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Abstract—Point cloud recognition is an essential task in
industrial robotics and autonomous driving. Recently, several
point cloud processing models have achieved state-of-the-art
performances. However, these methods lack rotation robustness,
and their performances degrade severely under random rotations,
failing to extend to real-world scenarios with varying orientations.
To this end, we propose a method named Self Contour-based
Transformation (SCT), which can be flexibly integrated into var-
ious existing point cloud recognition models against arbitrary ro-
tations. SCT provides efficient rotation and translation invariance
by introducing Contour-Aware Transformation (CAT), which
linearly transforms Cartesian coordinates of points to translation
and rotation-invariant representations. We prove that CAT is a
rotation and translation-invariant transformation based on the
theoretical analysis. Furthermore, the Frame Alignment module
is proposed to enhance discriminative feature extraction by
capturing contours and transforming self contour-based frames
into intra-class frames. Extensive experimental results show that
SCT outperforms the state-of-the-art approaches under arbitrary
rotations in effectiveness and efficiency on synthetic and real-
world benchmarks. Furthermore, the robustness and generality
evaluations indicate that SCT is robust and is applicable to
various point cloud processing models, which highlights the
superiority of SCT in industrial applications.

Index Terms—3D point clouds, classification, segmentation,
rotation and translation invariance.

I. INTRODUCTION

HREE dimensional (3D) point clouds have attracted

tremendous attention due to the requirement of modern
applications, such as human-computer interaction [1] and
autonomous driving [2[], [3]. With the development of 3D
sensors [4]], [5], point clouds can be easily acquired and have
been widely studied in robotics [6]], [[7].

Due to irregularity and sparsity, traditional regular convo-
lutional neural networks (CNNs) fail to handle point clouds
directly. To take advantage of the powerful standard CNNs,
point clouds are transformed into voxel-grids [8]], mesh [9]
and multi-view projections [[10]], suffering from quantization
artifacts and memory burden. PointNet [[11] is the pioneer
to consume point clouds directly with deep neural networks.
After that, many similar methods emerge to various tasks,
such as point cloud classification [12], [[13[], segmentation [14],
generation [[15]], interpretation [16]], and detection [[17]], [[18]].

Although the advancement of computational resources and
3D sensors enables researchers to consume point clouds directly
[19], [20], those methods are highly vulnerable to perturbations
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of random rotations. Unlike the synthetic and aligned dataset,
orientations of raw point clouds generated by LiDAR sensors
are typically unknown and dynamic. Efficient and precise
classification and segmentation of point clouds against rotations
are essential for real-world scenarios, e.g., autonomous driving.
Thus, this paper mainly considers improving the rotation
robustness of various existing point cloud processing models
for classification and part segmentation.

A straightforward way to overcome the issue is to apply
tremendous rotation augmentation to improve the orientation
robustness of models. However, the infinite 3D rotation group
(SO3) makes it impossible to design such a network with a
high capacity to extract consistent shape awareness features
against random rotations [21]]. Besides, it is computationally
expensive and suffers from arbitrary rotation perturbations
without meeting strict rotation invariance. Alternatively, several
schemes have been recently proposed for developing rotation-
invariant architectures [22]-[26]. PRIN [22] utilizes spherical
voxel convolution to capture robust features without ensuring
strict rotation invariance. ClusterNet [23]], RIConvNet [24]], and
RI-Conv [26] build local descriptors to replace the Cartesian
coordinates of points with relative angles and distances,
which may cause the ambiguity of local shapes. SRINet [25]
encodes point clouds through a nonlinear mapping, inevitably
impairing neighboring geometries. Obtaining rotation-invariant
representations is essential for these methods, which calls for
substantial analysis under the same backbone(s).

In this paper, we first compare and analyze existing rotation-
invariant architectures, identifying rotation-invariant transforma-
tion methods that inhibit their extension to real-world industrial
applications. Then we design a Rotation and Translation-
Invariant Transformation (RTIT) module to enhance the
rotation and translation robustness of various point cloud
processing techniques via CAT. Furthermore, representations
provided by CAT make neural networks more challenging
to extract discriminative features, considering that each point
cloud is transformed from the unified Cartesian frame to a self
contour-based frame. To tackle this issue, we further introduce
a Frame Alignment (FA) module to capture contours and
transform its self contour-based frame to an intra-class frame.

