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Incorporating Lambertian Priors into Surface
Normals Measurement

Yakun Ju, Muwei Jian, Shaoxiang Guo, Yingyu Wang, Huiyu Zhou, Junyu Dong

Abstract—The goal of photometric stereo is to measure the
precise surface normal of a 3D object from observations with
various shading cues. However, non-Lambertian surfaces in-
fluence the measurement accuracy due to irregular shading
cues. Despite deep neural networks have been employed to
simulate the performance of non-Lambertian surfaces, the error
in specularities, shadows, and crinkle regions is hard to be
reduced. In order to address this challenge, we here propose a
photometric stereo network that incorporates Lambertian priors
to better measure the surface normal. In this paper, we use
the initial normal under the Lambertian assumption as the
prior information to refine the normal measurement, instead
of solely applying the observed shading cues to deriving the
surface normal. Our method utilizes the Lambertian information
to reparameterize the network weights and the powerful fitting
ability of deep neural networks to correct these errors caused
by general reflectance properties. Our explorations include: the
Lambertian priors (1) reduce the learning hypothesis space,
making our method learn the mapping in the same surface
normal space and improving the accuracy of learning, and
(2) provides the differential features learning, improving the
surfaces reconstruction of details. Extensive experiments verify
the effectiveness of the proposed Lambertian prior photometric
stereo network in accurate surface normal measurement, on the
challenging benchmark dataset.

Index Terms—Photometric stereo, surface normal measure-
ment, prior fusion, non-Lambertian, deep neural networks

I. INTRODUCTION

EASUREMENT of 3D geometry from 2D scenes is a

key problem in machine vision and industrial applica-
tions [1]-[4]. Unlike multi-view stereo and binocular that use
different viewpoints scenes to triangulate sparse 3D points,
photometric stereo [5] measures the pixel-wise surface normal
from a fixed scene under varying shading cues. The photomet-
ric methods prevail in measuring fine details of the surface
and dense reconstruction, while it bases on the Lambertian
assumption, hardly handling the general reflectance properties
existing in real-world objects and deviating from realistic
applications. To deal with the limitations, previous research
adopted the bidirectional reflectance distribution functions
(BRDFs) to model general reflectance [60]-[8] or treated the
non-Lambertian regions as anomalies [9]—[ | |]. However, these
traditional methods are accurate for a limited class of surface
reflectance and suffer from unstable optimization.
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Recently, deep learning-based methods have been intro-
duced to photometric stereo [12], [13]. These methods directly
learn the surface normal of objects from the observed images,
where the capability of handling diverse BRDFs has been
proved to be notable. However, strong non-Lambertian and
varying reflectance regions still lead to significant errors,
in both the traditional algorithms and deep learning-based
methods. We reckon that the failure in these regions is due to
the fact that (1) the regions and surfaces rarely appear in the
training dataset, (2) the overexposed values in specularity and
the dark areas in shadows are difficult to produce useful fea-
tures, (3) the surface with spatially-varying reflectance causes
measurement errors on the normal map. These challenging
problems remain to be solved. We show our state-of-the-art
performance over these conditions in Fig. 1.

To address these challenges, we propose a Lambertian
model guided photometric stereo network to better handle
non-Lambertian surfaces. Instead of directly embedding the
observed shading cues on the surface normal, we propose a
strategy that utilizes the observations to modify the Lambertian
priors, in other words, our method focuses on the use of the
input images as the patterns to correct the measurement of the
surface normal from the Lambertian priors. Compared with
previous methods mainly focusing on network architectures,
our method has the following advantages: First, our method
utilizes a mapping in the same surface normal space {Y — Y},
where the learning space is reduced, while the previous meth-
ods take a mapping from the RGB image space to the surface
normal space {X — Y}. Second, the Lambertian priors and
ground-truth surface normal are theoretically similar in terms
of diffuse reflection. In this condition, our method is equivalent
to enlarge the proportion of non-Lambertian errors in total
errors, where the network always tends to learn the parameters
to make the loss drop. In training, the network therefore will be
more inclined to optimize this part of errors. i.e., our method
learns the differential features, amplifying the non-Lambertian
errors, where the details of measurement is improved. In
short, our method reduces the learnable hypothesis space and
improves the estimation results. The experimental results have
demonstrated the effectiveness of the Lambertian priors: Our
architecture notably improves the accuracy of surface normal
measurement, outperforming several state-of-the-art calibrated
photometric stereo approaches on the widely used DiLiGenT
benchmark dataset [ 14]. Furthermore, the ablation experiments
show the fast convergence and more accurate surface normal
measurement by the proposed photometric stereo network.

The main two contributions of this work are summarized as
follows:

« We propose a Lambertian prior guided photometric stereo

network to better handle non-Lambertian surfaces. Our
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Fig. 1. We present a novel Lambertian prior guided photometric stereo network to measure the surface normal of the target. Our method improves the accuracy
of strong non-Lambertian surfaces, non-convex structure, and varying reflectance surface. [LEFT]: the results on “Harvest” of the DiLiGenT benchmark dataset
[14] (using 96 observations), where the strong cast shadows and non-convex structures exist in the observations. [RIGHT]: the results on “Paperbowl (Specular)”
of the CyclesPSTest dataset [15] (using 17 observations). The cast shadows and varying reflectance are displayed in the observation. The details of 3D mesh
are also shown in each example, which is derived from the measured surface normal by the standard integration method [16].

method reduces the learnable hypothesis space and im-
proves the surface normals measurement.

o To the best of our knowledge, this is the first work
that involves embedding the priors into the learning-
based photometric stereo network. This strategy can be
also used to refine wider non-ideal photometric stereo
measurements, by using inaccurate priors.

II. RELATED WORK

A measurement pixel of a real-world object I; can be
modeled by general BRDFs p, which is associated with the
surface normal n € R3, illumination direction l; € R3, and
view direction v € R3. With the illumination intensity e, the
imaging model can be expressed as:

1; :ep(n,lj,v)max(ﬁ—rljﬂ)—l—ej, €))

where max (n'1;,0) revealed the attached shadows, and ¢;
is an error term where the impacts are hardly represented
by the BRDF model, such as cast shadows, imaging noise,
and inter-reflections [17]. As an inverse problem, the goal of
photometric stereo is to measure the surface orientation from
a combination of reflectance and illuminations in multiple
images. The literature of photometric stereo is vast, and we
here briefly review the mainstream calibrated photometric
stereo technologies, including traditional algorithms and deep
learning based methods. Comprehensive photometric stereo
surveys on hand-craft reflectance models and robust methods
can be found in [18], [19].

A. Lambertian Photometric Stereo

In 1980, Woodham firstly proposed the Lambertian photo-
metric stereo algorithm [5]. Under the Lambertian assumption,
the error term ¢; is ignored and the BRDF has the diffuse
property, where the observed intensity is proportional to the
cosine of the angle between the illumination direction and the
surface normal but irrelevant to the view direction. Therefore,
the imaging model can be simplified and easily solved by the
least-square approach. Although the Lambertian method failed
to estimate most of the real-world non-Lambertian objects,
the basic theory is significant that reveals the image formation

model can be cast into a linear system of equations and solved,
establishing the relationship between two-dimensional images
and the object geometry.

