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Multi-modal Image Reconstruction of Electrical 

Impedance Tomography Using Kernel Method

Zhe Liu, Student Member, IEEE, Yunjie Yang, Member, IEEE 

Abstract—The inverse problem of Electrical Impedance 
Tomography (EIT) is non-linear and severely ill-posed, 
resulting in relatively low image quality, which specifically, 
involves the aspects of structure preservation and 
conductivity contrast differentiation. In this paper, we 
report a kernel method based multi-modal EIT image 
reconstruction approach to tackle this challenge. The 
kernel method performs image-level segmentation-free 
information fusion and incorporates the structural 
information of an auxiliary high-resolution image into the 
EIT inversion process through the kernel matrix, which 
leads to an unconstrained least square problem. We 
describe this approach in a general way so that the high-
resolution images from a variety of different imaging 
modalities can be adopted as the auxiliary image, if they 
contain sufficient structural information. In comparison 
with some state-of-the-art algorithms, the proposed kernel 
method generates superior EIT images on challenging 
simulation and experimental phantoms. Moreover, it 
presents the advantage of suppressing the interference of 
the existence of imaging-irrelevant objects in the auxiliary 
image to some extent. Simulation and experiment results 
also suggest the kernel method has great potential to be 
applied to more complicated tissue engineering 
applications in the future. 

Index Terms—Electrical Impedance Tomography, 
kernels, image-assisted reconstruction, multi-modal 
imaging 

I. INTRODUCTION

lectrical Impedance Tomography (EIT) is a widely

investigated functional imaging modality that attempts to 

reveal the conductivity distribution of the sensing region 

through boundary voltage measurements [1, 2]. Attributing to 

its portability, non-intrusiveness, non-radiation and high 

temporal resolution, EIT stands out as an ideal bedside imaging 

candidate for real-time and long-term imaging in many 

biological and medical applications, such as pulmonary 

ventilation and perfusion imaging [3, 4], cell culture imaging 

[5, 6], hip surgery assistant imaging [7] and brain function 

imaging [8]. Especially, as the cell culture model transits from 

two-dimensional (2D) cell culture to three-dimensional (3D) 

cell culture, EIT as a suitable technique due to the mentioned 

advantages has been applied to 3D cultivated cell imaging and 

is proved as a promising approach [5, 6, 9, 10]. However, the 

intrinsic low spatial resolution of EIT, around 10% of the sensor 

diameter [2], leads to extremely low image quality and limits it 

to further application in this field. For example, EIT cannot 

reveal the size change of the cultivated cell spheroids because 

of the loss of structural information caused by its low spatial 

resolution. Therefore, techniques to improve EIT image quality 

is urgently desired. 

In recent years, research to improve EIT image quality 

mainly focuses on image reconstruction algorithms. Although 

Sparse Bayesian Learning [11-13] offers a statistical 

perspective to EIT inverse problem, the dominant class of 

methods is still based on the regularized optimization problem. 

The regularization term in this type of approaches encodes 

certain global or local prior information to help improve EIT 

image quality. Reported regularizations encoding global 

information include sparse regularization [14-16], Total 

Variation (TV) regularization [17-19] and sparse representation 

[20]. Group Sparsity regularization provides local prior 

information and is also widely investigated [21, 22]. However, 

these methods are only based on the voltage data, i.e., single-

modal image reconstruction, and the encoded prior information 

often comes from experience and observation, which results in 

limited improvement of EIT image quality.  

Another idea to improve EIT image quality is to integrate 

other imaging modalities into EIT, which leads to dual-modal 

or multi-modal EIT image reconstruction. In this type of 

methods, the sensing area of all imaging modalities is same. 

However, the number of studies on the dual-modal or multi-

modal EIT image reconstruction is limited although this 

approach has presented huge potential for the improvement of 

EIT image quality. Liang et al. combined EIT with ultrasound 

tomography (UT) and presented improved image quality due to 

the complement of the sensitivity distribution of the two 

modalities [23]. Other works on EIT-UT joint imaging also 

make a noticeable improvement on the resulting image quality 

[24, 25]. Ehrhardt et al. used parallel level sets approach to 

integrate the structural information in the form of edge direction 

from another auxiliary image into EIT image reconstruction 

[26] and their results display shape-preserved EIT images. In

addition, Li et al. used the CT image as the auxiliary image to

help EIT inversion and also presented quality improved EIT

image [27]. The structural information in the CT image in the

form of regularization term, i.e., Cross-Gradient regularization,

is added to the optimization problem of EIT inversion to

iteratively constrain the conductivity estimation.

For addressing the aforementioned challenges of EIT, i.e. 

lack of structural information of the imaging targets and poor 
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ability of differentiating different conductivity levels, in this 

paper, we adopt the approach of dual-modal image 

reconstruction. The structural information coming from another 

high-resolution imaging modality is integrated into EIT image 

reconstruction process by the kernel trick, which makes the 

ultimately reconstructed image contain both functional and 

structural information of the imaging targets. The kernel 

method is originated in machine learning [28] and has been 

successfully applied to PET image reconstruction [29, 30] with 

the advantages of easy implementation and effective 

information fusion. Using the same method in EIT, the 

intermediate bridging the inverse problem with the structural 

information of the auxiliary image is the kernel matrix, which 

is calculated according to the auxiliary image based on carefully 

defined feature vectors and a kernel, or kernel function. Then, 

the EIT inversion can be easily expressed as the most basic least 

squares problem. In the statement of the kernel method, we do 

not specify the high-resolution imaging modality providing 

auxiliary images and describe it in a general manner, which 

means the proposed method can be generalized to any imaging 

modality, e.g. CT, if this modality can offer a high-resolution 

image. The performance of the proposed method is 

comprehensively compared with single-modal algorithms, i.e., 

the most classical standard Tikhonov regularization based 

method (TReg) [31] and the state-of-the-art Structure-Aware 

Sparse Bayesian Learning algorithm (SA-SBL) [11], and a 

recently proposed dual-modal algorithm, i.e., Cross-Gradient 

regularization based method [27] through challenging 

numerical simulation and real-world experiments. Except SA-

SBL, other comparative algorithms are converted to the least 

squares form and solved by the same optimization algorithm as 

that used by the kernel method to make comparison fairer. The 

advantages of the kernel method are summarized below: 

1) Compared with given algorithms, the proposed kernel 

method can not only preserve the object structure in the 

reconstructed image but also can make a vast of 

improvements on the conductivity contrasts.   