Fig. [1| depicts the overall framework of SCT, consisting
of RTIT and FA. The key contributions of this paper are
summarized as follows:

o We introduce a novel RTIT, linearly transforming point
clouds to the self contour-based rotation and translation-
invariant representations while preserving global geometric
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Ilustration of SCT architecture consisting of two novel modules: RTIT and FA. Point clouds are transformed by these two modules to obtain

rotation-invariant representations and then fed into existing point cloud processing models for classification and segmentation tasks.

structure. This new module can avoid the ambiguity of
local shapes with low computational complexity.

o The proposed SCT has good portability and can be flexibly
integrated into various existing point cloud recognition
models, e.g., PointNet [11] and DGCNN [[13]].

« Extensive experiments have been conducted on synthetic
and real-world benchmark datasets for classification and
part segmentation tasks to verify the generalization,
efficiency, and robustness of the proposed method.

The rest of the paper is organized as follows. Section
IT introduces the related work. Section III illustrates the
problem formulation. In Section IV, we elaborate the proposed
framework is described, and provide mathematical analysis
for the CAT. Furthermore, discussions on SCT are provided
in Section V. Section VI illustrates experimental studies on
synthetic and real-world datasets. Conclusions are presented
in Section VIL

II. RELATED WORK

Many deep learning-based techniques have been proposed to
process 3D point clouds in recent years. Recent learning-based
techniques mainly include point cloud processing models and
rotation-invariant models. Specifically, point cloud processing
models consist of voxel-based, projection-based, and point-
based models.

A. Voxel and Probjection-based models.

To extend effective 2D convolution to 3D recognition,
VoxNet [8]] and ShapeNets [27] convert point clouds to volumet-
ric representations and apply the standard 3D convolution. Even
with modern GPUs, these techniques could only process low
resolution voxel-grids (e.g., 32x32x32 in VoxNet [_§]). Octree
[28], Kd-Tree [19] based methods were proposed to avoid the
convolution in empty space to reduce memory consumption.
OctNet [28]] makes a prominent contribution, being able to
handle high-resolution up to 256x256x256. 3DmFV [29]
represents each point by a mixture of Gaussians and uses
symmetric functions to compute global Fisher Vector represen-
tations [30]. Along this direction, the following methods went
on to process voxel and grids [31]], [32]. Meanwhile, many
works projected point clouds onto 2D images for recognition
[33], [34]. Though these organized and efficient data structures
save time complexity, they inevitably induce higher memory
cost and resolution loss.

B. Point-Based models.

In another line, PointNet [11] is the pioneer to process the
unordered point clouds directly with neural networks. It extracts
point-wise features through shared Multilayer Perceptrons
(MLPs) from the simply (z,y,z) coordinates and adopts a
symmetric function max pooling to get global features while
pursuing permutation invariance. Since neglecting to mine
neighbor relationship, various networks are proposed to remedy
it. PointNet++ [[12] uses PointNets to hierarchically capture
local features and enhance the local interactions. ECC [35]
analyzes neighboring points by spectral graph convolution and a
graph pooling strategy. DGCNN [13]] constructs dynamic local
graphs and extracts semantic relation with EdgeConv operation.
PointCNN [36] reorders local points with a convolution
operation named y-Conv and achieves good performances on
classification and part segmentation tasks. SO-Net [37]] utilizes
a self-organizing map and mini-PointNet to hierarchically
establish neighbor interaction by extracting node-wise features.
ShellNet [38|] uses statistics from spherical shells to define
an efficient permutation invariant convolution operation for
point cloud processing. KPConv [39] proposes a kernel point
convolution and deformable convolution with several kernel
points for complex tasks. Besides, some works were proposed
for point convolution [40]-[42]], kernel-based convolution [43]—
[145]). However, most of them are vulnerable to random rotations,
which are very general among real-world industrial applications.