B. Non-Lambertian Photometric Stereo

To extend photometric stereo to work with non-Lambertian
surfaces in practice, researchers investigated different strate-
gies. Commonly, according to the taxonomy of [14], non-
Lambertian photometric stereo technologies can be divided
into four categories: robust methods, analytic and empirical
reflectance model methods, example-based methods, and deep
learning methods.

1) Robust methods: Robust methods treat most regions on
the surface as a simple diffuse reflectance model (Lambertian)
while treating non-Lambertian phenomena (such as specu-
larity and cast shadows) as outliers. These methods assume
specularity and shadows are local and sparse, which can be
detected and discarded. In the early work, the surface normal
is estimated by selecting the three images with the lowest
specularity and the closest Lambertian appearance from mul-
tiple images [20]. Afterwards, Wu et al. [9] proposed a robust
principal component analysis (RPCA) method to decompose
images into the minimized-rank Lambertian composition and
the non-Lambertian sparse counterpart. Similarly, Ikehata et al.
[10] employed an improved rank = 3 decomposition instead
of rank-minimization, achieving better computational stability.
Several other robust techniques were also applied to solve the
outliers, such as maximum-likelihood estimation [21], shadow
cuts [22], and maximum feasible subsystem [23]. Although ro-
bust methods are effective, these approaches generally cannot
handle the surface with broad and soft specularity, where non-
Lambertian regions are hard to be detected as the outliers. In
addition, these methods usually need a huge number of the
observed images to achieve stable computations.

2) Analytic and Empirical Reflectance Model Methods:
To handle the non-Lambertian, using analytic or empirical
reflectance model to approximate the non-Lambertian BRDFs
is a fairly straightforward idea. Along this direction, many
models were proposed to fit the nonlinear analytic BRDE,
such as the specular spike model [24], the Blinn-Phong model



[25], the Torrance-Sparrow model [26], the Ward model and
its variations [27], [28], and the microfacet BRDF model [29].
In addition, empirical reflectance models consider the general
properties of a BRDF, such as isotropy and monotonicity,
to deal with multiple types of surface materials. Some basic
derivations for isotropy BRDFs were proposed in [30], [31].
Based on empirical models, some researchers applied isotropic
constraints for the measurement of surface orientation [32],
[33]. Shi et al. [34] and Ikehata et al. [7] further approximated
the isotropic BRDFs by bivariate functions to deal with the
instability of the estimation. However, these hand-crafted
analytic and empirical reflectance models are generally useful
for limited categories of reflectance as the reflectance prop-
erties are significantly changing from materials to materials.
Moreover, most of these methods are pixel manners which
ignore inter-reflection and cast shadows.

3) Example Based Methods: In addition to the above two
strategies, amounts of photometric stereo algorithms can be
treated as example based methods. Under the same illumina-
tion environment, the calibration object with the known surface
normal (usually a sphere) transformed the non-Lambertian
photometric stereo to a pixel matching problem. Early work
required exactly the same material between the target and
the calibrated objects. Hertzmann and Seitz [35] relaxed this
restriction by assuming that a small number of basis materials
compose the general materials. Hui and Sankaranarayanan [36]
used a BRDF dictionary to render virtual spheres instead of
putting the real calibrated objects. However, the drawback of
the same illumination configuration limits its practical use.

4) Deep Learning Methods: Deep learning techniques have
been introduced to solve the problem of non-Lambertian
photometric stereo, which have achieved inspiring perfor-
mance. Santo et al. first presented DPSN [12] to address the
non-Lambertian photometric stereo. DPSN regresses the per-
pixel normal from the fixed number of the observed images,
where the training and the testing have to use the same pre-
defined illumination directions. Therefore, a new model has
to be retrained if the input number or illumination directions
are changed. To relax this constraint and take advantage of
the information embedded in the neighborhood, subsequent
methods were improved by applying convolutional neural
networks (CNNs) and explored flexible input strategies [13],
[15], [37]. Ikehata [15] introduced the observation map, which
rearranges observation intensities according to light directions,
to overcome the fixed inputs problem. The observation map
strategy was also adopted in [37], [38], which is effective for
inputs with order-agnostic illuminations. Others [13], [39],
[40] applied the max-pooling method to aggregate features
from a number of inputs. In addition, some works proposed
to better handle specified problems. Taniai and Maehara [4 1]
proposed an unsupervised method to better handle the condi-
tion of lacking ground-truth surface normals, where the surface
normals are estimated by minimizing the reconstruction loss.
Ju et al. [42] proposed an adaptive attention-weighted loss to
improve the performance of complex-structured areas, where
the detail-preserving gradient loss can produce clear recon-
structions. More recently, Yao et al. [43] attempt to introduce
GNN for learning-based photometric stereo, named GPS-Net.

Ju et al. [44] proposed a dual-regression method to recover
both surface normal and rendered observations, which provides
an additional supervision.

However, these deep learning methods still need to be
improved when dealing with strong non-Lambertian surfaces
and high-frequency structures. Unlike previous deep learning-
based photometric stereo methods, we introduce the Lam-
bertian priors to guide the learning and correct the errors
caused by non-ideal solutions, which outperform state-of-the-
art methods on challenging benchmark datasets.

III. PROPOSED METHOD

In this section, we will present our proposed Lambertian
priors photometric stereo network. Our goal is to measure
surface normal of non-Lambertian surfaces with complex
reflectance such as inter-reflections and cast shadows. Our
strategy is to boost the measurement based on the physical
Lambertian prior. Before introducing the network details, we
will first present the learning objective.

A. What Is Learned in Our Method

Assuming that a surface point on the surface with a unit
normal n € R? is illuminated by ;' light source with
direction I; € R? in intensity observation i; € R3. We
artificially split the observation %; into two parts: the diffuse
i? and the other ¢, where 4; can be shown by i? + 9.
The i? represents the ideal Lambertian reflectance, while the
z;’ stands for specularity, cast shadows, inter-reflections, and
global illuminations.

If we can exactly extract the diffuse i;’ from observation
1;, then the surface normal n can be expressed, according to
ideal Lambertian photometric stereo [5], as follows:

Ly
n= L1719 2
where I = [i¢, 44, ..., 4]’ is the column vector of the diffuse
part in {1,2,...,5} and the matrix L = [I1,lz,...,1l;]" is

composed of illumination direction in {1,2,...,5}.