2) Kernel method presents a strong robustness to noise of the 

auxiliary image. Even in the worst situation of there are 

imaging-irrelevant objects, e.g. electrodes, in the auxiliary 

image, the kernel method can suppress the negative effect 

of those objects to some extent. 

The structure of this paper is organized as: Section II states 

the principle of EIT inverse problem. Section III describes the 

proposed kernel method for image-assisted EIT reconstruction 

and a brief introduction to comparative algorithms. Section IV 

illustrates simulation and experimental results and makes 

comparison among algorithms. Finally, Section V draws the 

concluding remarks and discusses future work. 

II. PRINCIPLE OF EIT IMAGE RECONSTRUCTION 

Considering a bounded, simple connected domain Ω ⊂ 𝑅𝐷, 

𝐷 = 2 or 3, sixteen electrodes are attached on the boundary 𝜕Ω 

(see Fig. 1). In time-difference EIT, the aim of image 

reconstruction is to acquire the discrete conductivity change, 

denoted by the vector ∆𝛔 ∈ 𝑅𝑁, within Ω between two distinct 

time points. The ith element of ∆𝛔  denotes the conductivity 

change of a certain point in the sub-domain Ω𝑖  of  Ω . Sub-

domains are determined by the selected inverse mesh and 

satisfy Ω = ⋃ Ω𝑖
𝑁
𝑖=1 . The inverse mesh used in this work can 

refer to Fig. 4 (b), which also indicates the relationship between 

the position of a pixel in the mesh and that in the vector. The 

linearized EIT model exists to approximate the relations 

between the discrete conductivity changes and the induced 

voltage changes measured on the electrodes:  

                                                𝐒∆𝛔 = ∆𝐕                                        (1) 

where ∆𝐕 ∈ 𝑅𝑀 represents the measured voltage changes and 

𝐒 ∈ 𝑅𝑀×𝑁  denotes the Jacobian matrix or sensitivity matrix, 

which is defined as: 

                         𝐒(𝑚𝑝𝑞 , 𝑖)  = −∫
Ω𝑖

∇𝑢(𝐼𝑝)∇𝑢(𝐼𝑞)𝑑𝜔                (2) 

where 𝐒(𝑚𝑝𝑞 , 𝑖) denotes the sensitivity value at the (𝑚𝑝𝑞)th 

row and ith column in 𝐒. 𝑚𝑝𝑞 represents (𝑚𝑝𝑞)th  measurement 

which corresponds the situation that the electrode pair p is set 

as stimulation electrodes and q is set as measurement 

electrodes. ∇𝑢(𝐼𝑝)  and ∇𝑢(𝐼𝑞)  represent the electrical 

potential distribution in Ω when the 𝑝th and 𝑞th electrode pairs 

are chosen as stimulation electrodes, respectively.  

To estimate ∆𝛔 based on ∆𝐕 and 𝐒, a general regularization 

based approach can be formulated as the following penalized 

optimization problem, i.e. 

                  ∆�̂� = arg min 
                    ∆𝝈   

1

2
‖𝐒∆𝛔 − ∆𝐕‖2 + ℓΛ(∆𝛔)            (3) 

where ∆�̂�  represents the calculated conductivity change 

distribution; ‖·‖ denotes the l2 norm; Λ(⋅) is the regularization 

function, which is determined by the prior information, and ℓ ≥
0 is the regularization factor. 

III. METHOD 

We introduce the kernel method to encode the structural 

information extracted from an auxiliary image obtained from a 

high-resolution imaging modality (e.g. CT, optical microscope) 

into the EIT image reconstruction process (see Fig. 2). This is 

inspired from the kernel-based image reconstruction methods  

investigated in PET image reconstruction, which have been 

proved effective in structure preservation [29, 30]. In this 

Section, we first describe the principle of EIT image 

reconstruction using kernel methods. Then, the practical 

 

Fig. 1. Sixteen-electrode circular EIT sensor which contains two 
inclusions in its sensing region. 
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definition of feature vectors, selection of kernels and proximity 

criteria are stated. We also briefly introduce the comparing 

algorithms, i.e. standard Tikhonov regularization (TReg) [31] 

and Cross-Gradient regularization [27].  

A. Kernel-based EIT Image Reconstruction 

We first predefine a set of low-dimensional feature vectors 

𝒇𝑖 at each pixel i in the expected EIT image. The set of feature 

vectors is the first of two mathematical objects which should be 

predefined in the kernel method framework [29, 30]. The 

second mathematical object will be described later. After the 

feature vectors are defined, the conductivity change at pixel i, 

denoted by ∆𝛔𝑖, can be expressed by the linear form:  

                                        ∆𝛔𝑖 = 𝝑𝑇𝜙(𝒇𝑖)                                (4) 

where, 𝜙  is a mapping which transforms 𝒇𝑖  into a very-high 

dimension space spanned by {𝜙(𝒇𝑖)}𝑖=1
𝑁 ; N is the number of 

pixels of the EIT image. 𝝑 is a weight vector which sits in the 

same high-dimension space and is represented by:  

                                           𝝑 = ∑ 𝝉𝑗

𝑁

𝑗=1

𝜙(𝒇𝑗)                                 (5) 

where 𝝉𝑗 is the coefficient for 𝜙(𝒇𝑗). Substituting (5) into (4), 

the conductivity change at pixel i is written as: 

                 ∆𝛔𝑖 = ∑ 𝝉𝑗

𝑁

𝑗=1

𝜙(𝒇𝑗)
𝑇

𝜙(𝒇𝑖) ≜ ∑ 𝝉𝑗

𝑁

𝑗=1

𝜅(𝒇𝑖 , 𝒇𝑗)        (6) 

where 𝜅 is a kernel which implicitly defines 𝜙. Therefore, 𝜙 is 

not required to be explicitly predefined. For simplicity, (6) can 

be expressed as the following matrix form: 

                                      ∆𝛔 = 𝑲𝝉                                           (7)                                         

where the element of the kernel matrix 𝑲 at (i, j) is 𝜅(𝒇𝑖 , 𝒇𝑗). 

