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Abstract

Seven decades have passed since the Schumann Resonances (SRs) were
identified. Since then, their research interest has increased, currently be-
ing a topic of significance. Nonetheless, the papers that study their nature
from the frequency perspective are in clear majority regarding those who
focus on the time domain. To fill this gap in the literature and fur-
ther characterize the SRs, a method to perform statistical analysis on the
SRs signal in the time domain has been developed. For any given seg-
ment of data, the analysis performs a Maximum Likelihood Estimation
(MLE) of the statistical parameters from a group of previously selected
distributions. After that, the best fit among the target distributions is
selected through the application of Akaike Information Criterion (AIC).
The method is tested by analyzing a month’s worth of data, showing the
general analysis’ results and discussing the relationship between the cho-
sen target distributions and common aspects between the time segments
fitted to them. The reliability of the method’s results is also discussed by
looking at different aspects of the analysis. Special emphasis is put over
the results being correlated with lightning activity. This correlation high-
lights the usefulness of the method, given the well established relationship
between lightning and SRs.
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1 Introduction

In 1952, Winfried Otto Schumann mathematically predicted the resonant phe-
nomenon in the earth-ionosphere cavity [1], and its appearance on the Extreme
Low Frequency (ELF) band of the electromagnetic spectrum. Since then, the
topic has gained interest over time and the Schumann Resonances (SRs) have
been studied to understand their behavior and role on Earth’s physical pro-
cesses.

At the present time, Earth’s lightning activity is accepted as the main source
of SRs [2], with the inverse problem of extracting total lightning activity from
its records still under research [3]. Nonetheless, other natural phenomena con-
tribute and/or affect the signal, like solar activity [4, 5] and gamma rays [6, 7].
There are studies linking SRs with global temperature [8] and more recently
with earthquakes, a topic of interest since SRs monitoring might help in their
early detection [9, 10].

In the course of the last decade, researchers have shifted efforts towards
developing computer simulations of the phenomenon [11]. The most extended
method is using finite-difference time-domain techniques to solve SRs equations
in the time domain, [12, 13] but there are other methods, like the one described
in [14] where random values extracted from specific distributions are supplied
to the equations that describe SRs in the time domain. Besides in simulation
oriented works, literature on the topic of SRs time domain analysis is scarce,
with only a few researchers taking this approach [15]. This work was developed
to contribute into filling this gap.

A prevalent way to analyze time domain signals is through statistical meth-
ods. Due to Shannon’s information theory [16], these are commonly used on
communications [17, 18] but are also applied on other fields related to signal
processing such as audio studies [19], or even epidemiology [20].

Even when some works refer to the SRs statistically [15, 21], the topic has
not been addressed directly to the best of our recollection. It is common to
assume that natural processes are typically Gaussian [22, 23] but this is not the
case in phenomena belonging to complex systems [24]. Consequently, there is
interest in providing a statistical description of SRs signal in the time domain
in order to refine its understanding.

2 Purpose and analysis features

The goal of this article is to ascertain the statistical nature of the time domain
aspect of the electromagnetic signals belonging to the 1 to 100Hz band, with
a special focus on SRs. Given the many factors exerting influence over the
medium and the signal, the nature of the measurand changes over time, caus-
ing measurements to have low reproducibility. Consequently, different aspects
should be taken into account while analyzing the registers, such as the duration
of analyzed data and the predominant signal on a given time.

To pursue the main goal while addressing the issues mentioned above, our
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analysis splits the analyzed data into segments. Then, among a set of previously
chosen distributions, it finds the one that fits each segment best. The measure-
ment system and data format will be described below, and then the analysis
method will be explained in detail.

(a) Capture from 15-Apr-2016 02:23:05 to
02:33:05 with no unexpected significant
disturbances. The data point shows the
value of the European power grid signal.

(b) Capture from 15-Apr-2016 11:42:51 to
11:52:51 with low frequency noise and the
European power grid signal, both peaks
characterized with datapoints.

Figure 1: Two 10 minute captures in the frequency domain, with the SRs resonance modes
numbered.

2.1 ELF station and data files

The data used in this study comes from our ELF station in Sierra de los Filabres,
its closest landmark being Calar Alto astronomical observatory (Lat 37.226,
Long -2.546), Almeŕıa, Spain. Its remote location minimizes interference from
man-made signals. The main sensing equipment installed in the station is de-
scribed and characterized in [25]. It is worth highlighting the presence of two
sensing channels fed by high inductance coils acting as sensors, one oriented
North - South (NS) and the other East - West (EW).

The resulting measurements are relayed via radio link to a server in the
University of Almeŕıa, where data from each channel is stored separately in
30 minute files, with a sampling frequency of 187Hz (336600 samples per file)
and a bandwidth ranging from 1 to 100Hz. Before this analysis, the data was
calibrated to remove any non-linearity caused by the sensors.