However, few methods can exactly express the diffuse part
from the observation, including outliers methods and illumi-
nation models. Rather than using sophisticated models or deep
learning to further reduce fitting errors, we, hereafter, rethink
the Lambertian model in the non-Lambertian condition. Here,
we attend the prior surface normal n’, which can also be
calculated via the ideal physical model [5]:

, LI

nzma 3)

where I = [i$+49,49+49, .. .,4%+49]". It can be seen that the
error of n’ is caused by the non-Lambertian and other global
effects I? = [i{,43,...,1%]". Naturally, we wish to learn the
nonlinear mapping by the pattern of observation I including
I and I°, as follows:
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Fig. 2. [TOP] Overview. The prior normal N” is calculated by Lambertian physical model using input images {I1, I2, ...
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is shown in the gray box, where the first three dimensions are normal and the last six dimensions are image and the expanded illumination direction. Our

method takes the fusion {®1, P2, ...

,®;} including prior normals as inputs and estimates the surface normal N. [BOTTOM] Network architecture. For

each ®, we split it into two parts, the prior normal and the image information. The channel dimension and spatial resolution of layers are highlighted in red.

Unlike previous deep learning-based methods focusing on
using different setups to infer the surface normal from solely
input images, as Mapping (I¢ + I° — n), our method
focuses on the use of the input images I+ I° as the patterns
to correct the surface normal from Lambertian priors. For deep
learning-based photometric stereo, we argue that the above
mapping is a better choice for estimating the surface normal.
Our analysis is that (1) mapping the errors in estimating
surface normals {Y — )} instead of mapping the surface
normals from RGB images {X — )Y} reduce the space of
solving possible learning functions and improve the estimation
results () represents the surface normal space, where X
represent the RGB image space). (2) the prior normals 7’
are theoretically accurate in terms of diffuse reflection.In this
condition, our method is equivalent to enlarge the proportion
of non-Lambertian errors in total errors, where the network
always tends to learn the parameters to make the loss drop. In
training, the network therefore will be more inclined to opti-
mize this part of errors. i.e., our method learns the differential
features, amplifying the non-Lambertian errors.

B. Network Architecture

In this section, a novel Lambertian guided photometric
stereo network is designed according to the inference reported

in Section III-A. The network enhances the measurement
on non-Lambertian surfaces, crinkle regions, and varying
reflectance edges. The overview and detailed architecture of
our Lambertian priors based photometric stereo network is il-
lustrated on the [TOP] and [BOTTOM] of Fig. 2, respectively.

We first fuse the Lambertian priors with input images. Given
4t images with known illumination directions, we take the
Lambertian assumption [5] to calculate the prior normals IN'
by Eq. 3. We then concatenate the prior normal with each
observation and illumination as ®;. For the illumination of
the corresponding image, we expand the 3-vector illumination
and expand it to the same spatial resolution as the image, L; €
R3*h*w “and concatenate the illumination L; with the image.
This operation makes the illumination directions fully fuse
with the corresponding observation in a pixel-wise manner.
Hence, each input ®; has the dimensions of RI*hxw \where
the concatenation order is the prior normal, the image, and
the illumination direction. In fact, the above mapping model
(Eq. 4) is constructed in the per-pixel manner. However, the
proposed network predicts the surface normal from the image
patch. Inspired by previous works [13], [45], we argue that the
embedded features from a neighboring image patch enhances
the flexibility of the proposed network to various reflectance.

We separately feed these {®1, ®2,..., ®;} to the network,



as shown on the [BOTTOM] of Fig. 2. The red numbers
represent the dimensions of the feature channels. We apply
the Leaky-ReLU as the activation function of each layer. The
network includes three stages: feature extraction, max-pooling
fusion, and regression.

The first stage of our network can be seen as the ;% multi-
branch shared-weight feature extraction, as:

\I’j :F((I)j;eF), (5)

where ¥; € R512X3hx5w ig the feature from the feature
extractor F' with learnable parameters 0. The feature extrac-
tion stage contains two residual networks [46], handling the
surface normal and the image with its associated illumina-
tion direction, respectively. It can be seen that each residual
network contains 6 residual blocks with two down-sampling
convolutional layers. Residual blocks can effectively avoid
gradient vanishing [46] in a deep network. Also, we argue
that the shortcut fuses previous blocks, which is a combination
of features at different levels and scales. In addition, the
shortcut structure is equivalent to adding all the information
of the previous layer image in each block, which retains more
original features. We also compare the results of different
network architectures in ablation study (Section IV-B3). The
two down-sampling, from & x w to 1h x fw are executed by
stride = 2 convolutional layer on the third and fifth residual
blocks. By concatenating the features of the image residual
network to those of the prior normal residual network in
different scales, the network increase the receptive field.

A convolutional layer is applicable for multi-feature fusion
only when the number of inputs is fixed. Unfortunately, this
is not practical for photometric stereo where the number
of inputs often change. Therefore, in the second stage, we
apply a max-pooling operation [13], [42] for multi-feature
fusion, and getting fixed feature that can be backpropagated.
Max-pooling extracts the most salient information from all
the features. In fact, it is the regions with high intensities
or specularities that provide strong clues for surface normal
estiamtion. Also, the max-pooling operation can exclude the
shadows from multi-illumination directions. In contrast, the
average-pooling will smooth out useful features and may be
impacted by non-activated features such as shadows. Here,
we choose the superscript p to denote the index of the feature
tensor, as follows:

Ihxiw
Uaw = U maz (WY, WE, .. W), (6)
P

Finally, the normal regression stage R takes W,,q4 as input
and regresses the estimation surface normal IN as:

N = R(‘I,ma:c; HR)a (7

where 0 is the learnable parameter of the regressor R. The
regressor consists of six convolutional layers, three deconvolu-
tional layers, and an L2-normalization layer. The feature map
is up-sampled (by the deconvolutional layer) three times and
down-sampled (by the stride = 2 convolutional layer) once
to fully utilize the embedded information, resulting in up-
sampling of twice. We argue that this design can expand the

receptive field and keep spatial information with a small GPU
memory. We concatenate the prior normal N to the feature
map after the second deconvolutional layer. We reckon that the
fusion in the regression stage will enhance the high-frequency
details of the estimated surface normal. The detailed discussion
can be found in the ablation experiments (Section IV-B).

The learning of our network is supervised by the error
between the measured and the ground-truth surface normals.
We optimize the networks parameters 6, 0z by minimizing
the cosine similarity loss function as:

hw
1 _
Lnormalz@zp:(l_Np'Np)v (8)

where NP and NP denote the measured normal and the
ground-truth, respectively, at pixel p. If the estimated normal
NP at pixel p has a similar orientation as the ground-truth N,
then the NP - NP will be close to 1 and the cosine similarity
loss will approach 0.

Our network was implemented using PyTorch and the Adam
optimizer is used with the default settings (5= 0.9 and
£2=0.999) on a RTX 2080 GPU. The initial learning rate is
set to 0.002, and divided by 2 every 5 epochs. We train the
model using a batch size of 24 for 40 epochs. The number of
observations for training and prior normals is 32. In addition,
we set the spatial resolution i, w = 32 in training.

