the
statistical information. For DS1, each image has only one
person, i.e., only one wearing mask is included. For DS2,
the number of wearing masks for every image is from two to
four. Each image in DS3 has five and more wearing masks
with small sizes. In summary, multiple scenes are covered in
a total number of 1594 images varying from easy to hard.

Moreover, some samples in the WMC data set are shown
in Fig. 6. WMC includes two classes: wearing masks and
background. Wearing mask samples are extracted from the
train set, as shown in Table I. To be realistic, most of
the background samples are also extracted from the WMD
data set, and some are cropped from the Internet. In total,
19 590 mask samples and 18 555 background samples are
obtained for training.
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Fig. 5. Some images of our WMD data set. It covers various scenes and crowd density. For the first row, each image has only one wearing mask. For
the second row, the number of wearing masks for each image is from two to four. For the third row, each image has five and more wearing masks, and
smaller wearing masks are included.

Fig. 6. Some samples in our WMC data set. Top: wearing mask images.
Bottom: background images.

B. Evaluation Metrics and Parameter Setting

To measure the performance of different methods, eval-
uation metrics need to be invested. Intersection over

Union (IoU ) is always used to compare the predicted boxes
with ground-truth boxes [56]

IoU = |P ⋂
G|

|P ⋃
G| (8)

where P is defined as a predicted box and G is defined as
ground-truth box.

⋂
is the intersection operation, and

⋃
is

the union operation. The range of IoU is 0 ≤ IoU ≤ 1,
which stands for matching confidence. In this article, if it
meets 0.45 ≤ IoU � 1, the predicted box will be seen as
a success.

The metric IoU is used for one box comparison. For a data
set, there are many boxes in images. Thus, common metrics
include Recall, Precision, F1, and False Rate that are used
for the statistical analysis. The term TP represents the number
of positive samples that are classified as wearing masks. The
term FN represents the number of positive samples that are
classified as background. The term FP represents the number
of negative samples that are classified as wearing masks

Recall = TP

TP + FN
(9)

Precision = TP

TP + FP
(10)

F1 = 2 ∗ Recall ∗ Precision

Recall + Precision
(11)

False Rate = FP

TP + FP
. (12)
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TABLE III

RESULTS OF GRID SEARCH FOR TRAINING BLS MODEL

Experiments are conducted on a PC with Windows 10 Oper-
ating System, Intel Core i7-10700F CPU, Tensorflow 1.5,
and NVIDIA Geforce GTX 1660 Super with 6-GB memory.
The structures of compared methods keep up with their
original settings. The PaddlePaddle method [55] provides
a trained model and an API for users to detect wearing
masks. As a software, its mask detection function [55] is
built upon the algorithm [57]. SSD-MobileNet-V1 [37] and
SSD-InceptionV2 [24] are performed under a CPU mode. All
the deep learning frameworks are trained on our data set and
fine-tuned from [50] except the method [55].

For our method, the parameter settings in the predetection
stage are as follows: the maximum of proposals for RPN is
300, the learning rate is 0.0002, the momentum is 0.9, and the
training process runs 200k steps. For the verification stage,
the parameter settings are τl = 0.1 and τh = 0.8; parameters
of the BLS model are selected by grid search; and some results
are given in Table III. We define N1 as the number of groups
of mapped features, N2 as the number of mapped nodes for
each group, and N3 as the number of enhanced feature nodes.
Finally, the parameter setting with the highest test accuracy
(95.351%) is employed: the total number of mapped feature
nodes is 400, and the number of enhanced nodes is 7400. The
outline to BLS is illustrated in Table III, which is generated
on a PC with Windows 10, MATLAB R2017a, and Intel Xeon
CPU E5-1650 V2.

C. Quantitative Analysis

In this part, experiments are conducted on test sets: DS1,
DS2, and DS3. Tables IV–VI elaborate on the detailed quanti-
tative results. It can be seen from the tables that the tendency
of Recall and F1 in the three tables both decrease for all

TABLE IV

QUANTITATIVE COMPARISON (%) OF THE METHODS ON DS1 SET

TABLE V

QUANTITATIVE COMPARISON (%) OF THE METHODS ON DS2 SET

TABLE VI

QUANTITATIVE COMPARISON (%) OF THE METHODS ON DS3 SET

TABLE VII

OVERALL QUANTITATIVE COMPARISON (%) ON THE WHOLE TEST SET

methods. It clearly indicates that the difficulty level is from
easy to hard for DS1, DS2, and DS3.

