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 

Abstract—Offshore wind turbines are complex pieces of 

engineering and are, generally, exposed to harsh environmental 

conditions that are making them to susceptible unexpected and 

potentially catastrophic damage. This results in significant down 

time, and high maintenance costs. Therefore, early detection of 

major failures is important to improve availability, boost power 

production and reduce maintenance costs. 

This paper proposes a SCADA data based Gaussian Process 

(GP) (a data-driven, machine learning approach) fault detection 

algorithm where additional model inputs, called operational 

variables (pitch angle and rotor speed) are used. Firstly, 

comparative studies of these operational variables are carried out 

to establish whether the parameter leads to improved early fault 

detection capability; it is then used to construct an improved GP 

fault detection algorithm.  The developed model is then validated 

against existing methods in terms of capability to detect in advance 

(and by how much) signs of failure with a low false positive rate. 

Failure due to yaw misalignment results in significant down 

time and a reduction in power production was found to be a useful 

case study to demonstrate the effectiveness of the proposed 

algorithms.  Historical SCADA 10-minute data obtained from 

pitch-regulated turbines were used for models training and 

validation purposes.  Results show that (i) the additional model 

inputs were able to improve the accuracy of GP power curve 

models with rotor speed responsible for a significant improvement 

in performance; (ii) the inclusion of rotor speed enhanced early 

failure detection without any false positives, in contrast to the 

other methods investigated.  

Index Terms— Fault detection, condition monitoring, Gaussian 

Process, wind turbine.  

I. INTRODUCTION 

CCORDING to a World Wind Energy Association 

(WWEA) [1], wind power capacity worldwide reached 

650.8 GW in 2019 out of which 59.7 GW was added in 2019 

alone. Compared to onshore, offshore wind turbines (WTs) are 

subjected to harsher environmental and operational conditions 

and as more and more WTs are installed further out to sea, 
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maintenance related activities becomes more challenging, 

resulting in a higher rate of catastrophic failures, significant 

down time and high operation and maintenance (O&M) costs 

[2]. Furthermore, as turbines get older, O&M cost is going to 

increase eventually affecting the profitability of offshore wind 

farms. The O&M cost further increases in case of unplanned 

maintenance caused by unexpected failures; this results in loss 

of revenue due to downtime and increases the overall Cost of 

Energy (CoE) [3]. Studies have shown that the spending on 

offshore WT O&M accounts for 25-30% of the life cycle cost 

of energy as compared with 10-15% for onshore wind. Part of 

the offshore O&M cost is accounted for by transport and 

logistic complexity [2]. For all these reasons, WT 

manufacturers and operators are continuously seeking cost-

effective advanced technologies that improve WT reliability, 

availability to thereby minimise O&M costs. 

Many state-of-art predictive maintenance as well as condition 

monitoring techniques [4] for various industries in past and 

recently started finding application in improving WTs 

performance and optimization related activities (e.g., early 

detection of failures) at reduced costs [5]. In WTs, commercial 

condition monitoring systems (CMS) such as, acoustic 

emission; oil debris analysis and vibration signal analysis are 

offline techniques and are costly as they require expensive 

sensors and extensive analysis, thereby making WT condition 

monitoring less cost-effective [6].By contrast, Supervisory 

Control and Data Acquisition (SCADA) data analysis based 

condition monitoring is a cost-effective approach with little or 

no additional cost to the wind farm operator [7, 8]. Because of 

rapid rise in WT installation, a huge amount of SCADA data 

has been collected by the wind energy industry. However, due 

to confidentiality and a lack of any data-sharing platform and 

engagement between research community and industry; access 

of these data is problematic [9]. Despite these challenges, the 

development of data-driven and big data computational 
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technologies support turbine condition monitoring based on 

SCADA data that as a result is getting more and more attention. 