C. Rotation-Invariant models.

To apply these deep learning-based point cloud processing
techniques to real-world industrial applications, some recent
works explored rotation-invariant models. Thomas et al. [40]
achieved local rotations equivalence by designing filters built
from spherical harmonics and extending them to tensor
field neural networks. The researchers [47], [48] proposed
a spherical convolution operation to learn rotation-invariant
features from spherical representations. Similarly, PRIN [22]]
employs Spherical Voxel Convolution to capture robust features.
However, as these spherical voxel convolution-based techniques
approximated the infinite group SO(3) with discretized rotation
groups, they do not guarantee strict and global rotation
invariance. ClusterNet [23]], RIConvNet [24], and RI-Conv
[26] build K-nearest neighbor graphs and transform Cartesian
coordinates into relative angles and distances to harvest local
rotation invariance. To extract expressive features, ClusterNet
[23] utilizes a clustering operation, which is time-consuming
and not applicable to the segmentation task. SRINet [22]]
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encodes point clouds through the cosine value of relative
angles. RI-Conv combines local and global features by two
independent modules to yield a larger receptive field. However,
the above methods encode relative information in the local
patch, inevitably impairing geometric structures and causing
ambiguity on flat surfaces. In contrast, the proposed CAT adopts
a global linear transformation, which is rigorously rotation and
translation-invariant while maintaining geometric structures.

III. PROBLEM FORMULATION

The original point clouds collected by 3D sensors or laser
scanners usually contain many attributes, such as 3D coordi-
nates, RGB colors, surface normal, and intensity. A 3D point
cloud with N points is formulated as P = (p1,p2,...,PN)
where p; € RP for i =1,2,..., N, and D denotes attributes.
In this work, we only consider 3D coordinates, i.e., D = 3.
Point cloud data have two main distinct properties:

o Unorganized. As a collection of 3D point coordinates,
point clouds are different from structured images or
volumetric grids, without the specific order. Thus, with
any permutation operations, point clouds still stand the
same object, maintaining geometry topology.

o Rotation and Translation Invariance. Point clouds are
discrete representations of continuous surfaces of 3D
space, indicating that rotations and translations should not
change the semantic category of the object nor the intrinsic
structures. Therefore, point cloud processing models need
rotation and translation robustness.

For point cloud recognition tasks, the distribution of 3D
point clouds needs to be modeled. Specifically, we adopt a deep
network to learn the high-dimensional latent representations of
point clouds that preserve the original point clouds’ geometry
structures and semantic features for further applications, e.g.,
classification and segmentation. Learning latent representations
of point clouds is also called a feature extraction process.

Without perturbations. The process of extracting latent rep-
resentations of point clouds without perturbations is formulated
as

F =®(P) € RY, (1)

where @ : R3*N — RC denotes a Feature Extraction Network,
and F' is a C-dimensional vector descriptor, reflecting the
original point clouds’ semantic features. Then through a
classifier f, we can get an output label,

I = f(F) € RE, (2)

where | denotes the predicted category label of the original
point cloud object.

With perturbations. Many recent proposed state-of-the-
art techniques have achieved more than 92% accuracy on
ModelNet40 [27], depending on effective feature extraction
networks. The process of feature extraction under perturbations
of rotation and translation is formulated as:

F=®RP+T)eR", (3)

where R € SO(3) represents a rotation matrix and 7' denotes
a translation matrix. However, the existing feature extraction

= Without rotation perturbation
89.2

= With perturbation
90.6 90.7 90.9 92.9
21.4 18.6 20.6
12.5
PointNet PointNet++ Kd-Net SO-Net DGCNN

Fig. 2. Classification accuracy (%) on ModelNet40 with or without rotation
perturbations. It is clear that the performances of existing point cloud
processing models drop sharply under rotation. More comparison experiments
are presented in Section m

models fail to learn rotation-invariant shape-awareness. As
shown in Fig. 2] their performances degrade severely under
random rotations, lacking rotation robustness.