2.2 General aspects of the analysis

There are other signals in the 1 to 100Hz band that mask the SRs. Particularly,
the 50Hz signal from Europe power grid and the 60Hz signal from America
and Asia are always present. Other common disturbance appears on the low
frequency range of the sensors’ bandwidth, caused by the wind. The effect of
these unwanted signals in the SRs’ spectra can be appreciated between Fig. 1a
and 1b. The power grid signals are present in both, and even if low frequency
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interference only appears in certain segments, its effect might extend to interfere
with the first mode of the SRs, as 1b.

It follows that to properly determine the characteristics of the SRs, these
unwanted signals and artefacts should be filtered from the data. This is even
more important to ascertain the statistical nature of the signal.

In the frequency spectra, the resonant modes can be observed regardless of
the power of these unwanted signals. In Fig. 1a the first five modes are clearly
observed, with the sixth and the seventh being also noticeable. Even in 1b with
its low frequency interference, the first mode is perceivable. Nonetheless, when
presenting time series as histograms, the obtained distribution is related with
the signal component of highest intensity. This can be seen in Fig. 2, which
shows the histogram related to the spectra depicted in Fig. 1.

Fig. 2a presents the histogram of the signal which spectra is shown in
Fig. 1a, where the 50Hz signal of the European power grid is dominant. The
predominance of a sine wave is marked by the appearance of two maxima in
the histogram, implying an average peak-to-peak value of 10pT. In Fig. 2b the
histogram is clearly bell shaped. It is by means of the signal spectrum (Fig. 1b)
that the histogram can be associated with low frequency disturbances caused
by the wind. The spectrum also shows how low frequency is over three times
more powerful than the power grid signal, thus effectively masking it.

This representation serves to illustrate the importance of filtering in this
work. After filtering a signal its temporal response changes, and so does its
statistical distribution. To properly characterize the signal measured by our
sensors before it can be analyzed, different filters will be applied to the raw
data, and a whole analysis will be performed for each filtered signal. The applied
filters are:

1. None. To characterize the signal as it was captured, Raw unfiltered data
is analyzed first.

2. A 60th order High Pass Filter (HPF) with a 4Hz cutoff frequency, in order
to remove the low frequency noise caused by wind.

3. A 50Hz notch filter to remove the European power grid effect.

4. Both previous filters applied at once, where SRs should be properly rep-
resented.

5. A Band Pass Filter (BPF) with 36Hz bandwidth, from 6Hz to 40Hz, con-
taining the first fourth modes of the SRs, which represent most of the SRs
power.

Once filtered, a data file is split to analyze each of the resulting segments.
Since optimal segment duration to analyze the ELF spectrum has not been quite
discussed in the literature [26], a range of durations was chosen, specifically 10
minutes, 5 minutes, 1 minute and 20 seconds. This is done under the notion
that longer segments will contain less transitory events than background noise,
making them representative for the quasi-stationary state of the signal. On the
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(a) Distribution from the sample depicted in Fig. 1a.

(b) Distribution from the sample depicted in Fig. 1b

Figure 2: Histograms of 10-minute segments.

other hand, short duration segments could contain only transitory events, even
when most of them will be populated by background noise. Therefore, shorter
segments might be useful to identify specific transitory events, or even locate
odd phenomena. This choice of ranges means to explore the duality explained
above.

From here onwards, a data stream of certain duration subjected to an specific
filtering process will be referred to as a segment, in order not to confuse it with
samples, which are used to reference the data points a segment or other kind of
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register has.

2.3 Analysis description

To determine the statistical nature of the captured signal, our analysis finds the
statistical distribution that fits each segment best, choosing from a set of target
distributions. The steps are as follows:

1. For each target distribution, its Maximum Likelihood Estimates (MLE) in
relation to the analyzed segment are calculated to obtain the parameters
of this distribution family that fits the data best.

2. Akaike Information Criterion (AIC) is applied to all distribution candi-
dates, calculated above.

3. Akaike weights [27] are calculated to be able to compare between the
distribution candidates. Through them the candidate that fits the data
best is chosen.

Given the above, it is clear that one of the key points of this work is the set
of target distributions. After carefully inspecting the available literature, the
only documented fact found was how the probability distribution of the ELF
spectrum shows heavy tails [15]. Besides that, SRs are thought to be properly
represented by the Normal (or Gaussian) distribution. The few works that
mentions the previous statement do it without including any references [22],
and when studied, only anecdotal analyses are performed [23].

Consequently, a set of target distributions should be chosen with their kur-
tosis being above the Normal distribution value. The chosen distributions are
the following.

• Normal (or Gaussian) distribution: With no rigorous studies being per-
formed to the best of our knowledge, the statements about SRs being
described by the Normal distribution should be tested. Therefore, it is
a clear choice for the analysis’ set of target distributions. Its Probability
Density Function (PDF) is given by Equation 1.

f(x) =
1

σ
√
2π

e
1
2 (

x−µ
σ )2 (1)

With σ being the distribution’s standard deviation and µ its mean.