There have been several different approaches proposed for 

the WT condition monitoring based on SCADA data and these 

are broadly divided into parametric and nonparametric 

techniques. Nonparametric methods do not make strong 

assumptions while constructing the mapping function and 

therefore they are free to learn any functional form from the 

training data [10]. Because of this, nonparametric techniques 

have been found to be the most accurate in identifying key 

nonlinear relationships. Four methods in particular: Artificial 

neural network (ANNs); Gaussian Process (GP); support vector 

machine (SVM); and random forest (RF) are extensively used 

nonparametric techniques have been applied to WT 

performance. General reviews of these techniques in context to 

WTs can be found in [11-15]. In [16], a deep learning neural 

network was proposed to forecast wind power based on high-

frequency SCADA data. Furthermore, the author of [17] used 

wavelets with a recursive least square (RLS) filter and a random 

forest model to develop a new integrated analytic framework 

for WT fault detection based on SCADA data.  

WT manufacturers and operators extensively use the power 

curve to quantify turbine performance for range of applications, 

for example, condition monitoring, performance optimization, 

forecasting and improving asset life. A brief review of methods 

applied to SCADA data for power curve modeling can be found 

in [11], [18] and recently work in [14] [19].  In general, 

researchers have exploited any significant deviation from a 

reference power curve to infer operational anomalies or 

component failure for condition monitoring purposes. In recent 

years, data-driven wind turbine power curves (WTPCs) have 

become vital for many applications such as condition 

monitoring, forecasting, see for example [20],[21]. Examples of 

data-driven techniques for monitoring WTs are also presented 

in [8] and [22-25].   

Recently, as an effective nonparametric, data-driven 

approach, GPs have been applied in a wide range of application, 

both in regression [26] and classification [27]. GPs provide 

intrinsic uncertainty estimates and can learn the noise and 

smoothness parameters from training data [28]. Despite these 

significant advantages, GP have not received much attention for 

WTs condition monitoring or performance monitoring 

activities. Recent applications of GPs models for various WTs 

issues can be found in [11], [14] and [29-32]. 

Power curves are generally provided by the turbine 

manufacturer for commercial purposes and most of research 

used only the mean wind speed at hub height and the air density 

as relevant input parameters for WTs condition monitoring 

purposes [11,14] and ignored the impact of operational 

variables (rotor speed & blade pitch angle) on power output. In 

recent years, air density, turbulence intensity and wind direction 

have been used to improve the power curve modeling accuracy 

[33-35]. For example, the latest edition of the IEC test standard, 

[36], though including turbulence and wind shear, disregards 

the importance of operational variables. All these studies are 

also neglected the studies on operational variables, more 

importantly in context to WTs condition monitoring activities. 

The aim of this research is to fill this gap by studying the 

impacts of these operational parameters and based on that 

proposed GP fault detection algorithm. Thereafter, the 

developed fault detection algorithm is then compared with 

existing methods in order to identify the impact of inclusion of 

these operational variables on improving early fault detection 

capability.  

II. WIND TURBINE POWER CURVE MODELLING 

Power curve is a key tool with which to assess any 

underperformance issues associated with wind turbine 

operation. For example, severe blade erosion causes loss in 

power production and careful monitoring of changes to the 

power curve can a provide simple and cost-effective approach 

to condition monitoring. The power curve describes the 

nonlinear relationship between hub height wind speed and the 

power produced by a WT.  A typical power curve can be 

divided into three regions separated by specific wind speed 

values, namely: i) cut in speed (the minimum wind speed at 

which turbine delivers useful power output); ii) rated speed (at 

which the maximum power of the turbine is obtained) and iii) 

cut out speed (at which power generation is stopped for 

engineering design and safety constraint reasons. Even though 

a power curve gives useful information about turbine 

performance that can be used in energy yield estimation, it 

exclude technical details such as such as local terrain, wind 

direction, turbine wakes and other factors, [36]. The power 

output of a WT has a roughly cubic relationship with the wind 

speed, which is underpinned by following equation: 

                         𝑃 = 0.5 𝜌𝐴𝐶𝑝(λ, 𝛽 ) 𝑣3                           (1)  