To enhance rotation and translation robustness of feature
extraction network ®, we introduce the concept of RTIT. Given
a point cloud P = (p1,p2,...,pn), a strict RTIT can be
expressed as a mapping G such that

G(RP+T)=G(P), (G))

where R € SO(3) denotes a rotation matrix and T =
(t,t,...,t)isa3x N translation matrix with ¢ € R3. As shown
in Fig. 2] the feature extraction process of neural networks is
sensitive to rotation and translation perturbations. Thus, it is
reasonable to find a proper G to eliminate effects of rotation
and translation transformations for a given point set P without
information loss. Accordingly, we reformulate the process of
feature extraction in Eq. (3) with RTIT, as follows,

F = ®(G(P)) € R®. 5)

Eq. (B) shows the rotation and translation robustness of fea-
ture extraction network @, i.e., ®(G(RP +T)) = ®(G(P)).

In this paper, as illustrated in Fig.[I] we propose SCT, which
handles the arbitrary orientation point clouds and maps them
to rotation and translation-invariant representations. It is noted
that SCT can be directly incorporated by various existing start-
of-the-art point cloud recognition methods for classification
and segmentation tasks while keeping rotation and translation
invariance.

IV. METHOD AND ANALYSIS

In this section, we introduce the proposed SCT, which
consists of two modules:

1) Rotation and Translation-Invariant Transformation. An
RTIT module transforms Cartesian coordinates of points
to rotation and translation-invariant representations.

2) Frame Alignment. A Frame Alignment (FA) module
enhances point clouds by detecting contour points and
regresses the quaternion. The quaternion is transformed to
a coordinate system alignment matrix, aiming to transform
each object from its self contour-based frame to an intra-
class frame where discriminative features are easier to
extract.
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Fig. 3. Intuitive explanations on the effect of CAT.

Equipped with RTIT and FA, rotation-sensitive point cloud
processing models (e.g., PointNet) are robust to rotation and
translation, thus can be applied to real-world scenarios.

A. Design of A Linear RTIT

The concept of RTIT has been defined in the above section.
Here, we aim to propose a linear RTIT called Contour-Aware
Transformation (CAT). ClusterNet [23]] is a nonlinear RTIT,
which converts the independent coordinates to relative distance-
based representations through a nonlinear transformation to
harvest rotation and translation invariance. Different from the
linear transformation, the nonlinear transformation disturbs the
data distribution inevitably. Inspired by works on point set
registration [49], [50] that linearly align two rigid transformed
point sets, we aim to eliminate effects of rotation and translation
by a simple yet effective CAT.

We first calculate the barycenter of points pj := % Z?:l i
= (zp,yp,2) 7. In this way, P, = (pp,...,pp) is a 3 x N
matrix. The farthest and closest point from barycenter are
derived as:

)T

pr = (vf,yr,27)" = argmax ||p; — po2,
p.EP

Pe = (Te,Yer 2e)" = arg min [|p; — py/la- (6)
pi€EP

Then, we define vector B3¢, B, and B, respectively, where
Bf :=Pf —Pb, Be := Pc— Pb, Bn = Bc X B, and X is cross
product. To construct orthogonal axes, the vector 3, is finally
updated, 3. = B¢ X Bn.

We generate a new self contour-aware frame B =
(B¢, Bn, Bc]. A normalized and orthogonal frame is derived as

B = [B;/1B4ll. B/ 18all, B/ 1Bl = (X Y 2, (D)
and the point set P is accordingly transformed into
P' = Gecar(P) = BT(P - B,). (8)

Eq. B] defines CAT, which aims to find three self contour-
aware axes and linearly transforms the frame to harvest rotation
and translation-invariant representations (See Proposition 1 for
theoretical analysis). We further give an intuitive explanation
of the effect of CAT as shown in Fig. [3] In this way, CAT
can eliminate effects of rotation transformations and obtain
rotation invariance.

Parameter-free CAT is agnostic to the feature extraction
network. Thus CAT could be integrated into various point cloud
processing models. Detailed experimental results in Section
demonstrate its efficiency and effectiveness for synthetic and
real benchmarks.