• Rician (or Rice) distribution: This distribution is typically used to model
line of sight scatter. A storm cloud footprint could be considered circular,
with the probability of lightning strike being a bivariate normal and the
observer being at certain distance from the center of the storm. If the
above holds true, this phenomena could be modeled by a Rician distribu-
tion. Its PDF is presented in Equation 2, with s being the distribution’s
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noncentrality parameter, σ its scale parameter, and I0 is the zero-order
modified Bessel function of the first kind.

f(x) =
x

σ2
e

−(x2+s2)

2σ2 I0

(xs
σ2

)
(2)

• Laplace distribution: This distribution is interesting for two reasons. It
is one of the symmetric distributions with higher kurtosis. Besides, its
distinct peak has been observed on histograms containing high amplitude
samples. The relevant parameters of its PDF (Equation 3) are the location
parameter µ and the scale parameter b.

f(x) =
1

2b
e

−|x−µ|
b (3)

• Logistic distribution: This distribution’s main features makes it suitable
for this study. While being bell shaped, it has a higher kurtosis value than
the Normal distribution. Its PDF is featured in Equation 4, with µ and s
being its location and scale parameters, respectively.

f(x) = e−
(x−µ)

s
1

s
(
1 + e−

(x−µ)
s

)2 (4)

An edge case that should be monitored is the segments whose best fit distri-
bution do not properly describe it. This happens because the best fit obtained
through AIC means that the resulting distribution is the one that better ex-
plains the data among the target distributions. This does not guarantee that
the resulting distribution appropriately explains the data. Therefore, a way to
quantify the Quality of Fit (QoF) is needeed.

A quantile-quantile plot or Q-Q plot is a graphical method that plots the
quantiles of a dataset against those of a statistic distribution. Since they are
used to evaluate the relationship between the dataset and the distribution, it
was decided to rely on them in order to ascertain the QoF of each segment. This
QoF coefficient is obtained by performing a linear regression between the data
points of the segment and the distribution as presented in a Q-Q plot. Using
regression has the advantage of providing a widely used and easy to understand
value which in turn helps deciding an acceptable threshold to accept or reject
the fit.

This QoF coefficient has the additional advantage of giving an estimate of
the method’s accuracy for each distribution family under each filtering process.
Therefore, it provides a way to evaluate each sample’s fit quantitatively and
interpret the results accordingly. This is appropriate for this early stage of the
algorithm’s development, leaving a more rigorous uncertainty analysis for the
moment when the algorithm advantages have been developed further, and its
flaws diminished.

To maximize the confidence in the results, only segments with a regression
coefficient above 99% are considered to be appropriately described by their best
fit distribution.
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An edge case that must be covered are Bimodal distributions, due to sinu-
soidal signals’ interference as the one in Fig. 2a. If uncontrolled, these segments
will be inappropriately classified.

It is worth highlighting that the interest for the Bimodal distribution comes
only as an edge case. In the current development stage of the algorithm, the
main objective is to exclude Bimodal segments before the classification process
begins. Some issues arise while trying to fit segments to Bimodal distributions,
which is why no data about them is stored by our algorithm.

To detect the segments with an accused degree of Bimodality (meaning those
whose two maxima are apart enough from each other to be inappropiately clasi-
fied), a graphical method was developed.

1. The segment’s histogram contour is calculated by generating a data point
per histogram bin, centered on the bin top.

2. The resulting function is split in two by the data point closer to the his-
togram’s median.

3. The maximum value of each half is found and analyzed to check if the
abscissa value is within a predefined interquantilic range.

4. The sample is labeled as Bimodal if both maxima are outside of the chosen
interquantilic range.

The aforementioned range should be carefully chosen. First and foremost,
it must have a proper level of selectivity to reject the segments showing enough
bimodality. On the other hand, it should not reject segments that, despite
having certain bimodality, could still be classified. Through many tests and
visual inspection of the results, the range between the 3rd and the 5nd octile
has been determined as appropriate.

3 Results and Discussion

The previously explained method was applied to ELF data from April 2016,
obtained in the previously described station in Sierra de los Filabres.

Table 1 consolidates the outcome of the whole analysis process, grouped
in sub-tables by segment duration. Each row on each sub-table presents the
amount of segments identified as any of the possible distributions (columns)
after applying the specified filter to the data. This value is expressed under
Ratio. It indicates the ratio of segments whose best fit is the distribution in the
column title to the total amount of analyzed segments. Next to each ratio of
positives, the QoF results of the distribution’s segments are presented. Also in
%, the QoF results are calculated as the ratio of the amount of that distribution’s
segments whose QoF is over 99% to the total amount of segments classified under
that distribution. Bimodal distribution column does not come with a QoF ratio
since its classification is not the product of a fitting process.

These results are described as follows.
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1. Bimodal distributions are common under Raw and HPF processes. Its
ratio of positives is mostly constant regardless of segment duration. Under
the other three filters they are almost absent, with its ratio reaching 1%
only in 20 seconds segments.