Where ρ is air density(𝑘𝑔 𝑚3⁄ ), A is swept area (𝑚2) , 𝐶𝑝 is the 

power coefficient of the wind turbine and 𝑣 is the hub height 

wind speed (𝑚 𝑠𝑒𝑐⁄ ).  The tip speed ratio (TSR) λ is a 

dimensionless variable that depends on rotor speed and wind 

speed while 𝐶𝑝 is a function of blade pitch angle and TSR. A 

plot of rotor speed against wind speed is called the rotor speed 

curve and is monotonically increasing with respect to wind 

speed. At the optimal rotor speed, a turbine extracts maximum 

power whereas pitch angle is used to limit the generator power 

at rated power output by reducing the angle of the blades [19]. 

Both these variables affect the operational behavior of a WT, 

and hence are called operational variables. 

III. SCADA DATA PREPARATION 

SCADA datasets are used in this study come from an 

operational variable pitch regulated turbine manufactured by 

Siemens and rated at 2.5 MW. They record 10-minute mean, 

max and standard deviation values of more than 100 variables 

such as timestamp, wind speed, rotor speed, blade pitch angle 

power output, ambient temperature, atmospheric pressure and 

so on, and a sample of these data is shown in Table 1. Due to 

computation and storage issues, records comprise in the main10 

min averaged data. 
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TABLE I 

SAMPLE SCADA DATA OF A WIND TURBINE 

 
TABLE II 

WIND TURBINES SCADA DATA DESCRIPTIONS 

The raw data obtained from SCADA systems incorporate a 

number of different kinds of errors due to sensor malfunction 

and communication failures that, if not excluded, can affect 

model accuracy and condition monitoring effectiveness. Thus, 

the first step is to reprocess these data prior to use in condition 

monitoring. At first, samples with missing values or negative 

power values are filtered out. Data points where maximum 

wind speed has reached more than 25 m/s are also filtered out 

because, beyond this wind speed, the turbine is stopped. 

Besides, data sampling during frequent start-up or stop in the 

low-wind-speed period may have a different variation. Overall, 

criterion such as timestamp mismatch, negative power values, 

out of range values and turbine curtailment is used to filter out 

such misleading data similar to the one described in [14, 15]. 

Table II summarises a SCADA data file beginning with time 

stamp ‘‘11/3/2009 14:30 PM’’ and ending at time stamp 

‘‘30/03/2009 15:20 PM’’ that records 4725 measured values 

which were reduced to 3274 data points after pre-processing 

using criterion as stated above.  

 
Fig. 1. Filtered and air density corrected power curve 

The next pre-processing step is to undertake air density 

correction to adjust the data to reflect the fact that according to 

equation 1, wind turbine power output at a given wind speed 

depends on air density. For a variable pitch regulated wind 

turbine and as per IEC standard 61400-12-1 [36] the following 

equations are used for calculating the air density correction:   

                  

 

 

                      

                      ρ = 1.225 [
288.15

T
] [

B

1013.3
]                               (2)   

  and,              𝑉𝑐 =     VM [ 
ρ

1.225
 ]

1

3
                                          (3) 

Where VC and VM are the corrected and measured wind speed in  

m/sec and the corrected air density is calculated by equation (2) 

where B is atmospheric pressure in mbar and T the temperature 

in Kelvin. Fig 1 shows the air density corrected and pre-

processed power curve and will be used in next section to 

construct the reference power curve model based on a GP 

algorithm. 

IV. GAUSSIAN PROCESS METHODOLOGY 

A GP is a data-driven, probabilistic technique that includes 

Gaussian- distributions over the function; it has strengths in 

uncertainty quantification and function approximation. GP 

models are flexible in that they not predefine the relationship 

between input and output variables to a specific form. The 

theoretical description of GP models are well covered in [28]. 