Contour Encoding
MLP )—————  (_MLP

ppdate Self-attention
features 5
k Feature extraction J i
ik Frame Transformation
4 &_" i & M Regression @
E‘j (N, 1024)
Input points (N , 3) Enhanced points (N , 3) Frame transform matrix (3,3)

' ®

Fig. 4. Architecture of FA. FA consists of Contour Encoding and Frame
Transformation Regression.

B. On the Novel FA Module

The CAT transforms points from the Cartesian Coordinate to
each self contour-based frame to obtain rotation and translation
invariance. However, the feature extraction network has to learn
discriminative features across different frames instead of the
unified Cartesian Coordinate, which is much more difficult. To
address the problem, for each rotation and translation-invariant
representation provided by RTIT, we leverage a FA module to
capture contours and transform its self contour-based frame to
an intra-class frame to enhance discriminative feature extraction.
Intra-class frame aims to find a frame that discriminates one
class from others (e.g., desks and monitors have different intra-
class frames for better discrimination). As shown in Fig. ]
FA consists of two modules: Contour Encoding and Frame
Transformation Regression.

a) Contour Encoding: Given rotation and translation-
invariant representations P’, this unit explicitly captures
contours and augments these points through a self-attention
mechanism, which explores the geometric structure and even-
tually benefits the entire optimization process. To this end, the
operation is formulated as:

fe=0(6(P)), P € RN*3,
P! = softmaz(¢(f.)), P, € RV*3,

©))
(10)

where ¢ is a nonlinear activator, and ¢ is chosen as an MLP.
The first MLP maps point clouds from a three-dimension space
to a high-dimensional space and harvests latent representations.
Then we employ another MLP to reduce feature dimensions
to 3D, preserving salient features. Finally, a softmax function
is used to figure out key points. We enhance the rotation and
translation-invariant representations P’ with contour features
P/, resulting in enhanced representations P,

P =PaPr, (11)

where & denotes channel-wise summation.

b) Frame Transformation Regression: The Frame Trans-
formation Regression transforms point clouds from its self
contour-based frame to an intra-class frame. The input of
Frame Transformation Regression is the point cloud enhanced
by Contour Encoding module. The architecture follows the
encoder-decoder framework. For the encoder, we adopt a simple
PointNet-like [11]] structure, resulting in global features fqopqi-
Afterward, several fully connected layers are used as a decoder
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Fig. 5. The flowchart of the technological process of the proposed SCT.

to regress the frame transformation quaternion. Mathematically,
the pipeline of FA is formulated as

fglobal = A(’Y(P(;)) € Rcv
90, 41, G2, q3)) = O(fgtobar) € R?,

(12)
13)

where P! are points enhanced by Contour Encoding; ~
denotes PointNet-like [11] 1024-dimensional vector descriptor;
A stands aggregation function, i.e., max-pooling; and 6 is
fully connected layers. The transformation matrix 7,¢; can be
computed as

1—2q3 — 2¢3

2q192 + 2q3q0
2q193 — 24290

24193 + 2q2q0
2¢293 — 24140
1—2q7 — 245

24192 — 2q3q0
1—2¢7 — 243
2243 + 2q140

Test =

Finally, the point cloud P” transformed by FA is obtained
as

P" =T.,P e R®*V, (14)

The point cloud P” can be flexibly fed to various point cloud
recognition models for classification and segmentation tasks
with rotation and translation robustness.

C. Training Classification and Segmentation Models with SCT

Here, we present detailed procedures of training classification
and segmentation models with SCT. Firstly, given a point cloud
P ¢ R3*N | CAT transforms point cloud P into P’ € R3*N
to obtain rotation and translation-invariant representations.
Secondly, FA enhances the point cloud P’ and obtains point
cloud P” € R3*¥ to ease the feature extraction process. In
this way, the enhanced point cloud can be directly fed into
existing point cloud processing models (e.g., PointNet) for
classification and segmentation tasks. Specifically, the point
cloud segmentation task is a per-point classification task [[11],
i.e., the segmentation task is to assign a label to each point
in a 3D scan. Fig. [5 summarizes the detailed technological
process of the proposed SCT. Together with the illustration in
Fig. |1| and technical explanation, one can arrive at the whole
point cloud recognition procedure (or other downstream tasks,
e.g., Classification and Segmentation, etc.).