Under the matrix form, each column of K can be understood as 

a basis of ∆𝛔 and ∆𝛔 is the linear combination of all bases, i.e. 

                       ∆𝝈 = 𝝉1𝑲:,1 + 𝝉2𝑲:,2 + ⋯ + 𝝉𝑁𝑲:,𝑁                  (8) 

where, 𝑲:,1 means the first column of K and the meaning of 

other symbols are explained the same way. A great deal of 

kernels, such as polynomial kernel, can be selected to build the 

kernel representation of ∆𝛔 . Thus, the kernel is the second 

mathematical object which should be predefined. It should be 

emphasized that the construction of the kernel matrix is based 

on the predefined feature vectors and the kernel function. 

Therefore, K is exactly the interface through which we can 

incorporate certain prior information into EIT image 

reconstruction.  

In practical implementation, the full version of K for an 

image is usually very large, resulting in low-computational 

efficiency. To address this issue, the full kernel matrix K is 

replaced by a sparse version KS in this work. The element of KS 

at (i, j) is: 

                           𝑲𝑖,𝑗
𝑆 = {

 𝜅(𝒇𝑖 , 𝒇𝑗),    𝑗 ∈ 𝑘𝑁𝑁 of 𝑖

 0,                 otherwise     
                  (9) 

where, kNN is the k nearest neighbors of the pixel i in a 𝑑 × 𝑑 

window centered at it (named as the search window) and d 

should be predefined. This approach is similar to the method 

 

Fig. 2. The process of kernel-based EIT image reconstruction. The black mesh represents search window. The red and blue square denotes 

the feature window for pixel i and j respectively. ⨂ represents matrix multiplication.  

 
Fig. 3. Modelled (a) EIT sensor, (b) phantom 1, (c) phantom 2, (d) 
noiseless auxiliary image for phantom 1 and (e) noiseless auxiliary 
image for phantom 2. 
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adopted in the non-local mean filtering to improve 

computational efficiency, where the search of the similar 

window is conducted on the size-predefined search window 

rather than the entire image [32]. In addition, in Section IV, we 

will demonstrate the sparse kernel matrix is more suitable for 

EIT image reconstruction under our settings compared with the 

full version. During the process of KS calculation, degree of 

proximity between two pixels should also be judged by a 

predefined proximity criterion.  

Finally, substituting the equation ∆𝛔 = 𝑲𝑆𝝉  into (3) and 

discarding the regularization term in (3), the coefficient vector 

𝜏 can be estimated by:  

                         �̂� = arg min 
                    𝝉

1

2
‖𝐒𝑲𝑆𝝉 − ∆𝐕‖2                    (10) 

The solution of (10) naturally leads to the ultimately 

estimated EIT image ∆�̂�: 

                                        ∆�̂� = 𝑲𝑆�̂�                                         (11)                                   

Equation (10) is a standard unconstrained least squares 

problem which can be effectively solved by the simple gradient 

descent method. The iteration equation for solving (10) is: 

                      𝝉𝑡+1 = 𝝉𝑡 − 𝛼(𝑲𝑆)𝑇𝐒𝑇(𝐒𝑲𝑠𝝉𝑡 − ∆𝐕)              (12) 

where, t represents iteration step and 𝛼  denotes the iteration 

step length. We adopt early stopping as stopping critirium for 

our kernel-based algorithm. 

B. Feature Definition, Kernel Selection, Proximity 

Criteria and Other Implementation Details 

As stated in the last subsection, two mathematical objects, 

i.e., feature vectors and a kernel function, and the proximity 

criteria should be predefined in the kernel method framework.  

In this study, we let the size of the auxiliary image equal to 

that of the EIT image. Thus, auxiliary image pixels and EIT 

image pixels coincides. Elements of the feature vector 𝒇𝑖  are 

defined as the intensity values of pixels in the 𝑦 × 𝑦 window 

centered at the pixel i in the auxiliary high-resolution image. 

This window is called feature window and y should also be 

predefined. How to rearrange the elements of a feature window 

into a vector is illustrated in Fig. 2. The widely used radial 

Gaussian kernel is adopted, which is defined as： 

                          𝜅(𝒇𝑖 , 𝒇𝑗) = exp (−
‖𝒇𝑖 − 𝒇𝑗‖

2

𝜖2
)                  (12) 

where 𝜖 controls the sensitivity to the boundary. The kNN of the 

pixel i are in its search window and Euclidean distances 

between feature vectors of kNN and 𝒇𝑖  are the k shortest 

distances among all pixels in this search window. This type of 

kNN selection method is exactly the proximity criteria.  

The relationship of k and d should satisfy k <= d2. Usually, 

we define d and y as odd number, and let y < d. Before KS 

calculation, the feature vectors {𝒇𝑖}𝑖=1
𝑁  are normalized by the 

following equation:  

                                              �̅�𝑖,𝑧 =
𝒇𝑖,𝑧

std𝑧(𝒇)
                                (13) 

where, 𝒇𝑖,𝑧 is the 𝑧th element of 𝒇𝑖 and std𝑧(𝒇) is the standard 

deviation of 𝑧th elements of all feature vectors. Furthermore, KS 

is row normalized after its construction.   

It should be noted that the kernel matrix KS is calculated 

based on the auxiliary high-resolution image. Thus, KS can be 

considered the container storing encoded information offered 

by the auxiliary image, which is exactly how the structural 

information of the auxiliary image associates with EIT image 

reconstruction.  

For pixels at or near the boundary of the auxiliary image, if 

part of the search window of  a pixel is out of the image region, 

pixels where the image region intersects with the feature 

window is set as the kNN candidates. Futhermore, the number 

of kNN may exceed the number of kNN candidates. In this case, 

all kNN candidates will be set as kNN. Likeswsie, at or near the 

boundary, part of the feature window of a pixel may be out of 

the image region. We apply zero padding to the auxiliary image 

to deal with this situation in this study.  