IV. EXPERIMENTS

In this section, we present datasets, experimental results, and
analysis. To verify the quantitative performance of our method,
we use some widely used metrics to measure accuracy. We
adopt the mean angular error (MAE) in degree to evaluate the
performance of estimated surface normal, as follows:

HxW

MAFE = 1 (arccos(NP - NP)) , )

aHw

p

where H x W represents the spatial resolution of the tested
surface normal. We also apply < errise and < errspo to
measuring the percentage (%) that pixels with the angular error
less than 15° and 30°, respectively.

A. Dataset

1) Training and validation datasets: As a supervised learn-
ing method, we adopt two publicly available synthetic datasets
from [13], called blobby shape and sculpture shape datasets
[47], which are rendered with the MERL dataset [48] by the
physically-based raytracer Mitsuba [49]. Blobby and Sculpture
datasets provide surfaces with complex structures and rich
surface orientations, and the MERL dataset contains 100
different BRDFs of real-world materials. The combinations
provide comprehensive data distribution. The training set
contains 85212 samples. For each sample, 64 observation
images are rendered by random illumination directions in an
upper-hemisphere, with a 128 x 128 spatial resolution. We
randomly crop 32 x 32 (default training spatial resolution)
images patches in each sample for data augmentation.



2) Testing datasets: To evaluate our method, we apply
several commonly used datasets, including both synthetic and
real datasets. For the synthetic dataset, we first employ the
CyclesPSTest dataset [15]. CyclesPSTest is a synthetic dataset
of three objects, “Sphere”, “Turtle”, and “Paperbow!”. “Turtle*
and “Paperbowlare” are objects with the non-convex surface
where specularity and cast shadow extensive appear. We also
employ the synthetic object “Dragon”. The object “Dragon”
was rendered with 100 different BRDFs from the MERL data
set [48] under 100 random illumination directions in an upper-
hemisphere, for testing the results of our method on different
surface reflectances.

For the real dataset, we employ the public DiLiGenT
benchmark dataset [14], which contains 10 objects of various
shapes with complex materials. Each object provides images
with a resolution of 612 x 512 from 96 different known
illumination directions. The DiLiGenT benchmark dataset is
challenging for its strong non-Lambertian surfaces and non-
convex structures. Besides, we also employ the Light Stage
Data Gallery [50], which contains six objects without ground-
truth. Each object has 253 images under different illumination
directions. Therefore we qualitatively evaluate our method on
the Light Stage Data Gallery.

B. Ablation Experiments and Network Analysis

We took quantitative ablation experiments on the validation
set of 852 samples. We first evaluated the effectiveness of our
Lambertian priors based photometric stereo network (Experi-
ments with IDs 0 & 1). We compared our default network with
only using input images, where the residual network for the
Lambertian priors branch (channel 1-3 of each input ®;) and
concatenation are removed. We then investigated the influence
of different prior inputs on our network (Experiments with IDs
0 & 2). For comparisons, we selected rank minimization [9] (a
robust photometric stereo method) as the prior input. Further-
more, we evaluated the effectiveness of the selected residual
architecture (experiments with IDs 0 & 3). We compared the
residual blocks’ settings [46] in the feature extraction stage
with the plain settings (without shortcut connections). Finally,
we evaluated the effectiveness of concatenating the prior
normal N’ in the regression stage (experiments with IDs 0, 4,
& 5). We compared the concatenation with the prior after the
second deconvloutional layer (default) with the concatenation
with the prior after the third deconvloutional layer, and without
the concatenation with the prior. For all the experiments in the
ablation study, we train the networks with 32 input images,
and reported the average results of the validation set of 852
samples. The results were summarized in Table I. To further
evaluate the performance and the generalization of our method,
we also report the ablation study on the synthetic object
“Dragon” with 100 different materials, as shown in Fig. 3,
corresponding to IDs 0, 1, and 3 in Table I.

1) Effectiveness of Lambertian priors based photometric
stereo network: Experiments with IDs 0 and 1 demonstrated
the performance of adding Lambertian priors to the photomet-
ric stereo networks. It can be seen that our method of using
prior normal consistently performs better than the traditional

TABLE I
RESULTS OF SYSTEM ANALYSIS ON THE VALIDATION SET WITH 32 INPUT
IMAGES, WHERE THE NUMBERS REPRESENT THE AVERAGE VALUES OF
ALL THE SAMPLES OF THE VALIDATION SET. THE LOWER MAE, THE
BETTER. FOR < errys0 AND < errsgo, THE HIGHER, THE BETTER.

ID  Variants MAE < erriso < errspo
0 With prior normal (Ours) 12.30 84.39% 94.86%
1 Without prior normal 12.98 82.05% 94.71%
2 With rank minimization [9]  12.27 84.26% 94.91%
3 Plain network 12.45 83.94% 94.83%
4 Concatenate 3rd deconv 12.32 84.15% 94.65%
5 Without concatenate 12.54 82.85% 94.61%

mapping strategy over all the metrics, for example, 12.30°
for MAE, 84.39% and 94.86% of the pixels have the angular
errors of less than 15° and 30°. This is due to the fact that
our method learns the mapping in the same normal space
while the previous methods learn the mapping over different
spaces: from RGB images to normal. Therefore our method
can converge faster and achieve accurate estimations. Also,
as shown in Fig. 3, It can be seen that on most materials,
our method significantly outperformed the network without a
normal prior and the baseline Lambertian method [5]. Note
that the proposed method performed particularly well on the
surfaces that have larger errors in the baseline method, which
suggested our method can improve the prediction over strong
non-Lambertian reflectance.

We further evaluated the robustness of our method with
spatially varying BRDFs on the surface. Fig. 4 futher quanti-
tatively shows two objects from “Paperbowl” and “Sphere” in
synthetic CyclesPSTest dataset [15] with only 17 input images.
Similar to the results on the synthetic object “Dragon”, our
method outperformed the counterpart without prior normal. It
can be seen that reflectance is rapidly changed on these two
object, denote that our method can lead to smoother surface
normals compared with the method of using only image input
which suffer from wide varieties of real-world materials.

In addition, we reported the convergence error in Fig. 5.
As shown in Fig. 5, our method of using Lambertian priors
achieved lower convergence error in the training processing. It
shows that our network is more effective for feature extraction
and regression than the previous mapping method learning
surface normal from only input images.

Moreover, the convergence of our method is faster, which
means that our method can further benefit from fewer training
samples condition. To prove this, we tabulated the performance
with fewer training datasets in Table II. The training with
fewer dataset causes larger errors on methods whether using
Lambertian priors. However, our method with priors performs
slight decrease (0.34° ) when using Blobby dataset with 25600
samples, while the method without priors reports a larger
drop (0.81°). In fact, if our method was trained by very few
samples, then the error would be close to least square priors
[5]. However, the errors of the method without priors might
be unacceptable.

We also observed that the MAE of the validation set is
larger than that of the DiLiGenT dataset (see in Section [V-C).
The reason for this may be because the illumination directions
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Fig. 5. Convergence comparison on the validation set. The blue curve
represents the network without the prior normal while the orange curve
is the network using Lambertian priors. For the network without the prior
normal, we keep the same architecture but remove the second residual network
which handles the prior normal, and all the concatenate operations. Both two
networks are trained with the same parameters and 32 images as the input.

of the validation set are randomly generated in an upper-
hemisphere, while the illumination directions of the DiLiGenT
dataset are more clustered, which benefits the learning with
fewer cast shadows.