D. Theoretical Analysis of CAT

Before proving CAT is an RTIT, we revisit the rotation via a
new perspective based on the adjoint map [21]], which is given
in Lemma 1 as below:

Lemma 1. For R € SO(3),

[(Ra)x] = Rlzx]RT,

F—————————— 1
: Enhance Transform |
P! point clouds point cloud p"
(N.3) | by Eq.(12) by Eq.(14) | (N.3)
. _ _ _ _______ |
FA

where © = (1,72, 73)T and [z x] is the cross product matrix,
defined by

0 —x3 xro
[%X] = T3 0 —1
—ry X 0

The proof is given in Appendix. The adjoint map formulated

in Lemma 1 enlightens us to exploit the property of cross
product under rotation transformation. Lemma 2 is given
below based on Lemma 1.

Lemma 2. For R € SO(3),
(Ral) X (Rag) = R(Oél X ag),

where a; = (x1,y1,21)7, @2 = (2, Y2, 22)".
Proof. According to Lemma 1,

(Ral) X (Raz) :[(Ral)x]Rag
=R[a1 x]RT Ry

:R(a1 X ag) (15)

Lemma 2 provides the consistency under rotation, i.e., if
two vectors a1 and ay are transformed by a rotation matrix
R, whose cross product vector a; X ap will be transformed
by the same rotation matrix consistently. Therefore, it is
possible to eliminate effects of rotation via a dedicated linear
transformation. The following theoretical analysis explains
the favorable rotation-invariant property of CAT, which is
beneficial for point cloud data processing under arbitrary
rotations.

Proposition 1. CAT mapping Goar : P — P’ satisfies the
definition of RTIT such that P' = Goar(P) = Goar(RP +
T) holds for any translation matrix T € R3*™ and any rotation
mapping R € SO(3).

Proof. Let P= RP +T = (py, Dy, - - -
then we have

713N)’

B=@ppub) (16)
= (ﬂfﬂIBC X ﬁf?ﬂf X (/Bc X /Bf))u
and,
By =P; — P, = R(ps — pv) = RBy, (17)
B, = B.x By = RBc x RB;. (18)
Considering Eq. (I5) (Lemma 2), we have
R/@c X Rﬁf = R(/Bc X /Bf) = RIBn (19)
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TABLE I
COMPARISON OF CAT AND PCA.

TABLE 11
PERFORMANCE COMPARISONS OF ROTATION INVARIANT
TRANSFORMATION METHODS ON MODELNET40. * DENOTES OUR

Method NR/NR NR/AR AAcc METHODS.
PCA+ DGCNN 88.8 76.5 -12.3 Method Accuracy Type
CAT+ DGCNN 890 890 0 SRINet [25]+ DGCNN 86.1 NT
RIConvNet [24]+ DGCNN 86.1 NT
Eq. (8) reduces to RI-Conv [26]+ DGCNN 82.6 NT
B, = RB,. (20) ClusterNet [23]+ DGCNN 86.4 NT
CAT* + DGCNN 89.0 LT

Similarly, we have
B.=B; x (B. x By)) = RIBs x (Bo x By)] = RBe. (21)

Substituting Eq. (I7), Eq. 20), and Eq. 2I) into Eq. (16)
yields

E = (BfaanBc) = R(/Bf7ﬁn7/8(/) = RB

Thus, new representations with the novel Go a7 mapping are

(22)

P =Gear(P)
= BTRY|[RP —T — RP, + 1))
=BT (P-PR). O

In addition to the above analysis, we will provide more

detailed discussion of the novel SCT in the following section.

All these will contribute to a better understanding of the
proposed methods’ mechanism.

V. DISCUSSIONS ON SCT

In this section, we give discussions and complexity analysis
of SCT[l

A. Discussion on the Relation between PCA and CAT

Here, we aim to explain the intuition behind the proposed
strategy. RTIT is similar to pose normalization, which aims to
align an object into a canonical coordinate frame [51[]. Principal
Component Analysis (PCA) is the most commonly used method
to solve the problem by transforming point coordinates to a
new frame composed of three eigenvectors [52]]. However, PCA
does not satisfy RTIT rigorously [S1]], [53], i.e., the orientation
candidate set of objects reduces to eight candidates. Note that
the intuition is to figure out an RTIT rather than reduce the
orientation candidate set. In addition, Table [| shows that PCA
normalization is rotation-variant.