C. Standard Tikhonov Regularization and Cross-

Gradient Regularization 

 We implemented standard Tikhonov regularization based 

algorithm (TReg) [31] and Cross-Gradient regularization based 

algorithm [27] for comparison. The reasons of choosing TReg 

are twofold. First, it is the most basic algorithm in EIT image 

reconstruction and can be considered as the baseline of other 

algorithms. Second, it is the basis for Cross-Gradient method, 

which can be obviously reflected by (14) and (15). Compared 

with the estimated EIT image by TReg, one can easily find the 

change of EIT image when incorporating Cross-Gradient 

regularization term. Cross-Gradient method incorporates 

structural information of the auxiliary image through a penalty 

term, which is a different regularization approach from our 

method. The definitions of TReg and Cross-Gradient method 

are expressed by (14) and (15) respectively:  

        ∆�̂� = arg min 
                        ∆𝛔

1

2
‖𝐒∆𝛔 − ∆𝐕‖2 +

1

2
‖𝜆𝑬∆𝛔‖2           (14)     

∆�̂� = arg min 
                        ∆𝛔

1

2
‖𝑺∆𝛔 − ∆𝐕‖2 +

1

2
‖𝜆𝑬∆𝛔‖2 +

1

2
‖𝛾𝐺(∆𝛔, 𝝋)‖2 (15) 

where 𝑬  denotes the identity matrix. 𝜆 ≥ 0  is the Tikhonov 

regularization coefficient and 𝛾 ≥ 0  is the Cross-Gradient 

coefficient. 𝐺(∆𝛔, 𝝋)  represents the Cross-Gradient vector 

between the conductivity change ∆𝛔 and the pixel values of the 

auxiliary image 𝝋. 𝐺(∆𝛔, 𝝋) can be expressed as a matrix form 

of 𝐺(∆𝛔, 𝝋) ≜ 𝑮𝝋∆𝛔; 𝑮𝝋 is the transformation matrix related 

to 𝝋. Thus, both (14) and (15) can be rewritten as the form of 

below standard least squares, (16) and (17), respectively: 

                  ∆�̂� = arg min 
                        ∆𝛔

1

2
‖[

𝐒
𝜆𝑬

] ∆𝛔 − [
∆𝐕
𝟎

]‖
2

                (16) 

                  ∆�̂� = arg min 
                        ∆𝛔

1

2
‖[

𝐒
𝜆𝑬

𝛾𝑮𝝋

] ∆𝛔 − [
∆𝐕
𝟎

]‖

2

              (17) 
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Therefore, TReg and Cross-Gradient regularization based 

algorithm can also be solved by the same gradient descent 

method, which can further improve comparison fairness. Since 

SA-SBL is developed from another inverse framework, i.e. 

Bayesian perspective, it is interesting to select it to compare, 

but we don’t provide the introduction of this algorithm.  

IV. RESULTS AND DISCUSSION 

We evaluate the effectiveness and robustness of the proposed 

kernel method on a number of challenging numerical and 

experimental phantoms involving complex structures, i.e. 

straight lines, angles and curves, and noisy auxiliary images.  

A. Synthetic Data Evaluation 

1) Modelling 

We modelled an EIT sensor in COMSOL Multiphysics as 

illustrated in Fig. 3 (a). The sensing area is circular, and its 

diameter is set as 15 mm. The homogeneous saline with a 

conductivity value of 0.05 S/m–1 is set as the background 

medium or reference medium for time difference imaging. 

Sixteen electrodes are evenly attached on the outer surface of 

the sensing area, and the electrode material is selected as 

Titanium whose conductivity is 7.407 × 105  S/m–1. In 

addition, we modelled two types of complex conductivity 

distribution, i.e., phantom 1 to phantom 2 (see Fig. 3 (b) and 

Fig. 3 (c) respectively). Phantom 1 simulates two objects. The 

upper right one is a triangle with a conductivity values of 0.08 

S/m–1 and the bottom left one is a rectangle with a conductivity 

value of 0.035 S/m–1. Phantom 2 simulates three dispersed 

objects including a ring with a conductivity value of 0.035 S/ 

m–1 (bottom left), a circle with a conductivity value of 0.015 

S/m–1 (upper left) and an ellipse with a conductivity value of 

0.025 S/m–1 (right) respectively. As the adjacent sensing 

protocol [33] is adopted in simulation and the repetitive data is 

eliminated according to reciprocity theory [34], a frame of 

voltage data consists of 104 measurements. We can acquire the 

voltage data by solving EIT forward problem by Finite Element 

Method (FEM) in COMSOL Multiphysics and the adopted 

forward mesh whose simplex is triangle is illustrated in Fig. 4 

(a). The electrical potential of each triangular simplex is 

determined by the values of its vertices. On the other hand, the 

simplex of the mesh used in the inverse problem (see Fig. 4 (b)) 

is square and the conductivity value of each square simplex is 

the same as that of the point at the square centre. In addition to 

noiseless voltage data, two levels of Gaussian noise 

contaminated voltage data are also used, i.e., voltage data with 

SNR = 50 dB and voltage data with SNR = 20 dB. The SNR is 

defined by the below equation:  

                              𝑆𝑁𝑅 ≜ 10 log10 (
‖∆𝑽‖2

ℰ(‖𝝒‖2)
)                 (18) 

where 𝝒 ∈ 𝑅𝑀  is the noise random variable; ℰ(⋅)  is the 

mapping of expectation. For dual-modal algorithms, i.e. Cross-

Gradient and kernel method, assisted images should also be 

modelled. We use the same mesh in Fig. 4 (b) to split the 

sensing region of the auxiliary imaging and let the intensity 

value of the center point of each square simplex represent the 

intensity value of that square, which makes the size of the 

auxiliary image the same as that of EIT image. In addition, we 

assume the auxiliary image provides accurate structure 

information. In real application, these images can be collected 

from CT imaging or optical imaging and so forth. In simulation, 

they are generated by assigning digit one to square simplex 

where there are imaging targets and assigning digit 0.5 to the 

background simplices. The modeled noiseless auxiliary images 

corresponding to sample 1 and sample 2 are shown in Fig. 3 (d) 

and Fig. 3 (e), respectively.  