2. Normal distribution performs well regardless of segment duration or filter
applied to the data, its ratio of accepted segments (QoF > 99%) being
over 80% in almost every case. Its ratio of positives is only significant
under HPF in the 10 and 5 minute duration segments, but experiences an
overall increase in the lower duration segments, specially under BPF.

3. Rician distribution has the lowest ratio of positives of all target distribu-
tions, having only noteworthy presence on 20 second segments. Its seg-
ments show a low amount of accepted segments on all the raw and HPF
analysis. Also, Their QoF ratio steadily decreases for the 50Hz notch
filtered data as segments got shorter. Nonetheless, under the HPF and
notch and BPF processes its acceptance is high overall.

4. Laplace distribution displays the lowest acceptance ratio, the maximum

Table 1: Distribution fitting results.

10 MINUTE SEGMENTS, TOTAL 8640 SEGMENTS/ROW

Bimodal
Normal Rician Laplace Logistic

Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99%

Raw 24.35 3.97 83.97 0.72 51.61 32.45 37.27 38.51 63.21

HPF 38.01 16.20 86.71 2.96 31.64 3.28 62.54 39.55 78.67

50Hz notch 0 1.09 100 0.05 100 60.63 31.79 38.24 57.51

HPF and notch 0 0.03 100 0 7.84 51.99 92.13 78.54

BPF 0 3.70 100 0 3.50 68.87 92.80 93.02

5 MINUTE SEGMENTS, TOTAL 17280 SEGMENTS/ROW

Bimodal
Normal Rician Laplace Logistic

Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99%

Raw 24.34 6.15 88.90 1.56 61.85 26.62 32.65 41.33 66.00

HPF 38.41 16.36 87.05 3.44 38.99 2.75 62.11 39.04 77.65

50Hz notch 0.2 2.80 99.38 0.33 100 50.60 27.06 46.08 60.92

HPF and notch 0 0.34 100 0.01 100 6.93 52.72 92.73 79.09

BPF 0 6.52 100 0.01 100 3.04 63.43 90.43 92.14

1 MINUTE SEGMENTS, TOTAL 86400 SEGMENTS/ROW

Bimodal
Normal Rician Laplace Logistic

Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99%

Raw 25.77 13.14 90.60 12.71 76.76 15.47 11.96 32.91 59.20

HPF 38.63 17.65 90.87 8.05 56.17 1.78 47.43 33.89 77.61

50Hz notch 4.62 10.98 93.26 9.28 78.83 31.69 8.42 43.42 54.07

HPF and notch 0.21 4.49 100 0.62 100 5.71 31.33 88.96 82.18

BPF 0.31 21.68 100 1.58 100 2.2 41.15 74.23 90.62

20 SECOND SEGMENTS, TOTAL 259200 SEGMENTS/ROW

Bimodal
Normal Rician Laplace Logistic

Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99%

Raw 31.21 11.94 79.89 23.44 58.63 11.34 1.62 22.07 38.24

HPF 39.04 18.32 93.16 14.99 64.93 1.23 26.84 26.42 76.97

50Hz notch 14.29 10.76 77.28 18.05 55.04 24.85 2.59 32.05 38.86

HPF and notch 1.56 11.87 99.82 5.09 99.08 5.62 19.80 75.86 83.23

BPF 2.06 31.44 99.96 10.03 99.82 1.99 24.25 54.48 88.71
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value being 68.87% for 10 minute segments under BPF. Despite having
high ratio of positives under 50Hz notch filter on 10 and 5 minute segments,
and medium to low on all raw data analysis, it decreases dramatically in
the rest of filters.

5. Logistic distribution segments are present in all filtering processes, its ratio
of positives being specially high under HPF and notch and BPF processes
for 10 and 5 minutes segments. There is a slight decrease in both as
segment size decreases, mostly in the latter process. Its acceptance ratio
generally also decreases with duration, but it’s high overall under HPF
and notch and BPF.

The segmentation criteria can be corroborated through the experimental
standard deviation of the segments’ mean. Since it is an estimate of the uncer-
tainty caused by the disturbances of the signal, it is also an indication of the
impact transitory events has on the measurement. These results are presented
in Table 2.

Table 2: Experimental standard deviation of segment’s mean, by segment duration (columns)
and applied filter (rows).

10 minutes [fT] 5 minutes [fT] 1 minute [fT] 20 seconds [fT]

Raw 82.65 115.56 260.51 516.17

HPF 0.42 0.88 4.85 13.88

50Hz notch 82.65 114.56 260.52 516.16

HPF and notch 0.41 0.87 4.80 13.70

BPF 0.17 0.38 1.98 6.13

The way dispersion increases as segment duration decreases illustrates how
random error can be compensated by increasing the number of samples per seg-
ment. It also indicates how background noise dominates in the longest segments,
with a dispersion around 8 times smaller than the shortest. Nevertheless, higher
dispersion on shorter segments shows their sensibility to transitory events, a fact
reinforced by the general decrease in acceptance ratio shown in Table 1 as seg-
ment length is reduced. Looking at the table by rows, we should note that
values of Raw (unfiltered) and HPF segments are quite similar. It shows how
low frequency disturbances are more detrimental for the signal than the 50Hz
power grid signal, with the latter having next to no effect in the uncertainty
compared with the former. This can be seen as well in the small difference
between HPF and notch and HPF filtered segments’ values. Nonetheless, BPF
segments do experience an improvement over the other two. The low standard
deviation of its segments’ mean indicates a low value of uncertainty, which in
turn implies the lowest amount of transitory events among all filters.