B. Discussion on the Type of RTIT

We classify existing RTIT methods into two types, linear
and nonlinear methods. Specifically, we compare and analyze
their performances and computational complexity.

o Nonlinear Transformation consists of ClusterNet [23]],

SRINet [22], RIConvNet [24], and RI-Conv [26]. SRINet
[22] chooses three axes and maps each point into a
collection of relative angles and leverages a key point

't is noted that here we test and compare these rotation-invariant transfor-
mation methods on ModelNet40 [27].

TABLE III
COMPARISON OF COMPUTATIONAL COMPLEXITY. * DENOTES OUR
METHODS. NT AND LT REPRESENTS NONLINEAR AND LINEAR
TRANSFORMATION, RESPECTIVELY.

Method Computational complexity  Type
SRINet [25] O(N) NT
RIConvNet [24] O(NK) NT
RI-Conv [226]] O(NK) NT
ClusterNet [23]] O(NK) NT
CAT* O(N) LT

detection module to improve performance. ClusterNet
[23], RIConvNet [24] and RI-Conv [26] build K-nearest
neighbor graphs and transform Cartesian coordinates into
relative angles and norms to obtain rotation invariance.
Overall, nonlinear RTIT methods convert point coordinates
into relative angles and distances.

e Linear Transformation includes the proposed CAT,
which preserves geometry structures, avoiding introducing
ambiguity in the process of nonlinear transformation.

To show the effectiveness of the proposed RTIT, we test
and compare these rotation-invariant transformation methods
on ModelNet40 [27]. As these compared approaches modify
network architectures, we choose DGCNN [13]] as the backbone
of them for a fair comparison. We uniformly sample 1024 points
from CAD models. Only the (z,y, z) coordinates of sampled
points are used. The qualitative and quantitative evaluation
results are summarized in Table [lI| and Table [III, where NT and
LT represent nonlinear and linear transformation, respectively.

Though ClusterNet, RIConvNet, and RI-Conv build local
graphs and encode relative angles, they still suffer from the
loss of geometry information. We give a quantitative example
to illustrate the ambiguity of local shapes caused by the
nonlinear transformation. As shown in Fig. [f] the local patch
(in red circles) on the flat surfaces belong to different objects.
However, if we represent the center points of these flat local
patches by the features transformed by ClusterNet [23]], the
features belonging to the parts of various objects may be the
same to each other. Therefore, similar features of different
objects cause the ambiguity of local shapes. These ambiguous
representations hinder networks from extracting features from
distinguishing different shapes. Compared to these nonlinear
transformations, CAT preserves the geometry structures by a
linear transformation. Visualization examples in Fig. [/| show
that CAT consistently transforms objects into rotation-invariant
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bed | (0.61. 055 0.16.0.01)
Taptop | (0.61. 0.58. 0.20. 0.00)
door | (0.60.059. 0.15. 0.01)
chair | (0.60.0.55. 0.18_0.01)
curtain | (0.60, 0.57.0.17. 0.01)

Fig. 6. Ambiguity of local shapes in nonlinear transformation. Red points
denote the center of local patch. The transformed representations of each point
are shown in the table.

representations (i.e., the effect of rotation is eliminated.).

Based on the above analysis, CAT leads the classification per-
formance under arbitrary rotation. In addition, CAT has lower
computational complexity than nonlinear methods. Therefore,
linear CAT outperforms other nonlinear methods and is more
advantageous for industrial applications.