2) Effectiveness of different priors: Experiments with IDs
0 and 2 show the influence of different prior inputs on our

TABLE II
NORMAL ESTIMATION RESULTS ON THE VALIDATION SET WITH 32 INPUT
IMAGES. BLOBBY DATASET CONTAINS 25660 TRAINING SAMPLES WHILE
SCULPTURE GIVES 58700 SAMPLES.

Training datasets With prior normal ~ without prior normal

Only Blobby 12.64 13.79
Only Sculpture 12.39 13.23
Blobby + Sculpture 12.30 12.98

network. In ID 2, we use the results of the rank minimization
method [9] as the prior normal. Referring to Table I, we
discover that the prior normal from the rank minimization
is slightly better than that from the Lambertian model on
MAE and < errsge. This is due to the fact that the rank
minimization method [9] has better performance than the
Lambertian model. However, we still choose the Lambertian
surface normal as the priors because of the multi-facet. First,
the rank minimization method needs much time for detecting
and removing the outliers. Therefore, the time consumption
of the network using rank minimization priors is demanding
on both the training (65 hours for training, while Lambertian
priors only need 19 hours) and the test stages. Second, the
rank minimization priors are limited in varying reflectance
surfaces, because the outlier removal methods such as rank
minimization are generally effective for limited categories of
reflectance.

3) Effectiveness of residual blocks in the feature extraction
stage: Experiments with IDs O and 3 show the performance
of residual architectures and plain counterparts in the feature
extraction stage. Referring to Table I, experiments show that
applying residual blocks in the feature regression stage has a
lower mean angular error. We also found that the < errjseo
had a relatively large drop when the plain network was used.
Also, as shown in Fig. 3, It can be seen that our method has a



slightly small error among most materials and average MAE.
The results suggested the residual architecture increased the
accuracy of surface normal estimation. The reason might be
because the residual blocks can effectively avoid gradient van-
ishing [46] in a deep network. Also, we argue that the shortcut
fuses previous blocks, which is a combination of features at
different levels and scales. In addition, the shortcut structure is
equivalent to adding all the information of the previous layer
image in each block, which retains more original features.

We further compare the different architectures of the resid-
ual module. As tabulated in Table III, our default settings (6
residual blocks) achieve better performance compared with
using fewer residual blocks. We find that our default settings
are slightly worse than 7 residual blocks on MAE. However,
the additional residual blocks increase the parameters and
training time. For simplifying the complexity of the network,
we just remain the 6 blocks eventually. Also, we compare
our method with a more simplified single residual branch
(directly handle all channels of input, rather than handle the
1-3 channels and 4-9 channels by two residual branches, as
shown in Fig. 2 [BOTTOM]). However, the performance of
using the single residual branch is worse.

TABLE III
RESULTS OF THE DIFFERENT RESIDUAL BLOCKS ARCHITECTURES
TESTING ON THE VALIDATION SET.

Architectures MAE <erriso < errggo
ours (6 residual blocks)  12.30 84.39% 94.86 %
3 residual blocks 12.37 84.35% 94.83%
5 residual blocks 12.32 84.38% 94.85%
7 residual blocks 12.29 84.39% 94.85%
Single branch 12.52 84.21% 84.77%

4) Effectiveness of concatenating prior normal: Experi-
ments with IDs 0, 4, and 5 shown in Table I reported the
effectiveness of concatenating prior normals in the regression
stage. For ID 4, we concatenated the prior normal to the
third deconvolutional layer in the regression stage. For ID
5, we removed the concatenation operation in the regression
stage (without any prior normal). Table I shows that the
default settings (concatenating the prior normal to the second
deconvolutional layer) helped us to boost the performance.
In particular, non-concatenating in the regression stage has a
negative impact on the predicted results. This suggests that
adding prior normals in deep feature layers will enrich details
and increase accuracy. We also noted that the performance was
slightly worse, when moving the concatenation back to the
3rd deconvolutional layer. This may be due to the fact that the
subsequent up-sampling and down-sampling operations well
support the feature fusion in different scales.

C. Evaluation on the DiLiGenT benchmark dataset

We reported the results on the DiLiGenT benchmark dataset
[14] with 96 input images in Table IV. In Table IV, we
compared our Lambertian model guided photometric stereo
network with both traditional algorithms and deep learning
methods. For traditional algorithms, we evaluate the Lam-
bertian baseline (our prior normal) [5], robust methods [9],

[10] of outlier rejection-based technologies (robust method),
and analytic and empirical models [6]-[8], [28], [33], [34].
For deep learning methods, we also compared with several
state-of-the-art networks, such as DPSN [12], IRPS [41], PS-
FCN [13], CNN-PS [15], Attention-PSN [42], DR-PSN [44],
and GPS-Net [43]. Besides, we also evaluated our method
against several deep learning methods with sparse inputs (with
10 input images) [15], [37], [38] and flexible inputs methods
[51, [10], [13], [34], [44] shown in Table V. Note that LMPS
method [37] takes 10 optimal images as inputs, while other
sparse methods takes 10 random images as input. In particular,
we reported our method of training with 10, 32, and 64 input
images, respectively.

As shown in Tables IV and V, our method (default) out-
performed the other state-of-the-art methods on both 96 and
10 input images, with higher average MAE. In particular, it
can be seen that our prior guided photometric stereo network
substantially improves the cases with strong non-Lambertian
and non-convex surfaces, such as “Buddha”, “Cow”, ‘“Har-
vest”, and “Reading”. Therefore, we can reveal that providing
prior normal has the effectiveness of handling specularity and
cast shadows. We compared and showed the results of these
objects in Fig. 6. It can be observed that our method recovered
accurate surface normals on the regions with specularity, cast
shadows, and crinkles, such as the collar of the “Buddha”,
the wrinkled clothes of the “Reading”, and the pocket of the
“Harvest”. Note that the original CNN-PS [15] discarded the
first 20 images of “Bear” (tested with 76 images remaining),
achieving a much better MAE of 4.25° for “Bear”. The reason
for discarding first 20 images of “Bear” is that the intensity
values around the stomach region are wrong. However, all
the images of “Bear” were used in evaluating all the other
methods, except CNN-PS. For a fair comparison, we show
the results based on the same test images (all 96 images).

In addition, we furthermore explored the influence of dif-
ferent input images in training. As shown in Tables IV and
V, we reported the results of our method trained with 10 and
64 images respectively (64 is the maximum number of the
images in the training dataset). It can be seen that the method
trained with 64 images achieved even better performance than
the one trained with 32 images when using 96 images. On the
contrast, the method trained with 10 images outperformed the
method when using 10 images. In other words, similar input
images between the training and the evaluation will benefit the
estimation of the surface normal. The reason is that the prior
normal is related to the input images, where the differences of
prior normals caused by varying numbers of input images will
affect the patterns the method learned to some extent. In order
to obtain the best performance, we, therefore, recommend that
a similar number of input images be used during the training
and testing. Nonetheless, our default setting (trained with 32
images) has achieved the state-of-the-art performances on the
measurement with 96 and 10 images (for a fair comparison).