3.1 Distribution fitting

On Fig. 1b and Fig. 2b it was shown how high power, low frequency noise masks
the power grid signal on its histogram representation. Comparing between Raw
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Data histogram.

Time series.

Figure 3: Notch filtered segment from NS, 19-Apr-2016 03:23:44, 60 seconds duration. Low
QoF Laplace fit due to high intensity disturbance.

and HPF data, it can be seen how the ratio of Bimodal distributions actually
increases from the former to the latter. It shows how the 50Hz signal is more
frequent in the segments’ histogram after cleaning the low frequency noise. After
filtering, there are over 50% more Bimodal segments in 10, 5 and 1 minute
segments, whereas in 20 seconds segments the increase is only of 25%. On the
other hand, after going through the 50Hz notch filter, all Bimodal distributions
disappear in the 10 minute segments, but are increasingly present as segment
duration is reduced. This is another consequence of a histogram’s scope in time.
It shows how segments of short duration are prone to reveal histograms that
are either odd (E.g. Bimodal) or hard to classify, as shown by the low number
of accepted segments in the 20 second duration.

This line of reasoning might be followed to understand Laplace fits. Their
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moderate ratio of positives in raw analysis points out this particular distribu-
tion is also related with disturbances, and their high ratio under 50Hz notch
filter points at low frequency contributions from wind as their main source. The
differences in amplitude between disturbances and ELF background noise con-
tribute to bin dispersion, resulting in histograms with high kurtosis value. Fig.
3 illustrates this case; it shows a segment with low QoF value due to a sudden
increase in amplitude near its end.

It can be seen how this is translated into a few high value bins appearing on
the histogram, thus expanding the histogram and making the fit difficult.

This interpretation is reinforced by the low values of acceptance ratio dis-
played by this particular distribution. If we consider segments with Laplace
distribution as their best fit as mainly influenced by transitory events, the his-
togram will usually be presenting two or more distinguishable events. At the
very least, the always present ELF background noise and one or more distur-
bances. Nonetheless, many Laplace segments do get accepted; in those cases it
is shown we are facing a noisy segment despite the filters applied. Fig. 4 depicts
one of these cases.

Something similar happens with Logistic distribution fits. The verage QoF
of Logistic fits value throughout all filters is higher than Laplace’s, the former
being 99.20 while the latter is 95.03. Nonetheless, due to the high QoF de-
manded, many samples are not accepted as well. Fig. 5 shows a case where
high intensity disturbances introduce extreme values in the histogram but, due
to higher segment duration compared with Fig. 3, its impact is lower.

Even when by the nature of its definition it might be connected lightning
discharges, the ratio of Rician distribution fits is only meaningful in the 1 minute
and 20 second segments. Nonetheless, their ratio of acceptance is insufficient
to validate the possibility of modeling thunderstorms through this distribution.
This conclusion is reinforced by the fact that Akaike weights’ value for Normal
and Rician distributions are both significant on Rician fitted segments. Besides,
through visual inspection, most Rician fits show that Normal distribution would
have been an equally acceptable fit. Fig. 6 is a representative example of most
Rician fits, where Normal distribution overlaps with the Rician distribution
representation.

Lastly, Normal distribution’s ratio of acceptance is very stable regardless of
segment duration or filter process, pointing out a very specific and well rep-
resented phenomenon being captured. Its ratio is only representative on HPF
data on the long duration segments, but they are also present in the shorter
segments of BPF data. Looking at the amount of segments whose best fit is a
Normal distribution, it is understandable why SRs are usually identified with it.
Nonetheless, they never overcome the % of Logistic fits. It has been suggested
that the amplitude of radio pulses produced by lightning strikes follows a Nor-
mal distribution [14] so there might be a relationship between the time series’
signal being represented by a Normal distribution and lightning activity. An
initial exploration of this hypothesis will be performed further in the article.
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Data histogram.

Time series.

Figure 4: Band pass filtered segment from EW, 05-Apr-2016 03:48:51, 600 seconds duration.
Accepted Laplace fitted segment.

3.2 SRs statistical characterization.

To properly characterize the SRs, the attention must be shifted to HPF and
notch and BPF rows, being the ones that more effectively isolate SRs signal. On
these, the best fitting distribution by far is the Logistic distribution, which given
its characteristics of heavy tailed, bell shaped distribution, falls in agreement
with the literature as a proper candidate [15]. As stated before, its predominance
is clear in the ten, five and one minute duration segments, whereas in the twenty
second segments the amount of Logistic distribution fits decreases, specially with
BPF data, and mostly in benefit of Normal and Rician distributions.