2) Parameter Settings 

In simulation study, for each algorithm, different phantoms 

may take different parameters to make the results better, which 

makes the comparison under the condition of approximate limit. 

If not specified, all parameters use the following settings in 

simulation study. For results of both phantoms based on SA-

SBL, the maximum iteration number is set as 5, the tolerance is 

selected as 1 × 10−5  and the block size is fixed as 4. The 

pattern coupling factor takes different values for the two 

phantoms, and it is chosen as 0.03 for phantom 1 and is set as 

 
Fig. 4. (a) Forward mesh and (b) inverse mesh used in simulation. 
The forward mesh includes 6454 domain elements and 304 edge 
elements. The inverse mesh consists of 3228 elements, which 
makes the reconstructed EIT image a circular image internally 

tangent with a 64 × 64 square image. 

TABLE II 

IMAGE RECONSTRUCTION COMPARISON BASED ON SIMULATION DATA 
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0.5 for phantom 2. According to a serial of trials, 𝜆 for both 

Tikhonov regularization method and Cross-Gradient 

regularization method is set as 0.01 for all cases and 𝛾  for 

Cross-Gradient regularization is set as 0.1 for all cases. For 

standard Tikhonov regularization and Cross-Gradient 

regularization, the iteration number is set as 500 and the 

iteration step length is set as 6 for all cases. For kernel method, 

the iteration number is selected as 1000 and the step length is 

set as 10; y is set as 3; d is set as 21; k is set as 441; and 𝜖2 is 

set as 20 for both phantom 1 and phantom 2.  

3) Quantitative Metrics 

Since we can acquire the ground truth of the conductivity 

distribution for simulation data, the Relative Image Error (RIE) 

and Mean Structural Similarity Index (MSSIM) [35] can be 

used to quantitatively evaluate the quality of the reconstructed 

image. These metrics are defined as:  

                                  RIE =
‖∆𝛔𝑟 − ∆𝛔𝑔‖

‖∆𝛔𝑔‖
                                (19) 

MSSIM =
1

ΞΓ
∑ ∑

(2𝝁𝑰𝑟
𝝁𝑰𝑔

+ 𝐶1) (2𝛅𝑰𝑟𝑰𝑔
+ 𝐶2)

(𝝁𝑰𝑟

2 + 𝝁𝑰𝑔

2 + 𝐶1) (𝛅𝑰𝑟

2 + 𝛅𝑰𝑔

2 + 𝐶2)𝑏ℎ

 (20) 

where ∆𝛔𝑟 represents the reconstructed vector and 𝑰𝑟=𝑰𝑟(ℎ, 𝑏) 

is the reconstructed image corresponding to it. ∆𝛔𝑔 denotes the 

ground truth vector and 𝑰𝑔 = 𝑰𝑔(ℎ, 𝑏) is the ground truth image 

corresponding to it. h and b are the position indexes of an image. 

Ξ  and Γ  are the width and height of an image, respectively. 

𝝁𝑰𝑟
= 𝝁𝑰𝑟

(ℎ, 𝑏) , 𝝁𝑰𝑔
= 𝝁𝑰𝑔

(ℎ, 𝑏) ,  𝛅𝑰𝑟
= 𝛅𝑰𝑟

(ℎ, 𝑏) , 𝛅𝑰𝑔
=

𝛅𝑰𝑔
(ℎ, 𝑏), and 𝛅𝑰𝑟𝑰𝑔

= 𝛅𝑰𝑟𝑰𝑔
(ℎ, 𝑏) are the local means, standard 

deviations and cross-covariance for image 𝑰𝑟  and 𝑰𝑔 . 𝐶1 =

(𝐾1𝐿)2  and 𝐶2 = (𝐾2𝐿)2 ; 𝐾1 =0.01, 𝐾2 =0.03 and L = 1 are 

constants [35].  

4) Reconstruction Results and Discussion 

Table II compares the performance of the kernel method with 

Tikhonov regularization, Cross-Gradient regularization, and 

Structure-aware Sparse Bayesian Learning in the case of 

voltage data with SNR = 50 dB and noiseless auxiliary images. 

For each algorithm, reconstructed EIT images, relative image 

error and mean structural similarity are all illustrated in this 

table. It is easily noticed that the TReg can predict the position 

of imaging targets correctly, but the structure information of 

targets is totally lost through the visualized images and MSSIM. 

Besides, the accuracy of conductivity value prediction is very 

low (see its RIE). The Cross-Gradient can provide some 

structural information which is obvious in zoomed part of 

images of phantom 1, i.e. straight lines of the square object can 

be seen. In addition, the shape of triangle object can also be 

identified in the image. However, the Cross-Gradient 

regularization is not sensitive to circular boundaries (see 

phantom 2 results). Moreover, our results indicate that the 

image quality generated by Cross-Gradient method highly 

relies on the image quality generated by Tikhonov 

regularization method, which is also indicated in original paper 

[27]. Therefore, the Cross-Gradient regularization can only 

slightly adjust the object shape, but it cannot effectively 

introduce a satisfactory structural information and cannot 

improve the accuracy of the conductivity contrast estimation. 