D. Evaluation on the Light Stage Data Gallery

We further evaluated our method on a more complex dataset
with general non-Lambertian materials. Fig. 7 shows the



TABLE IV
COMPARISON OF DIFFERENT METHODS ON THE DILIGENT BENCHMARK DATASET. ALL METHODS ARE EVALUATED WITH 96 IMAGES. HERE, WE
MEASURE MAE IN DEGREES. OUR METHOD WAS TRAINED WITH 10, 32, 64 IMAGES, RESPECTIVELY. BLACK BOLD TEXTS REPRESENT THE BEST

PERFORMANCE, AND UNDERLINED TEXTS REPRESENT THE SECOND BEST.

Method Ball Bear  Buddha Cat Cow  Goblet Harvest Potl Pot2  Reading  Avg.
Baseline (Least squares) [5] 4.10 8.39 14.92 8.41 25.60 18.50 30.62 8.89 14.65 19.80 15.39
Monotonic BRDF [33] 13.58 19.44 18.37 1234 7.62 17.80 19.30 1037  9.84 17.17 14.58
Matrix rank = 3 [10] 2.54 7.32 11.11 7.21 25.70 16.25 29.26 7.74 14.09 16.17 13.74
Rank minimization [9] 2.06 6.50 1091 6.73 2589 15.70 30.01 7.18 13.12 15.39 13.35
Consensus constraint [8] 3.55 11.48 13.05 8.40 14.95 14.89 21.79 10.85 16.37 16.82 13.22
2D discrete table [0] 2.71 5.96 12.54 6.53  21.48 13.93 30.50 7.23 11.03 14.17 12.61
Multi-Ward models [28] 3.21 6.62 14.85 8.22 9.55 14.22 27.84 8.53 7.90 19.07 12.00
Bivariate BRDF [7] 3.34 7.11 10.47 6.74 13.05 9.71 25.95 6.64 8.77 14.19 10.60
Bi-polynomial [34] 1.74 6.12 10.60 6.12 13.93 10.09 25.44 6.51 8.78 13.63 10.30
SDPS-Net [39] 2.77 6.89 8.97 8.06 8.48 11.91 17.43 8.14 7.50 14.90 9.51
DPSN [12] 2.02 6.31 12.68 6.54 8.01 11.28 16.86 7.05 7.86 15.51 9.41
IRPS [41] 1.47 5.79 10.36 5.44 6.32 11.47 22.59 6.09 7.76 11.03 8.83
PS-FCN [13] 2.82 7.55 791 6.16 7.33 8.60 15.85 7.13 7.25 13.33 8.39
CNN-PS [15] 2.12 12.30 8.07 4.38 7.92 7.42 13.83 5.37 6.38 12.12 7.99
Attention-PSN [42] 2.93 4.86 1.75 6.14 6.86 8.42 15.44 6.92 6.97 12.90 7.92
DR-PSN [44] 2.27 5.46 7.84 5.42 7.01 8.49 15.40 7.08 7.21 12.74 7.90
GPS-Net [43] 2.92 5.07 7.77 542 6.14 9.00 15.14 6.04 7.01 13.58 7.81
Ours (Trained with 10 images) 2.57 5.89 8.94 7.10 7.54 8.82 15.48 7.68 7.71 11.53 8.33
Ours (Trained with 64 images) 2.49 5.64 7.70 6.45 6.23 8.36 14.67 7.12 7.22 10.89 7.68
Ours (Trained with 32 images, default) 2.51 5.77 7.88 6.56 6.29 8.40 14.95 7.21 7.40 11.01 7.80
TABLE V

COMPARISON OF DIFFERENT METHODS ON THE DILIGENT BENCHMARK DATASET. WE NOTE THAT ALL METHODS ARE EVALUATED WITH 10 IMAGES

FOR MAE IN DEGREES. OUR METHOD WAS TRAINED WITH 10, 32, 64 IMAGES, RESPECTIVELY. BLACK BOLD TEXTS REPRESENT THE BEST

PERFORMANCE, AND UNDERLINED TEXTS REPRESENT THE SECOND BEST.

Method Ball Bear  Buddha Cat Cow  Goblet Harvest Potl Pot2  Reading  Avg.
Baseline (Least squares) [5] 5.09 11.59 16.25 9.66 2790 1997 3341 1132 18.03 19.86 17.31
Bi-polynomial [34] 524 939 15.79 934  26.08 19.71 30.85 976 15.57 20.08 16.18
Matrix rank = 3 [10] 333 762 13.36 8.13  25.01 18.01 29.37 8.73  14.60 16.63 14.48
CNN-PS [15] 9.11 14.08 14.58 11.71  14.04 1548 19.56 1323 14.65 16.99 14.34
PS-FCN [13] 402 718 9.79 8.80  10.51 11.58 18.70 10.14  9.85 15.03 10.51
SPLINE-Net [38] 496 599 10.07 7.52 8.80 10.43 19.05 8.77 11.79 16.13 10.35
LMPS [37] 397 873 11.36 6.69 10.19 10.46 17.33 7.30 9.74 14.37 10.02
DR-PSN 383 752 9.55 7.92 9.83 10.38 17.12 9.36 9.16 14.75 9.94
Ours (Trained with 10 images) 3.62 736 9.61 7.66 8.42 10.17 16.70 9.24 9.38 14.15 9.63
Ours (Trained with 64 images) 394  7.60 9.83 7.94 8.63 10.38 17.07 9.45 9.73 14.42 9.94
Ours (Trained with 32 images, default) 3.86  7.49 9.69 7.82 8.55 10.31 16.94 9.28 9.54 14.30 9.78

results of our method using the Light Stage Data Gallery [50].

E. Limitations

We show the qualitative outcomes for four complex objects
“Helmet”, “Kneeling”, “Standing”, and “Plant” in the dataset,
due to the absence of ground-truth surface normals. Similarly,
our method was trained with 32 images while being evaluated
with random 96 observations in all 253 images.

As shown in Fig. 7, the estimated normal keeps the details
without blur, such as the screws of the “Helmet”, the hair of the
“Kneeling”, the lumpy-looking clothes of the “Standing”, and
the succulent plants of the “Plant”. Note that the reflectance
of plants was not trained in the training process. However, the
result of object “Plant” is quite visually accurate, which shows
the robustness of our method. We can also see the accurate
reconstruction of the cast shadow areas (red boxes in Fig
.7). The reconstructed surface normal and the integral mesh
convincingly reflect the shapes of the objects, demonstrating
the accuracy of our physical prior photometric stereo network.
We also observed that the estimated surface normal of the same
objects, such as “Standing”, are with certain noise. It may be
due to the poor quality of the observations of “Standing” with
noise, where the high-frequency noise existing in observation
may affect the generation of the prior normal.