Fig. 7 presents an example of how Logistic distribution fits segments free
of disturbances, with Fig. 7a coming from BPF data and Fig. 7b from HPF
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Data histogram.

Time series.

Figure 5: Raw segment from NS, 19-Apr-2016 10:30:34, 300 seconds duration. Rejected
Logistic segment with QoF over 95%.

and notch data. Besides that, they represent the same time interval. Other fact
worth mentioning is that while both could be considered good fits at a glance,
Fig. 7a has a QoF value over 99% whereas Fig. 7b doesn’t. This is due to
the extreme values displayed in the latter, otherwise filtered in the former. The
comparison serves to illustrate how strict the established QoF conditions are; a
fact that should be kept in mind while evaluating the results.

To sum up, Fig. 7 serves not only to illustrate how ELF background noise
can be represented accurately by a Logistic distribution, but also to see BPF as
the most appropriate filter to study SRs.

In order to further elaborate this point, Table 3 presents the analysis results
separated by channel of reception, with Table 3a gathering the EW channel and
3b the NS channel. The first item to highlight is how Logistic distribution’s
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Data histogram.

Time series.

Figure 6: Band pass filtered segment from EW, 25-Apr-2016 13:26:00, 60 seconds duration.
Accepted Rician segment.

ratio of positives is high under HPF and notch and BPF on both channels,
with remarkably similar values in the 10 and 5 minute segments. Nonetheless,
a noticeable difference appears on the BPF process in the 1 minute and 20
seconds duration, where its ratio in the EW channel is 20% and 10% lower,
respectively, than in the NS channel. Once again, it can be perceived how the
decrease of Logistic ratio happens in favor of Normal distribution’s, which are
more common in EW than NS. This last fact is of great importance, since it is
another stepping stone towards the hypothesis of Normal distribution ratio of
positives being linked to lightning activity. Our station’s location and proximity
to the African thunderstorm center makes the EW channel of our sensor specially
sensitive to its activity [28]. The intensity of its influence might account for the
difference in Normal distribution ratio between EW and NS channels.
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Data histogram.

Time series.

(a) Band pass filtered segment.

Data histogram.

Time series.

(b) High pass and notch filtered segment.

Figure 7: Segment from EW, 12-Apr-2016 06:19:44, 300 seconds duration, under two different
filtering processes. Logistic fitted segment containing mainly ELF background noise.

Bimodal and Laplace distributions’ ratio are very different between channels
as well. Segments with these distributions as best fit have been shown to be
affected by power grid interference and low frequency disturbance, respectively.
Table 3 shows how each channel is affected by each one of these effects in different
proportions. NS channel shows a higher number of Bimodal distributions than
EW on raw data, and even higher on HPF data. This points out that the NS
channel is coupled with some kind of power station. On the other hand, EW
channel seems more sensitive than NS to wind disturbances, given the high ratio
of Laplace distributions on raw data and specially under 50Hz notch filtering.
Nonetheless, the low ratio of positives of both distributions under HPF and
notch and BPF show that these disturbances are removed, with similar ratios
to those depicted on Table 1. This illustrates once again the importance of
proper filtering before analyzing data.

3.3 Normal distribution ratio and lightning activity

The hypothesis of the Normal distribution ratio being an expression of global
lightning activity has been hinted previously in the article. In this section, an
inspection of this hypothesis will be performed to gather initial evidence to test
its feasibility. For this procedure, we focus on the 1 minute segments, based on
how segments of this duration display a higher Normal distribution ratio than
the previous while Bimodal, Rician and Laplace distributions ratio stays low
(see Table 1). The BPF analysis will be used, since it is the filter that most
clearly presents the SRs signal. Results were arranged hourly by grouping the
ratio of each distribution throughout the month by UTC hours of the day.
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Table 3: Distribution fitting results separated by channel.

(a) East-West channel results.