The SA-SBL recovers some object shapes well, like the triangle 

object in phantom 1. However, it still lost most of structural 

information, which can be easily found out through 

TABLE III 

ASSESSMENT OF AUXILIARY IMAGE NOISE RESISTANCE ABILITY FOR KERNEL METHOD  

 

 
Fig. 5. Visualized images of columns in sparse kernel matrix: (a) 
column 10, (b) column 705, (c) column 848, and (d) column 2400. 
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reconstructed images. Though, the ability of shape recovery of 

SBL is not as good as that of kernel method through visualized 

way, the MSSIM of SA-SBL is larger than that of kernel 

method for phantom 1. The same thing occurs when we set the 

pattern coupling factor of SA-SBL as 0.03 for phantom 2, 

which leads the MSSIM of SA-SBL to 0.8328. This is because 

sparsity regularization is used in SA-SBL, which makes the 

background values of the image generated by SA-SBL are 

much lower than the background values of the image based on 

kernel method. If we impose zero to pixels whose absolute 

values are lower than 0.05 (This operation does not affect the 

structure of the imaging targets), the MSSIM of the kernel 

method result for phantom 1 will become 0.9554 while it is 

0.8976 for SA-SBL; the MSSIM of the result of kernel method 

for phantom 2 becomes 0.9375, but it becomes 0.8589 for SA-

SBL. Since the ring object is almost invisible in the image 

generated by SA-SBL for phantom 2 based on the pattern 

coupling factor of 0.03, we show the results based on such 

parameter of 0.5. In the former case, the RIE is 0.6973 and 

MSSIM is 0.8326. Therefore, we still can conclude only the 

proposed kernel method can predict EIT images with the most 

accurate position, structure, and conductivity contrasts.  

Table III displays results under a considerably challenging 

situation, i.e., we selected phantom 1 to test the robustness of 

kernel method under noise-contaminated voltage data and 

noise-contaminated auxiliary image. We added three types of 

noise to the auxiliary image, i.e., Gaussian noise, Speckle noise 

and Salt and Pepper noise. The mean and variance of the 

Gaussian noise are set as zero and 0.01. The Speckle noise is 

based on following equation:  

                      𝑰∗(ℎ, 𝑏) = 𝑰(ℎ, 𝑏) + 𝜾(ℎ, 𝑏)⨀𝑰(ℎ, 𝑏)              (21) 

where 𝑰∗  is the noisy image and 𝑰  is the noiseless image. 𝜾 
represents uniformly distributed random noise with mean zero 

and variance 0.05. ⨀ represents Hadamard product. The Salt 

and Pepper noise is added with the noise density of 0.1, which 

means the noise will affects approximately 10% of all pixels. 

As shown in Table III, given a specific auxiliary image, kernel 

method displays a good voltage noise resistance capability (see 

RIE, MSSIM and EIT images). Especially, the object shape is 

slight affected by the voltage noise. Given a specific voltage 

 

Fig. 6. Parameter setting analysis: analysis of the influence of (a) k, (b) 𝜖2, (c) d, and (d) y. RIE1 and MSSIM1 are the RIE and 
MSSIM for phantom 1. RIE2 and MSSIM2 represent the RIE and MSSIM for phantom 2. The two metrics share the same 
vertical coordinate. 
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data, the results show that the Salt and Pepper noise can degrade 

the reconstructed image quality most and the Gaussian noise 

makes the minimal bad impact on the image quality. Besides, 

all types of image-noise influence the object shape not much. 

To sum up, the kernel method displays a satisfactory ability of 

both voltage noise resistance and assisted image noise 

resistance.   

Section III-A mentions that columns of kernel matrix can be 

considered as the basis for EIT image. In other words, the 

ultimate EIT image can be seen as the linear combination of all 

bases. In this part of discussion, we try to explain how this 

combination works in a visualized way. We display four 

columns of the sparse kernel matrix calculated in the noiseless 

assisted image based on phantom 2. As shown in Fig. 5, each 

column represents a sub-image of the ultimate EIT image and 

each sub-image highlights different part of the ultimate EIT 

image. For example, the 848th column highlights conductivity 

in the bottom left area. Because pixels in ring have different 

structures than its peripheral region, it is not highlighted in this 

case. Therefore, the coefficient vector is the weights which 

defines the importance of each sub-images in the ultimate EIT 

image. As non-zero regions (non-blue region) in different sub-

images may overlap and all sub-images will finally be added 

together with weights, this can reduce the influence of the noise 

in assisted image to some extent. Therefore, Fig. 5 also provide 

a qualitative explanation for why the kernel method has a 

auxiliary image noise resistance.  

In Fig. 6, we discuss the influence of parameters k, 𝜖2, d, and 

y.  For all analyses in this figure, the iteration number and 

iteration step length are fixed as 1000 and 10, respectively. We 

set y equal 3, d equal to 21and 𝜖2equal to 20 to analyze the 

influence of k. The results are shown in Fig. 6 (a), which 

indicates the MSSIM will be better if k increasing while the RIE 

has the trend of decrease. Although RIE based on phantom 2 

increases when k is very large, the increment is also acceptable. 

Therefore, we can always choose k equals to or close to the 

number of pixels of the search window. We set y equal 3, d 

equal to 21 and k equal to 441 to analyze the influence of 𝜖2, 

and the results are illustrated in Fig. 6 (b). The Fig. 6 (b) 

presents that there is a window for the selection of 𝜖2, which 

indicates that the best range for 𝜖2  is around 5-50. We 

recommend finetuning this parameter based on specific 

applications. To discuss the influence of d, we fix y as 3, 𝜖2 as 

20 and all pixels in the search window as the kNN. The results 

in Fig. 6 (c) demonstrate that d should not been too small or too 

large.  It should be notated in Fig. 6 (c) that if d is much large, 

like 61, the MSSIM decreases much for phantom 1, which is 

due to the insufficient iteration number. Thus, we also study the 

influence of iteration number (up to 8000) based on different d. 

As shown in Fig. 7, we can conclude if given a large enough 

search window ( 𝑑 ≥ 21 ), the MSSIM will converge to a 

satisfactory value. Though, MSSIM-81 and MSSIM-whole in 

Fig. 7 (b) are still a little low at the 8000th iteration, they also 

have the trend of increasing. However, the RIEs based on 

phantom 1 (see Fig. 7 (a)) converge while RIEs based on 

phantom 2 increase (see Fig. 7 (b)) with the increasing of the 

iteration number. If the size of the search window is not too 

 
Fig. 7. Analysis of the influence of d based on (a) phantom 1 
and (b) phantom 2. Numbers in legends means the side length 
of the search window, and ‘whole’ means the kernel matrix is 
calculated based on the entire image. 