In this study, a GP for wind turbine power curve modelling is 

outlined as follows. GP regression is defined in terms of a mean 

function, 𝑚(𝑥) ∶= 𝐸[𝑓(𝑥)] and covariance functions, 

𝐾(𝑥, 𝑥′) ∶= 𝐸[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))]  for a given 

values 𝑥, 𝑥′ and if 𝑓(𝑥) is a GP distributed function, then the 

relationship between these two functions can be expressed as: 

                      𝑓(𝑥) ~ 𝐺𝑃(𝑚(𝑥) , 𝐾(𝑥, 𝑥′))                          (4) 

The mean function 𝑚(𝑥) often constructed be zero for 

notational simplicity, however, its value can be arbitrarily 

selected. Covariance function 𝐾(𝑥, 𝑥′) quantifies the joint 

variability of the random variables, used to measure distance or 

similarity between given data points (𝑥, 𝑥′). There are number 

of different covariance functions available; these are well 

described in [28]. However, the squared exponential covariance 

function was found to be effective as suggested by [37], and 

will be be used in this study. The squared exponential function 

is mathematically expressed as:  

                𝑘𝑆𝐸 (𝑥, 𝑥′) =   𝜎𝑓
2exp (−

(𝑥−𝑥′)
2

2𝑙2  )                     (5)           

To compensate for the effect of measurement noise, a noise 

term added into the squared exponential and thus, equation (5) 

modified to be:  

  𝑘𝑆𝐸 (𝑥, 𝑥′) =   𝜎𝑓
2𝑒𝑥𝑝 (−

(𝑥−𝑥′)
2

2𝑙2  ) +  𝜎𝑛
2𝛿(𝑥, 𝑥′)              (6) 

Where 𝜎𝑓
2 and 𝑙 are the hyper-parameters in which 𝜎𝑓

2 signifies 

TimeStamp Wind speed 

(Avg.) m/sec 

Power 

(Avg.) kW 

Ambient temp 

(Avg.) ℃ 

Atmospheric pressure 

(Avg.)  mbar 

Rotor speed 

(Avg.) m/sec 

Blade pitch angle 

(Avg.) ℃ 

12/ 03/2009  10:00:00 5.05 270.93 7.44 986.35 9.57 -0.99 

12/ 03/2009  10:10:00 5.07 230.45 7.85 986.45 8.75 -0.99 

12/ 03/2009 10:20:00 6.09 150.72 7.90 986.47 7.98 -0.99 

12/ 03/2009  10:30:00 6.10 255.20 8.40 986.55 9.30 -0.99 

12/ 03/2009  10:40:00 6.15 240.15 8.80 986.58 8.35 -0.99 

Start 

timestamp 

End 

timestamp 

Measured 

data 

Filtered 

data 

11/3/2009 

14:30 PM 

30/03/2009 

15:20 PM 

4725 3274 
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the signal variance while 𝑙 (length scale) describes how quickly 

the covariance decreases with distance between points. The 

model uncertainty is quantified by 𝜎𝑛, the standard deviation of 

the noise fluctuations, and 𝛿 is the Kronecker delta. Let us 

consider that A = {(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, … … , 𝑁} of 𝑛 observations is 

the training dataset. 𝑥 is the input vector of dimension D , and 

𝑦 is the scalar output.  The 𝐴 × 𝑛 matrix defines the input 

datasets.  Target output is y, therefore, 𝐴 = (𝑋, 𝑦). 

Theoretically, the relationship between input and target values 

for a GP can be expressed as:  

                             𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜖𝑖                                        (7) 

Equation (7) used to define the underlying function of the data 

modeled where 𝑥 are values from the training datasets and 𝜖 is 

Gaussian white noise of variance 𝜎𝑛
2  so that, 𝜖 = 𝑁(0, 𝜎𝑛

2).  

And the prior to y becomes:  

                         𝐸|y| = E|𝑓 + 𝜖| = 0                                (8) 

                         𝑐𝑜𝑣 |y| = 𝐾|𝑋, 𝑋| + 𝜎𝑛
2𝐼                              (9) 

The prior distribution contains vital information about uncertain 

parameters and it can be uninformative or informative and since 

GP regression is based on Bayesian analysis. The prior 

distribution along with the probability distribution of new 

incoming data is used to generate the posterior distribution. 