10 MINUTE SEGMENTS, TOTAL 4320 SEGMENTS/ROW

Bimodal
Normal Rician Laplace Logistic

Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99%

Raw 2.73 0.86 100 0.09 25 52.38 34.82 43.94 59.85

HPF 5.32 21.99 90 1.76 48.68 4.91 63.68 66.02 80.47

50Hz notch 0 0.49 100 0 70.76 30.98 28.75 73.43

HPF and notch 0 0 0 7.48 60.06 92.52 85.21

BPF 0 6.16 100 0 3.54 67.32 90.30 93.90

5 MINUTE SEGMENTS, TOTAL 8640 SEGMENTS/ROW

Bimodal
Normal Rician Laplace Logistic

Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99%

Raw 2.71 2.36 96.57 0.21 88.89 43.94 30.01 50.79 64.15

HPF 5.49 22.49 90.27 2.58 56.95 4.06 61.82 65.38 79.13

50Hz notch 0.06 1.70 100 0.12 100 61.09 26.13 37.04 74.53

HPF and notch 0 0.15 100 0 6.45 61.04 93.40 84.91

BPF 0 10.43 100 0.02 100 3 63.32 86.55 92.81

1 MINUTE SEGMENTS, TOTAL 43200 SEGMENTS/ROW

Bimodal
Normal Rician Laplace Logistic

Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99%

Raw 4.78 13.06 95.32 7.67 90.65 27.08 10.01 47.41 59.15

HPF 6.16 25.51 93.82 8.41 71.68 2.64 44.51 57.29 79.42

50Hz notch 2.74 11.07 95.65 7.13 88.64 41.26 7.98 37.79 67.79

HPF and notch 0.19 3.70 100 0.61 100 4.56 38.26 90.94 85.86

BPF 0.36 28.18 100 2.01 100 2 42.61 67.45 91.43

20 SECOND SEGMENTS, TOTAL 129600 SEGMENTS/ROW

Bimodal
Normal Rician Laplace Logistic

Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99%

Raw 11.12 14.55 82.64 19.45 65.46 20.94 1.32 33.94 37.10

HPF 7.82 27.60 95.50 17.42 79.85 1.95 24.23 45.23 78.66

50Hz notch 10.44 12.36 78.38 18 61.35 33.99 1.40 25.20 41.21

HPF and notch 1.54 11.14 99.85 4.94 99.47 4.27 20.32 78.11 85.82

BPF 2.17 36.18 99.98 10.83 99.96 1.67 23.07 49.15 89.72

To start exploring this relationship, all the grouped samples were plotted by
hours using boxplots. The results for both channels can be seen on Fig. 8.

(a) EW channel. (b) NS channel.

Figure 8: Normal distribution ratio of positives in 1 minute segments each day, organized by
hours.
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(b) North-South channel results.

10 MINUTE SEGMENTS, TOTAL 4320 SEGMENTS/ROW

Bimodal
Normal Rician Laplace Logistic

Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99%

Raw 45.97 7.08 82.03 1.34 53.45 12.52 47.50 33.08 67.67

HPF 70.69 10.42 79.78 4.17 24.44 1.64 59.15 13.08 69.56

50Hz notch 0 1.69 100 0.09 100 50.49 32.92 47.73 47.91

HPF and notch 0 0.07 100 0 8.19 44.63 91.74 71.81

BPF 0 1.25 100 0 3.45 70.47 95.30 92.18

5 MINUTE SEGMENTS, TOTAL 8640 SEGMENTS/ROW

Bimodal
Normal Rician Laplace Logistic

Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99%

Raw 45.97 9.94 87.08 2.92 59.92 9.31 45.15 31.86 68.94

HPF 71.33 10.23 79.98 4.31 28.23 1.44 62.90 12.70 70.01

50Hz notch 0.34 3.89 99.11 0.54 100 40.10 28.48 55.13 51.77

HPF and notch 0 0.53 100 0.01 100 7.41 45.47 92.05 73.18

BPF 0 2.60 100 0 3.08 63.53 94.32 91.53

1 MINUTE SEGMENTS, TOTAL 43200 SEGMENTS/ROW

Bimodal
Normal Rician Laplace Logistic

Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99%

Raw 46.76 13.23 85.93 17.75 70.75 3.86 25.69 18.41 59.35

HPF 71.10 9.78 83.18 7.70 39.22 0.92 55.78 10.50 67.74

50Hz notch 6.50 10.90 90.82 11.42 72.70 22.12 9.24 49.06 43.51

HPF and notch 0.22 5.28 100 0.63 100 6.87 26.74 86.99 78.33

BPF 0.27 15.18 100 1.16 100 2.39 39.92 81.01 89.94

20 SECOND SEGMENTS, TOTAL 129600 SEGMENTS/ROW

Bimodal
Normal Rician Laplace Logistic

Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99% Ratio [%] QoF>99%

Raw 51.30 9.32 75.61 27.43 53.78 1.75 5.26 10.21 42.02

HPF 70.26 9.05 86.05 12.56 44.24 0.51 36.82 7.62 66.91

50Hz notch 18.13 9.17 75.78 18.11 48.76 15.70 5.17 38.90 37.34

HPF and notch 1.58 12.60 99.79 5.24 98.72 6.98 19.48 73.61 80.49

BPF 1.95 26.69 99.93 9.24 99.66 2.31 25.15 59.80 87.88
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Fig. 8a depicts the Normal distribution ratio rising at 8:00 UTC and peaking
at 15:00 UTC, which falls in line with the African thunderstorm’s intensity
pattern. This is interesting because as it was stated before, the EW channel
of our station is strongly influenced by the African thunderstorm center due to
its orientation and proximity. In the same way, the noon crest on Fig. 8b is
quite similar to the Asian thunderstorm intensity pattern (the most influential
thunderstorm center for this channel), although delayed in time by two hours.
Nonetheless, the samples for the rest of the hours in both Fig. 8a and Fig. 8b
show a pattern unrelated with their respective most influential thunderstorm
center.