 

 

Fig. 8. Image reconstruction results based on unreasonable 𝜖2. (a) 

and (c) are the reconstructed images based on 𝜖2 = 1 and 𝜖2 =
1000 ,respectively. (b) and (d) are the visualizations of the 848th 
column of the sparse kernel matrix corresponding to (a) and (c), 
respectively. 

 

 

Fig. 9. Image reconstruction results of the phantom 1 based on 
incorrect auxiliary images. (a) is the auxiliary image corresponding 
to the reconstructed image (b). (c) is the reconstructed image 
adopting the auxiliary image in Fig. 3 (e).   
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much big, like 21, the increment of RIEs based on phantom 2 is 

a little. Combing the results of Fig. 6 (c) and Fig. 7, it is easily 

to find that large d will impose positive impact on MSSIM 

while deteriorating the RIE. Therefore, the size of search 

window should be carefully chosen. In our study, d equal to 21 

always generates satisfactory results. Fig. 6 (d) analyze the 

influence of y. In this case, we set d as 21, kNN as 441 and 𝜖2 

as 20. From this figure, it is obvious that the size of feature 

window should not be set too large due to the small size of the 

reconstructed EIT image, i.e. a circular image inscribed in 64 ×
64  square image. Otherwise, local information will be 

deteriorated because of the large feature window size. Thus, 

3 × 3  is always recommended for the feature window size. 

According to the analysis, though the number of kernel method 

parameters, i.e. y, d, k, 𝜖2, seems a little large, only 𝜖2 should 

be carefully selected.  

To further highlight the importance of the 𝜖2  selection, in 

Fig. 8, we display the reconstruction results of the phantom 2 

by using kernel method with unresonable 𝜖2. Other parameters 

are selected the same as those in Section IV-A-2). The SNR of 

the voltage data is 50 dB and noise-free auxiliary image is 

adopted. Fig. 8 (a) is the recontructed image base on the 𝜖2 of 

1 and Fig. 8 (c) is the recontructed image base on the 𝜖2  of 

1000. For each situation, the 848th column of the sparse kernel 

matrix (Fig. 8 (b) and Fig. 8 (d)) is also displayed and it stands 

for why the image quality is bad.  Small 𝜖2 , e.g. 𝜖2 = 1, is 

sensitive to the edge; thus the sparse kernel matrix over extract 

the structure. Contrarily,  large 𝜖2, like  𝜖2 = 1000, treats each 

pixel in the highlighted area of the auxiliry image same, which 

makes the sparse kernel matrix lack of structural information. 

Therefore, choosing a resonable 𝜖2 is vital in practice. 

It is worth discussing the senario of the wrong auxiliary 

image being adopted when using kernel method and we select 

the phantom 1 to demonstrate. In this discussion, the voltage 

data of phantom 1 is added with the noise of SNR = 50 dB and 

the parameters for the kernel method follow the settings of  

Section IV-A-2). The reconstructed images in Fig. 9 (b) and 

Fig. 9 (c) are based on the auxiliary images in Fig. 9 (a) and Fig. 

3 (e), respectively. It is noticeable that the reconstructed images 

are very chaotic. Though these images contain the sign of both 

the functional information, i.e. conductivity contrast, and 

structral information of the auxiliary image, the whole is totally 

incorrect, which can also be indicated by the RIE and MSSIM. 

In a word, the voltage data and the auxiliary image should 

match when using kernel method.    

Lastly, we choose phantom 2 to study the value change of the 

objective function (or loss function) of the optimization 

problem (10) with the iteration increasing. The result is 

illustrated in Fig. 10. This figure demonstrtes that we can 

increase the interation step length to make convergence faster. 

In addition, as the loss decreases smoonthly, this also provides 

a evidance for the reliability of the early stopping criterium for 

our algorithm.   

B. Experimental Data Evaluation  

In this section, the performance of the kernel method is 

further validated on real data collected from experiments. The 

adopted miniature EIT sensor is illustrated in Fig. 11, and it is 

connected to the EIT system developed in the Agile 

Tomography Group at the University of Edinburgh [36]. The 

EIT sensor is used to imaging four different conductivity 

distributions or conductivity phantoms, and the results are 

illustrated in Fig. 12. The background medium for all cases is 

saline which conductivity is 0.05 S/m–1. The Fig. 12 (a) and (b) 

are results of carrot tissue (length ~ 3 mm) imaging. The Fig. 

12 (c) corresponds to rubber (bottom, large side length ~ 3 mm, 

short side length ~ 1.5 mm) and carrot tissue (upper right, large 

side length ~ 3.5 mm, short side length ~ 2 mm) imaging. The 

Fig. 12 (d) demonstrates the results of the imaging on rubber 

(left, diameter ~ 1.5 mm), iron (bottom, diameter ~ 2 mm), and 

ginger tissue (top, side length ~ 2 mm). The top surface of the 

iron is coated with a thin layer of white rubber to reduce the 

influence of surface reflection while preserving its electrical 

properties. The auxiliary images for Cross-Gradient and kernel 

method were collected from a digital camera placed over the 

EIT sensor. For each conductivity imaging, we adopted two 

types of auxiliary gray-scale images, which are shown in Fig. 

12. These images are circular images inscribed in the 704 ×
704 square region. Therefore, they cannot be directly used to 

construct the sparse kernel matrix. We adopted a simple way of 

 
Fig. 10. Changes of objective function (loss function) in (10) with 
the increasing of iteration number based on different iteration step 
lengths (SL) and phantom 2. In legend, numbers mean the 
selected iteration numbers discussed.   

 

 
Fig. 11. (a) Side view of manufactured EIT sensor, (b) top view of 
manufactured EIT sensor, and (c) in-house built EIT system 
backend. 
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down-sampling them to the EIT image size before feeding them 

into the kernel-based algorithm. For visualization purpose, we 

display the non-down-sampled auxiliary images in Fig. 12.  