Thereafter, the estimated posterior distribution will be used for 

future inference and any decisions involving the uncertain 

parameters [28,31].  To predict the output f, for a given new 

input 𝑥∗, the distribution can be defined as follows : 

                                           

       (
𝑦
𝑓∗) ~𝑁 (0, [

𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼 𝑘(𝑋, 𝑥∗)

𝑘(𝑥∗, 𝑋) 𝑘(𝑥∗, 𝑥∗)
])                  (10) 

Where, 

𝑘(𝑋, 𝑥∗) = 𝑘(𝑥∗, 𝑋)𝑇 = [𝑘(𝑥1, 𝑥∗), 𝑘(𝑥2, 𝑥∗), … . . 𝑘(𝑥𝑛 , 𝑥∗)], 
which is for the sake of simplicity, denoted by 𝑘∗. Then, from 

the joint Gaussian distribution, the estimation of target values 

is given by: 

                    𝑓 ∗̅̅ ̅̅ = 𝑘∗
𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝑦                                  (11) 

 𝑉𝑎𝑟[𝑓 ∗] = k(𝑥∗, 𝑥∗) − 𝑘∗
𝑇𝑘∗(𝐾 + 𝜎𝑛

2𝐼)−1                         (12) 

The obtained posterior variance ( 𝑉𝑎𝑟[𝑓 ∗] ) is inversely 

proportional to the distance between test and training data 

points while estimation of the mean (𝑓 ∗̅̅ ̅̅ ) is a linear 

combination of the output 𝑦 in which linear weights are defined 

𝑘∗
𝑇(𝐾 + 𝜎𝑛

2𝐼)−1.  Equation (11) and (12) estimate the mean and 

variance of the model for a given data points. 

The optimal values of the hyperparameters are going to be 

identified through maximising GP model accuracy and hence, 

in this paper, hyperparameters are tuned using Bayesian 

optimization techniques where optimization attempts to 

minimize the cross-validation loss or error for GP regression by 

varying the parameters. To do this, the ‘fitrgp’ function of the 

MATLAB with the ‘automatic hyperparameters optimization’ 

option has been used [38]. Furthermore, the initial value of σ𝑛 

is calculated by,  
𝑠𝑡𝑑(𝑦)

√2
  where y is the response variable, 

realized in MATLAB. To calculate log-likelihood and gradient, 

the QR factorization technique is adopted as it yields better 

accuracy as compared to V-method-based technique [28, 38].  

GP models estimate confidence intervals (CIs) (that reflect the 

uncertainty of the model) for the predicted function that are 

useful in uncertainty quantification.  Using equation (12), these 

are calculated as follows [28],  

                         𝐶𝐼𝑛 = µ𝑛 ± 2𝜎𝑛                                          (9) 

It should be noted that GP uncertainty uses probabilistic 

descriptions of the model input that can be used to derive 

probability distributions of model outputs and system 

performance indices.   GPs are multivariate models where the 

covariance matrix, K, gives the variance of each variable along 

the leading diagonal, and the off-diagonal elements measure the 

correlations between the different variables using following 

relationships:  

          𝐾 =  [
𝑘11 ⋯ 𝑘1𝑛

⋮ ⋱ ⋮
𝑘𝑛1 ⋯ 𝑘𝑛

]      where 𝑘𝑖𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗) 

where 𝐾 is of size 𝑛 ×  𝑛, where 𝑛 is the number of input data 

points considered, and it must be symmetric and positive 

semidefinite i.e. 𝐾𝑖𝑗 = 𝐾𝑗𝑖 . 𝑛 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠 𝑓𝑜𝑟 𝐺𝑃 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑚𝑜𝑑𝑒 used to 

incorporate numbers of input variables where 𝑥 is the wind 

speed along with  operational parameters, rotor speed and blade 

pitch angle in our case.  In [39, 40], rotor speed was found to be 

a fundamental covariate for improving data-driven model 

accuracy whose target is WT power. Therefore, rotor speed 

along with wind speed are used as input variables to train and 

validate the GP power curve model using the data outlined in 

section 3 and the methodologies described above.  