It must be acknowledged that boxplot whiskers indicate high variance for
every hour of both channels. Despite that, there are only a few atypical values
and, even when widely distributed, the boxplot for every hour shows coherence
between median values and its quantile distribution. We consider this a piece
of evidence towards the validity of the hypothesis, albeit small.

Next, a straight comparison between the median values of the Normal dis-
tribution ratio and an average estimation of thunderstorm intensity for each
thunderstorm center, extracted from [28].

This will allow to visually account the similarities and differences between
hourly Normal distribution ratio by days and thunderstorm activity. Fig. 9
depicts the mentioned data, on which NS Normal distribution occurrence has
been given a two hours advance in order to enhance its visual comparison with
the Asian thunderstorm center.

Figure 9: Thunderstorm intensity (faded lines, left axis) and median values of hourly Normal
distribution ratio (solid lines, right axis). Normal distribution ratio in NS channel shifted two
hours forward.

This shows how EW data fits not only the African thunderstorm activity,
but also follows the American one in the hours where its intensity is higher.
This offers a possible explanation to the behavior shown on all hours. Looking
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at how EW data follows both African and American thunderstorm activity
with no apparent attenuation gives evidence for Normal distribution ratio to
be related with global thunderstorm activity, with independence of of source-
observer distance, though source-observer angle is most probably a factor to be
considered.

Lastly, the relation observed in the previous figure for both channels will be
tested by means of linear regression. An analysis will be performed for each
channel, between the hourly median ratio of positives for the Normal distribu-
tion and the most influential thunderstorm intensity center. Along with them,
a Student’s t-test will be performed to test the correlation, with its null hypoth-
esis being that the relationship between the two variables holds no significance.
The results can be seen in Fig. 10.

(a) Regression analysis for EW channel. (b) Regression analysis for NS channel.

Figure 10: Linear regression analysis with Student’s t-test results

Although data deviation is high, The regression coefficient points out to
a strong relationship between hourly Normal distribution ratio and the most
influential storm center for each channel. Furthermore, the obtained P-value
for both correlations corroborates the relationship by strongly rejecting the null
hypothesis.

Still, the perceived relationship between shifted NS data and the Asian thun-
derstorm center intensity can be tested as well. Another linear regression be-
tween these two variables was performed in the same terms than the previous
one. As Fig. 10b shows, there is a strong positive correlation of statistical
significance.

The conducted tests shows interesting pieces of evidence favoring the hy-
pothesis of Normal distribution ratio being related to global lightning activity.
Nonetheless, the two hours delay in NS channel remains to be explained, and
further research is needed in order to prove the extent of this relationship. That
being said, such tests are out of the scope of this paper, since its objective was
to present the analysis method and demonstrate its utility.
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4 Conclusions

Statistical analysis was applied to characterize the time series of the Schumann
Resonances and the bandwidth of ELF spectrum where they are located, by
means of maximum likelihood parameters estimation and distribution fitting
through Akaike Information Criterion. This is a kind of analysis that, to the best
of our knowledge, has never been applied to these signals. The analysis method
performs the same analysis over the same data by selecting different segment
sizes and different filters, allowing for comparative observations between them.
Ways to ensure the Quality of Fit were included in the algorithm, like a graphical
method to detect Bimodal segments due to an excess of sinusoidal interference
and a Q-Q plot based Quality of Fit value for each classified segment.

In order to test its capabilities, the algorithm was applied to a month worth
of data from our ELF station located in Sierra de los Filabres, Almeŕıa. The
method’s results and their utility have been discussed, first by analyzing the
results by themselves and last by means of a comparative study. From this
discussion four major points should be highlighted.

1. The statistical nature of ELF background noise appears to be closely re-
lated with the Logistic distribution.

2. As expected, longer segments represent the ELF background noise better
whereas the shorter ones show certain sensibility towards transitory effects.
A special mention should be done for 1 minute segments. Among all the
tested durations, they were short enough to display transitory behavior
while keeping a high acceptance.

3. Each of the different target distributions seems to fit ELF records under
different circumstances, serving as a sort of behavioral classification.

4. The connection between global lightning activity and Schumann reso-
nances is a well established fact. With the small comparative study
performed in this article, we have uncovered evidence for a relationship
between the main thunderstorm center’s intensity and the amount of seg-
ments best represented by the Normal distribution by hour. Further study-
ing this hypothesis could open new ways of looking at this phenomena.

By means of the analysis method proposed in this paper, the potential for
ELF time series study has been shown, with evidence pointing out for another
expression of global lightning activity in Schumann Resonances. It shows an
untapped way of progressing in other lines of research, since the studies per-
formed from the time series perspective are scarce. It could also contribute to
refine the response of time series oriented simulations.

Looking through the results offered by statistical analysis, a different ap-
proach of analyzing ELF spectra has been tested by finding key ELF facts in
the results. It is worth to keep working in this kind of analysis to see what
else it has to offer, specially in relationship with other phenomena; either those
who have been tried and tested (global temperature) or those who are currently
being investigated (earthquakes).
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