  For the generation of the non-down-sampled auxiliary 

images. For each phantom, we firstly recorded an RGB 

microscopic image without objects as the calibration image 

represented by Ic. Then, an RGB microscopic image containing 

imaging targets is recorded and it is denoted by Io. Due to the 

measurement error, we properly cropped the recorded Io and Ic 

to make the imaging targets as close to the correct position as 

possible, which may cause the electrodes not evenly 

distributing along the circular boundary in the auxiliary image. 

 
Fig. 12. Algorithm comparison based on experimental data. Blocks (a) – (d) are the results corresponding to different experimental phantoms. 
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Finally, the first type of auxiliary image (upper auxiliary image 

for each phantom) is generated by converting 𝐼𝑜 − 𝐼𝑐 to gray-

scale image and the second type of auxiliary image (bottom 

auxiliary image for each phantom) is generated by directly 

transforming Io to a gray-scale image.  

Parameter settings for experimental data are based on a series 

of trails. For SA-SBL, the pattern coupling factor takes 0.03 for 

all phantoms and other parameters are set same as those in 

Section IV-A-2). For TReg and Cross-Gradient, the iteration 

number and iteration step length are set as 500 and 2 

respectively. 𝜆 for both TReg and Cross-Gradient is set as 0.01 

and 𝛾 for Cross-Gradient is selected as 1 for all cases. Except 

iteration number for phantom 1 and 𝜖2  for phantom 4, 

parameters of kernel method take same settings as in Section 

IV-A-2). The iteration number for phantom 1 is set as 500 for 

both two cases. 𝜖2 is set as 15 for the upper auxiliary image of 

phantom 4 and it is chosen as 7 for the bottom auxiliary image 

of phantom 4.  

For quantitatively comparing the reconstruction results and 

highlighting the phantom structure in the auxiliary image, we 

convert the first type of auxiliary images of all phantoms into 

its binary version, which will be used as the reference image for 

MSSIM calculation later. We first normalize the auxiliary 

image and use the simple thresholding method to segment the 

auxiliary image. Pixel values lower than the threshold are set as 

zero and those larger than the threshold are set as one. The 

threshold values are selected based on trial and error and they 

are 0.4, 0.4, 0.4 and 0.5 for phantom 1, 2, 3 and 4 respectively. 

Then a post processing, i.e. open operation [37], is applied to 

the segmented image to adjust the boundary of the objects. For 

example, this operation can help remove the light reflection 

spot in the auxiliary image of the phantom 3. The size of the 

structuring element is chosen as 3 × 3 because we cannot make 

a great change to the object boundary.  The final binary images 

are shown in Fig. 13. 

The image reconstruction results are illustrated in Fig. 12. The 

binary images in Fig. 13 are adopted as the reference image for 

MSSIM calculation. In small-sale EIT imaging, the addition of 

imaging targets to the chamber will make noticeable variation 

on the height of the background medium. This means the 

reference conductivity changes, which causes severe artefacts 

in the reconstruction images based on all algorithms. For TReg, 

the shape of imaging targets is totally deteriorated. The image 

quality is also much poor for Cross-Gradient. The results are 

reasonable. In addition to the significant impact by the liquid 

height change and voltage noise, the two types of auxiliary 

image include not only the noise, but also imaging-irrelevant to 

EIT imaging like electrodes. Besides, as the discussions in 

Section IV-A-4), the low image quality generated by TReg can 

be considered as another reason contributing to the worst results 

of Cross-Gradient method. The SA-SBL is also powerless 

under this challenging experimental setup. Only the proposed 

kernel method presents the best performance in terms of shape 

preservation. Besides, it can also recover the conductivity 

contrasts. For example, in the imaging of ginger, rubber and 

iron, the conductivity of rubber is much lower than the ginger, 

and the iron introduces the positive conductivity change. The 

kernel method can differentiate the three different conductivity 

levels. Furthermore, it is amazing that this method can suppress 

the bad effect of imaging-irrelevant objects (like electrodes) 

appearing in the auxiliary image to some extent, which can be 

indicated by the background quality of the reconstructed EIT 

image. For all cases, it should also be noted values of MSSIM 

of the SA-SBL are larger than those of the kernel method. The 

reason we have discussed in the simulation study, and it is due 

to the sparsity regularization use in SA-SBL. Even though, we 

can also conclude the kernel method achieves the best 

performance on the challenging experimental data among given 

algorithms.  

In addition, the imaging targets in the image generated by 

kernel method can be easily segmented from the background, 

which promotes post image analysis. We also use thresholding 

method to extract the imaging targets. For each phantom, the 

two reconstructed images based on different auxiliary images 

take the same threshold value. For phantom 1 - 3, pixel values 

larger than the threshold are set as zero. The threshold values 

are also selected based on trials and they are - 0.2, - 0.2, and -

0.3 for phantom 1, 2, and 3 respectively. For the phantom 4, the 

absolute values of the pixels lower than 0.22 are set as zero. The 

segmentation results are illustrated in Table IV. The numbers in 

this table are the values of the MSSIM calculated based on the 

segmented reconstructed images and binary images in Fig. 13. 

According to the results, it is verified that the low MSSIM in 

Fig. 12 for kernel method is mainly caused by the background 

noise and artefacts. Both the images and numerical metrics 

indicate kernel method’s satisfactory ability of structure 

preservation once again. 

V. CONCLUSIONS 

 In this paper, we proposed the kernel method for high-quality 

 
Fig. 13. Binary version of the first type of the auxiliary image. 
Phantom 1 - 4 correspond to (a) – (d), respectively. 

 

TABLE IV 

IMAGE SEGMENTATION RESULTS (FOR EACH PHANTOM, IMAGES FROM 

LEFT TO RIGHT CORRESPOND TO IMAGES FROM UP TO BOTTOM IN FIG. 

12) 
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EIT image reconstruction. The robustness and effectiveness of 

it is verified by numerical simulation and real-world 

experiments. Especially, the effectiveness of kernel method can 

be explained by a visualized way, which is very straightforward 

and provides an evidence of reliability when this method in real 

application. Future research will extend the kernel method for 

3D EIT image reconstruction and combine it with other imaging 

modalities, e.g., OCT, to explore quantitatively monitoring of 

3D cultivated cells.  
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