 
Fig. 2. GP power curve incorporating rotor speed 

Fig. 2 depicts the estimated and measure power curve and 

suggests strongly that GP model accuracy is improved by 

incorporating rotor speed. In addition, blade pitch angle has also 

been incorporated together with rotor speed together in the 

model. The inclusion of blade pitch angle makes insignificant 

improvement does in GP model accuracy as well as uncertainty 

which further supports the conclusion of [39,40]. In addition, 

Fig 3 and calculated performance error metrics (shown in Table 

III) suggest that the inclusion of rotor into GP model makes 

significant improvement in accuracy as well as uncertainty as 

compare to others. Thus, hinting, rotor speed will be used in 

developing GP fault detection algorithm. 
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Fig. 3. Impact of operational variables on GP model uncertainty 

TABLE III 

PERFORMANCE ERROR METRICS 

Computational difficulties in dealing with extensive data sets 

(the cubic inversion issue), and restrictive modelling 

assumptions for complex data sets are considered to be two 

main disadvantages of GPs. Many methods have been proposed 

to address these issues [41, 42], but these methods require high 

processing power and computational cost. For robust and 

effective GP modelling, a balance between the number of data 

points and computational cost must be struck. 

V. YAW ERROR MISALIGNMENT – A CASE STUDY 

Yaw misalignment is due to the difference between nacelle 

direction and wind direction, termed as yaw error. Early 

detection of yaw misalignment improves power generation, 

minimises damaging stress loads and fatigue on the wind 

turbine rotor and drive train and thus increases performance and 

profitability. An example of yaw failure provides an excellent 

test case since increased yaw error diminishes wind turbine 

performance. The yaw failure is exhibited in Fig 4, where it can 

be seen that the nacelle is stuck in a fixed position (roughly 200 

degrees) for an extended period of time, with no yaw activity, 

whereas the wind direction changed in a normal manner during 

this period.   

 
Fig. 4. Time series of wind direction and nacelle position 

VI. GP FAULT DETECTION ALGORITHM INCORPORATING 

ROTOR SPEED 

As stated above, power curves are considered to be a key 

indicator and can be used to identify specific component 

anomalies if interpreted with care. The GP algorithm 

incorporating rotor speed is applied to automated detection of 

yaw misalignment. A reference power curve model based on 

GP modelling of a healthy turbine was constructed using 

SCADA data based on the mythologies outlined in section IV. 

Fig 5 and fig 6 shows the estimated GP power curve with and 

without the inclusion of rotor speed and suggest that the 

incorporating rotor speed into GP model narrowed down the 

CIs significantly and thus should be advantageous in 

identifying anomalous performance quickly. To validate this, 

fault detection makes use of the 99.5% confidence level (i.e. a 

significance level of 0.05) and was used to calculate sequential 

anomalous data point values at each time for the reference GP 

power curve of Fig 6.  

 
Fig. 5. GP power curve without rotor speed 

 
Fig. 6. GP power curve incorporating rotor speed 

It should be noted that both Fig 5 and 6 shows the modified CIs 

in order to compensate for the impact of noise as described in 

equation 6.  Modified CIs are then used to assess incoming 

sequential data points based on a point-by-point probabilistic 

calculation to identify yaw failure data points. The hypothesis 

testing p-value or probability value was kept at a threshold of 

0.003 to filter individual faulty incoming points. False alarms 

affect both reliability and O&M costs of WTs, therefore 

Models RMSE MAE 𝑹𝟐 

GP without rotor speed 45.56 36.52 00.9810 

GP with rotor speed 32.36 27.12 00.9979 
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attention is paid to ensure that the algorithm generates no false 

alarms. This is done by adjusting the probability threshold until 

no false alarms occur. The value of 0.003 yields the most 

accurate results with no false positives, and is therefore, used in 

this algorithm. 