We also noticed that the proposed method did not achieve
the best performance on some objects of the DiLiGenT dataset
[14], such as “Ball” and “Cat”, as shown in Fig. 8. We
argue that these objects usually have few regions with non-
Lambertian reflectance (specularities and shadows). In this
case, our method does not outperform others on MAE, such as
IRPS [41] and DPSN [12]. However, our error map of “Cat”
shown in Fig. 8 is more robust than the others: compared
with others, our method handles better in the non-convex
regions (crinkles). Also, as shown in Fig. 3, our method with
prior normal reports a slightly worse MAE than counterpart
without priors, on very few materials in MERL BRDFs dataset
[48], which show almost diffused properties (such as “teflon”,
”pink-fabric”, and “nylon”). It also illustrates that our method
may exist limitations on very slight non-Lambertian samples.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a Lambertian normal
guided photometric stereo network, which utilizes the prior
normal to derive accurate surface measurement. Compared
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with previous deep learning approaches that derive the normal
space from the RGB space, our method takes the mapping in
the same normal space and pays more attention to the errors
in the prior normal. Ablation experiments have illustrated that
our method performs more accurate reconstruction. Moreover,
the convergence of our method is faster than the traditional
methods using the observations to derive the surface normal,
which means that our method can be trained with fewer
samples. Extensive quantitative and qualitative comparisons

on both real (the DiLiGenT benchmark and the Light Stage
Data Gallery) and synthetic datasets (the “Dragon” and the
CyclesPSTest) have shown that our method outperforms the
state-of-the-art methods. The examples have demonstrated
that our Lambertian priors photometric stereo network better
handles the surface normal in strong non-Lambertian materials
and surfaces with varying reflectance. In future work, we will
explore several alternative normals as the priors. For example,
better priors further improve the estimation of the surface



normals, such as the high-quality photometric stereo with
outlier rejection.

Furthermore, the proposed priors guided photometric stereo
network can also support wider applications. For instance, our
framework can be used in a non-ideal illumination environ-
ment, where the illuminations are not parallel light or with
extra natural illumination. In these tasks, the priors normal
can be calculated under the ideal illumination assumption and
then refined with the network.

[1]

[3]

[4]

[5]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

Mingjun Ren, Lingbao Kong, Lijian Sun, and ChiFai Cheung, “A curve
network sampling strategy for measurement of freeform surfaces on
coordinate measuring machines,” IEEE Transactions on Instrumentation
and Measurement, vol. 66, no. 11, pp. 3032-3043, 2017.

Jieji Ren, Zhenxiong Jian, Xi Wang, Ren Mingjun, Limin Zhu, and
Xianggian Jiang, “Complex surface reconstruction based on fusion of
surface normals and sparse depth measurement,” IEEE Transactions on
Instrumentation and Measurement, vol. 70, pp. 1-13, 2021.

Yakun Ju, Xinghui Dong, Yingyu Wang, Lin Qi, and Junyu Dong,
“A dual-cue network for multispectral photometric stereo,” Pattern
Recognition, vol. 100, pp. 107162, 2020.

Muwei Jian, Junyu Dong, Maoguo Gong, Hui Yu, Ligiang Nie, Yilong
Yin, and Kin-Man Lam, “Learning the traditional art of chinese
calligraphy via three-dimensional reconstruction and assessment,” /[EEE
Transactions on Multimedia, vol. 22, no. 4, pp. 970-979, 2019.

R. J Woodham, “Photometric method for determining surface orientation
from multiple images,” Optical Engineering, vol. 19, no. 1, pp. 139-144,
1980.

Neil Alldrin, Todd Zickler, and David Kriegman, “Photometric stereo
with non-parametric and spatially-varying reflectance,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2008, pp. 1-8.

Satoshi Ikehata and Kiyoharu Aizawa, ‘“Photometric stereo using
constrained bivariate regression for general isotropic surfaces,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 2179-2186.

Tomoaki Higo, Yasuyuki Matsushita, and Katsushi Ikeuchi, “Consen-
sus photometric stereo,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 2010, pp. 1157-1164.
Lun Wu, Arvind Ganesh, Boxin Shi, Yasuyuki Matsushita, Yongtian
Wang, and Yi Ma, “Robust photometric stereo via low-rank matrix
completion and recovery,” in Proceedings of the Asian Conference on
Computer Vision. Springer, 2010, pp. 703-717.

Satoshi Ikehata, David Wipf, Yasuyuki Matsushita, and Kiyoharu
Aizawa, “Robust photometric stereo using sparse regression,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2012, pp. 318-325.

Daisuke Miyazaki, Kenji Hara, and Katsushi Ikeuchi, “Median photo-
metric stereo as applied to the segonko tumulus and museum objects,”
International Journal of Computer Vision, vol. 86, no. 2-3, pp. 229,
2010.

Hiroaki Santo, Masaki Samejima, Yusuke Sugano, Boxin Shi, and Ya-
suyuki Matsushita, “Deep photometric stereo network,” in Proceedings
of the IEEE International Conference on Computer Vision Workshops,
2017, pp. 501-509.

Guanying Chen, Kai Han, and Kwan-Yee K Wong, “Ps-fcn: A flexible
learning framework for photometric stereo,” in Proceedings of the
European Conference on Computer Vision, 2018, pp. 3—18.

B Shi, Z Mo, Z Wu, D Duan, SK Yeung, and P Tan, “A benchmark
dataset and evaluation for non-lambertian and uncalibrated photometric
stereo.,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 41, no. 2, pp. 271-284, 2019.

Satoshi Ikehata, “Cnn-ps: Cnn-based photometric stereo for general
non-convex surfaces,” in Proceedings of the European Conference on
Computer Vision, 2018, pp. 3—18.

Tal Simchony, Rama Chellappa, and Min Shao, “Direct analytical
methods for solving poisson equations in computer vision problems,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
12, no. 5, pp. 435-446, 1990.

Shree K Nayar, Katsushi Ikeuchi, and Takeo Kanade, ‘“Shape from
interreflections,” International Journal of Computer Vision, vol. 6, no.
3, pp. 173-195, 1991.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

Jens Ackermann, Michael Goesele, et al., “A survey of photometric
stereo techniques,” Foundations and Trends® in Computer Graphics
and Vision, vol. 9, no. 3-4, pp. 149-254, 2015.

Steffen Herbort and Christian Wohler, “An introduction to image-based
3d surface reconstruction and a survey of photometric stereo methods,”
3D Research, vol. 2, no. 3, pp. 4, 2011.

Fredric Solomon and Katsushi Ikeuchi, “Extracting the shape and
roughness of specular lobe objects using four light photometric stereo,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
18, no. 4, pp. 449-454, 1996.

Frank Verbiest and Luc Van Gool, “Photometric stereo with coherent
outlier handling and confidence estimation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 2008,
pp. 1-8.

Manmohan Chandraker, Sameer Agarwal, and David Kriegman, “Shad-
owcuts: Photometric stereo with shadows,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 2007,
pp. 1-8.