Table IV shows that PaddlePaddle achieves a very high
Precision with 99.57%, but its Recall is unsatisfied. One main
reason may be derived from the slightness of its model, which
is based on Pyramidbox [57]. As far as SSD-MobileNet-V1
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Fig. 7. Visual comparison between Faster_RCNN-InceptionV2 and ours. The first and third rows are generated by Faster_RCNN-InceptionV2, and the second
and the fourth rows are generated by our approach.

is concerned, it is inferior to others in the metric of Recall. It is
designed for mobile applications; thus, it has a fast running
speed. However, it is at the cost of accuracy. The F1 value
of SSD-InceptionV2 is 9% more than SSD-MobileNet-V1.
Faster_RCNN-ResNet50 and Faster_RCNN-InceptionV2 are
both built upon the same framework; the difference is
the structure of convolutional layers. It can be seen from
Table IV that the InceptionV2 structure has advantages over
Faster_RCNN-ResNet50 on the metrics of Recall and F1.
Although the Recall of our method is a bit lower than that
of Faster_RCNN-InceptionV2, the proposed method is better
than Faster_RCNN-InceptionV2 in the metrics Precision, F1,
and False Rate.

For the DS2 results in Table V, we experimentally show that
the proposed approach is superior to the compared methods in
the Recall and F1. The detection task for DS2 is harder than
DS1 because most of the samples in DS2 have more variations
and sizes. This can be concluded from the comparison between
Tables IV and V by the metrics of Reacll, Precision, and F1
for any method. Especially, the Rrecall of SSD-MobileNet-
V1 decreases very largely from 75.60% to 45.95% because
shallow layers lead to its weak ability to extract essential
features. SSD-InceptionV2 also suffers the obvious decrease
of Recall from 91.0% to 73.53%. The methods based on the
Faster_RCNN framework tend to obtain more stable and better
results than [37], [55]. Our method is no exception.

DS3 is a more challenging set than the previous two sets
because more extreme small objects are contained. The chang-
ing of Recall sheds light on this point. It can be clearly noted
that SSD-MobileNet-V1 and PaddlePaddle are at a low rhythm
with an obvious decrease of Recall. SSD-MobileNet-V1 fails
to detect wearing masks, with only 30.07%. The F1 values of

the methods [37], [55] are all below 80%. The results of SSD-
InceptionV2 are only better than those of SSD-MobileNet-V1.
It has difficulty in detecting small wearing masks. The
methods based on the Faster_RCNN framework outperform
others obviously. It should be pointed out that our method
achieves the highest Recall value with a competitive Precision
result in Table VI. Meanwhile, Table VII also demonstrates
our approach’s effectiveness and advantages over the com-
pared methods. In summary, three test sets represent different
scenes from the perspective of size, crowd, and variations
in realistic applications. Our approach achieves impressive
results.

Moreover, we also offer a comparison of running time.
Experiments are performed on size of 640 × 480 pixels’
image. The running time for methods is listed: Pad-
dlePaddle (473.5 ms), SSD-MobileNet-V1 (72.8 ms), SSD-
InceptionV2 (201.6 ms), Faster_RCNN-ResNet50 (217.7 ms),
and Faster_RCNN-InceptionV2 (105.8 ms). Among them, our
approach consists of two parts: predetection (Faster_RCNN
framework) and verification (BLS model). The verification
stage mainly depends on the number of candidate regions
within the score range (� τh). It takes about 6.7 ms for our
BLS model to process an image with 32 × 32 pixels. If all
the scores are higher than τh , the BLS model would not be
carried out, and the computations are saved.