     Fig 7 shows a time series plot of the absolute yaw error; it 

indicates that the yaw error exceeds 20 degrees consistently for 

timestamps 50 to 100 due to faulty yaw control or drive. This is 

confirmed by fig 4 where it is clear that the nacelle is stuck and 

does not follow the wind direction. The alarms generated by the 

GP fault detection algorithm are also plotted in Fig 7 and it is 

found that an alarm is first raised at 21:40 on 14/04/2009, just 

after 40 minutes after the start of yaw misalignments at 21:00 

on 14/04/2009 without any false positive, confirming that the 

proposed GP fault detection algorithm robust.   

 
Fig. 7. Absolute yaw error detection using online power curve model 

VII. COMPARATIVE STUDIES 

Author of  [14], proposed an initial GP algorithm for yaw 

error detection in which power curve relations were used to 

some effect; this thus provided a good benchmark against which 

to validate the effectiveness of the proposed improved model. 

They considered only wind speed and air density for 

constructing GP fault detection algorithm and used a Fisher test 

with a threshold of 0.008 to filter the individual p-values. This 

former model is plotted together with proposed model for the 

yaw error time-series and is shown in Fig 8. By comparing 

them, it has been found that whilst the GP incorporating rotor 

speed fault detection algorithm took only 40 minutes to detect 

the yaw failure, this simpler model took 1.5 hrs to detect the 

same yaw failure, as summarized in Table IV.  

Furthermore, inclusion of rotor speed not only increase the 

early detection capability but also records no false positives in 

contrast to that from the former model highlighted by the circle 

in Fig 8. 
TABLE IV 

ALARM RECORD AND DETECTION BY GP MODELS 

 
Fig. 8. Impact of rotor speed on GP fault detection algorithm 

VIII. CONCLUSIONS 

Wind turbine power curves have been used extensively for 

energy assessments, warranty formulations and forecasting 

purposes, and have recently started to find applications in 

condition monitoring related activities based on SCADA data. 

This study uses operational parameters (rotor speed and blade 

pitch angle) to improve GP model based fault detection 

accuracy and thereby help to reduce O&M costs. The SCADA 

data collected from an operational WT was used to validate the 

effectiveness of the proposed approach. Results show that the 

significant improvement in GP model accuracy as well as 

reduced uncertainty is achieved through the inclusion of rotor 

speed as shown in Fig 2-3 and Table III. Based on this outcome, 

a GP fault detection algorithm based on SCADA data 

incorporating rotor speed is proposed for early detection of yaw 

failures.  This is then compared with existing and effective 

method to validate the improved effectiveness of the proposed 

model. The comparative analyse suggest that a GP fault 

detection algorithm incorporating rotor speed significantly 

enhances the early fault detection capability of the GP model 

(which took only 40 minutes to detect the first sign of yaw error) 

while other earlier approach without rotor speed took 1.5 hrs to 

detect the same yaw failure as shown in Table IV. In addition, 

importantly the improved GP based fault detection algorithm 

incorporating rotor speed generated no false positives. In 

summary proposed technique not only improves early failure 

detection preventing catastrophic damage but also provides a 

significant time window for the turbine operator to carry out 

repair work thereby reducing downtime and also reducing 

O&M costs. Future work will apply the approach to a range of 

different wind turbine faults and test with other data-driven 

algorithms. Future work will also look, compared other 

machine learning algorithms (such as SVM, Random forest), 

and compare them against proposed techniques to validate its 

effectiveness.  

ACKNOWLEDGMENT 

This project has received funding from the European Union’s 

Horizon 2020 research and innovation programme under the 

Marie Sklodowska-Curie grant agreement No 642108. 

Model Alarm      

detected 
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identify the fault 
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using GP 
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14/4/2009 

1.5 hours 

Probabilistic assessment 

using GP with the inclusion of 

rotor speed 

21:40 on 

14/4/2009 

40 minutes 
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