Chanki Yu, Yongduek Seo, and Sang Wook Lee, “Photometric stereo
from maximum feasible lambertian reflections,” in Proceedings of the
European Conference on Computer Vision. Springer, 2010, pp. 115-126.
Tongbo Chen, Michael Goesele, and H-P Seidel, “Mesostructure from
specularity,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2006, vol. 2, pp. 1825-1832.

Silvia Tozza, Roberto Mecca, Marti Duocastella, and Alessio Del Bue,
“Direct differential photometric stereo shape recovery of diffuse and
specular surfaces,” Journal of Mathematical Imaging and Vision, vol.
56, no. 1, pp. 57-76, 2016.

Athinodoros S Georghiades, “Incorporating the torrance and sparrow
model of reflectance in uncalibrated photometric stereo,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2003, p. 816.

Hin-Shun Chung and Jiaya Jia, “Efficient photometric stereo on glossy
surfaces with wide specular lobes,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 2008,
pp. 1-8.

Dan B Goldman, Brian Curless, Aaron Hertzmann, and Steven M Seitz,
“Shape and spatially-varying brdfs from photometric stereo,” [EEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no.
6, pp. 1060-1071, 2009.

Lixiong Chen, Yingiang Zheng, Boxin Shi, Art Subpa-Asa, and Imari
Sato, “A microfacet-based reflectance model for photometric stereo with
highly specular surfaces,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 3162-3170.

Manmohan Chandraker, Jiamin Bai, and Ravi Ramamoorthi, “On
differential photometric reconstruction for unknown, isotropic brdfs,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
35, no. 12, pp. 2941-2955, 2012.

Neil G Alldrin and David J Kriegman, “Toward reconstructing surfaces
with arbitrary isotropic reflectance: A stratified photometric stereo
approach,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2007, pp. 1-8.

Si Li and Boxin Shi, “Photometric stereo for general isotropic re-
flectances by spherical linear interpolation,” Optical Engineering, vol.
54, no. 8, pp. 083104, 2015.

Boxin Shi, Ping Tan, Yasuyuki Matsushita, and Katsushi Ikeuchi,
“Elevation angle from reflectance monotonicity: Photometric stereo
for general isotropic reflectances,” in Proceedings of the European
Conference on Computer Vision. Springer, 2012, pp. 455-468.

Boxin Shi, Ping Tan, Yasuyuki Matsushita, and Katsushi Ikeuchi, “Bi-
polynomial modeling of low-frequency reflectances,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, , no. 6, pp. 1078-1091,
2014.

Aaron Hertzmann and Steven M Seitz, “Example-based photometric
stereo: Shape reconstruction with general, varying brdfs,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8,
pp. 1254-1264, 2005.

Zhuo Hui and Aswin C Sankaranarayanan, “Shape and spatially-varying
reflectance estimation from virtual exemplars,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 10, pp. 2060—
2073, 2016.

Junxuan Li, Antonio Robles-Kelly, Shaodi You, and Yasuyuki Mat-
sushita, “Learning to minify photometric stereo,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 7568-7576.

Qian Zheng, Yiming Jia, Boxin Shi, Xudong Jiang, Ling-Yu Duan, and
Alex C Kot, “Spline-net: Sparse photometric stereo through lighting



[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

interpolation and normal estimation networks,” in Proceedings of the
IEEE International Conference on Computer Vision, 2019, pp. 8549—
8558.

Guanying Chen, Kai Han, Boxin Shi, Yasuyuki Matsushita, and Kwan-
Yee K Wong, “Self-calibrating deep photometric stereo networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 8739-8747.

Yakun Ju, Muwei Jian, Junyu Dong, and Kin-Man Lam, “Learning
photometric stereo via manifold-based mapping,” in 2020 IEEE Inter-
national Conference on Visual Communications and Image Processing
(VCIP). IEEE, 2020, pp. 411-414.

Tatsunori Taniai and Takanori Maehara, “Neural inverse rendering
for general reflectance photometric stereo,” in Proceedings of the
International Conference on Machine Learning, 2018, pp. 4857—4866.
Yakun Ju, Kin-Man Lam, Yang Chen, Lin Qi, and Junyu Dong, “Pay
attention to devils: A photometric stereo network for better details,”
in Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, 2020, pp. 694-700.

Zhuokun Yao, Kun Li, Ying Fu, Haofeng Hu, and Boxin Shi, “Gps-net:
Graph-based photometric stereo network,” in Proceedings of Advances
in Neural Information Processing Systems, 2020, p. 33.

Yakun Ju, Junyu Dong, and Sheng Chen, “Recovering surface normal
and arbitrary images: A dual regression network for photometric stereo,”
IEEE Transactions on Image Processing, vol. 30, pp. 3676-3690, 2021.
Xi Wang, Zhenxiong Jian, and Mingjun Ren, “Non-lambertian photo-
metric stereo network based on inverse reflectance model with collocated
light,” IEEE Transactions on Image Processing, vol. 29, pp. 6032-6042,
2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in Proceedings of the IEEE
International Conference on Computer Vision, 2016, pp. 770-778.
Micah K Johnson and Edward H Adelson, “Shape estimation in natural
illumination,” in Proceedings of the IEEE International Conference on
Computer Vision. IEEE, 2011, pp. 2553-2560.

Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMil-
lan, “A data-driven reflectance model,” ACM Transactions on Graphics,
vol. 22, no. 3, pp. 759-769, 2003.

Wenzel Jakob, “Mitsuba renderer,” https://www.mitsuba-renderer.org/,
2010.

Per Einarsson, Charles-Felix Chabert, Andrew Jones, Wan-Chun Ma,
Bruce Lamond, Tim Hawkins, Mark Bolas, Sebastian Sylwan, and Paul
Debevec, “Relighting human locomotion with flowed reflectance fields,”
in Proceedings of the 17th Eurographics conference on Rendering
Techniques, 2006, pp. 183-194.


https://www.mitsuba-renderer.org/

	I Introduction
	II Related Work
	II-A Lambertian Photometric Stereo
	II-B Non-Lambertian Photometric Stereo
	II-B1 Robust methods
	II-B2 Analytic and Empirical Reflectance Model Methods
	II-B3 Example Based Methods
	II-B4 Deep Learning Methods


	III Proposed Method
	III-A What Is Learned in Our Method
	III-B Network Architecture

	IV Experiments
	IV-A Dataset
	IV-A1 Training and validation datasets
	IV-A2 Testing datasets

	IV-B Ablation Experiments and Network Analysis
	IV-B1 Effectiveness of Lambertian priors based photometric stereo network
	IV-B2 Effectiveness of different priors
	IV-B3 Effectiveness of residual blocks in the feature extraction stage
	IV-B4 Effectiveness of concatenating prior normal

	IV-C Evaluation on the DiLiGenT benchmark dataset
	IV-D Evaluation on the Light Stage Data Gallery
	IV-E Limitations

	V Conclusions and Future Work
	References