D. Visual Results and Discussion

Fig. 7 present a visual comparison between Faster_RCNN-
InceptionV2 and ours. For the candidate regions with low
scores, our method is able to remove background regions and
ensure the Precision. For the fourth column, the white protec-
tive suit and pale hoodie hat are classified as wearing masks
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Fig. 8. More visual results of WMD. The first and second rows are the results of DS1. The third and fourth rows are the results of DS2. The remaining
rows are the results of DS3.

by mistake because they look like a mask in color and shape.
For the fifth columns, some hands are classified as wearing

masks with medium scores; these mistakes are inevitable for
the Faster_RCNN framework. By the verification of the BLS
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Fig. 9. Apply our approach into face/mask detection. The green boxes
represent the wearing masks, and the yellow boxes represent the faces.

Fig. 10. Extend our approach to the classification of wearing mask. The first
row (green boxes) represents the correct class Mask: mask covering nose,
mouth, and chin. The second row (blue boxes) represents the incorrect class
Mask_Chin: mask only covering chin. The third row (red boxes) represents
the incorrect class Mask_Mouth_Chin: mask only covering mouth and chin.

classifier, these mistakes can be corrected effectively. More
visual results are given in Fig. 8.

We also conduct an experiment of detecting one who wears
a mask or not. If there are faces and wearing masks in images,
we detect both of them. To reach the goal, we create a face data
set that encompasses more than 16k faces. Then, we combine it
with the wearing mask data set together to train our model. The
parameters of our model remain unchanged except for adding
a face category. Some detection results are shown in Fig. 9.
What is more, our approach is expected to combine with
infrared thermal imaging temperature measurement technique,
protecting the public service professionals and nucleic acid test
from the COVID-19 infection risks caused by close contacts.
Therefore, our approach is expected to be promising.

In addition, we extend our work with the classifica-
tion of correct wearing mask and incorrect wearing mask.
A method designed by [23] is utilized for comparison. Its
implementation depends on OpenCV library classifiers. If a
face region is detected, nose detection and mouth detec-
tion will be applied to predict whether there is a mask
or not and whether wearing a mask is correct or not.
The data set used for experiments is proposed by [48].
A total of 13 200 images are selected randomly, including
three categories: Mask(correct), Mask_Chin(incorrect), and
Mask_Mouth_Chin(incorrect). The used data set covers the
train set (7500 images), val set (1200 images), and test set
(4500 images). The accuracy results obtained by [23] are
correct Mask (66.87%), incorrect Mask_Chin (84.4%), and
incorrect Mask_Mouth_Chin (67.73%). The accuracy results
obtained by our method are correct Mask (99.87%), incor-

Fig. 11. Some detection failures, including the small objects and facial
regions occluded by whole protective clothing.

rect Mask_Chin (99.93%), and incorrect Mask_Mouth_Chin
(97.47%). It is clearly noted that our method achieves com-
petitive results, outperforming the method [23] significantly.
Some visual results generated by our method are presented
in Fig. 10.

However, there are still some failures in results, as shown
in Fig. 11. It is difficult for our method to deal with small
objects and the facial almost protected by protective clothing,
mask, and medical goggles. Insufficient features might be
the main reason. A possible solution to this problem is to
apply image super-resolution with the current approach. In this
regard, more research needs to be investigated.

V. CONCLUSION

In this article, we propose a hybrid deep transfer learning
and BLS for facial mask detection. It is designed to contain
two stages: predetection and verification. The predetection
is implemented by the Faster_RCNN framework through a
transfer learning technique. The detection model is fine-tuned
from a multiple-class detection model. The verification is
implemented by a classifier of BLS. With a low score setting in
predetection, more candidate regions are used for verification.
This strategy is able to reach a tradeoff between Recall
and Precision. Notably, we build a wearing mask data set
containing 17 654 train masks, 1936 val masks, and 6813 test
masks. The test set encompasses three sets varying from easy
to hard. Experimental results shed light on our approach’s
effectiveness with a Recall of 93.54% and a Precision of
94.84% and advantages over the compared methods. The
proposed method is expected to detect wearing masks to
help realize the functions, such as noncontact temperature
measurement and monitoring crowd in the pandemic era and
other situations. Hopefully, our work can provide some help
in the fighting against COVID-19.
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