C. Discussion on the FA Module

The aim here is to demonstrate that FA is a key part
of our architecture. RTIT module generates rotation and
translation-invariant representations at the cost of transforming
the Cartesian frame to a self contour-based frame. To alleviate
the issue, we need a coordinate system alignment matrix to
transform each object from its self contour-based frame to an
intra-class frame. T-Net proposed in PointNet [11]] predicts an
affine transformation matrix for feature alignment. However,
the nonlinearly affine transformation harms geometry relation
and suffers from information loss inevitably. Thus, it is not
applicable to this work. Furthermore, equipped with T-Net,
PointNet is still vulnerable to random rotations. For coordinate
frame alignment, the transformation matrix should be a rotation
matrix. Thus, the FA module is introduced.

Point clouds transformed by FA are visualized in Fig. [§] The
input and output of FA are red and green, respectively. In Fig.
each column illustrates four different objects belonging
to the same category. The transformed point clouds from
FA in the same category have a similar intra-class frame
(pose). For example, the legs of different benches have similar
orientations, and the handles are on the same side of the cups.
This phenomenon demonstrates the effectiveness of FA.

VI. EXPERIMENTS

In this section, we conduct extensive experiments on several
point cloud classification and part segmentation benchmark
datasets including ModleNet40 [27]], ScanObjectNN [54], and
ShapeNet [55]]. Some experimental results are visualized to
demonstrate the effectiveness of the proposed technique. The
point clouds transformed by SCT can be easily processed
by existing point cloud recognition models while maintaining
rotation invariance, which improves the rotation robustness of
various existing models. We further feed these transformed
point clouds into the DGCNN [[13] model for classification and
part segmentation tasks under arbitrary rotations and conduct

TABLE IV
CLASSIFICATION RESULTS ON MODELNET40.* DENOTES TRAINING WITH
AZIMUTHAL ROTATION DATA AUGMENTATION.

Method NR/NR NR/AR AR/AR
SubVolSup [34] 88.5 36.6 82.7
SubVolSup MO [34] 89.5 45.5 85.0
MVCNN 12x [33]* 89.5 70.1 77.6
MVCNN 80x [33]* 90.2 81.5 86.0
PointNet [11]] 89.2 12.5 80.3
Kd-Net [19] 90.7 8.5 79.2
PointNet++ [12] 90.6 21.4 85.0
DGCNN [13]] 92.9 20.6 81.1
PointCNN [36] 92.2 29.6 84.5
KPConv [39]] 90.7 28.8 83.6
PRIN [22] 80.1 70.4 -
RIConvNet [[24] 86.4 86.4 86.4
ClusterNet [[23]] 87.1 87.1 87.1
SRINet [25]] 87.1 87.1 87.1
Our 89.5 89.5 89.5
TABLE V
CLASSIFICATION RESULTS ON SCANOBJECTNN.
Method NR/NR NR/AR AR/AR
PointNet [11]] 79.8 24.9 70.4
PointNet++ [12] 85.5 26.9 81.5
DGCNN [13] 86.2 27.2 78.7
PointCNN [13]] 86.3 29.6 70.8
KPConv [39] 88.8 44 .4 78.5
RIConvNet [24] 73.5 73.5 73.5
ClusterNet [23]] 80.4 80.4 80.4
SRINet [25] 78.8 78.8 78.8
Our 84.6 84.6 84.6

an ablation study. All the experiments are implemented on
two NVIDIA TITAN Xp GPUs in a distributed manner. We
train and test models with three different settings to compare
with state-of-the-art point cloud recognition architectures under
arbitrary rotations. 1) Models are trained and tested without
rotation (NR/NR). 2) Models are trained without rotation
augmentation and tested with arbitrary rotations (NR/AR). 3)
Arbitrary rotations are added during both the training and
testing process (AR/AR).

A. Synthetic ModelNet40

We conduct the classification tasks on the ModelNet40 [27]
dataset under arbitrary rotations, consisting of 40 different
categories with 9843 synthetic CAD training models and 2468
testing models. We uniformly sample 1024 points from models’
surfaces to train our model. Following the experimental settings
of PointNet [11]], these sampled point clouds are translated
and rescaled into a unit sphere later. As 3D sensors could not
capture normals directly in the real world, only the (x,y, z)
coordinates of sampled points are used as the input of models.
During the training process, random scaling and jittering are
added to perturb points’ original positions. The training strategy
is almost the same as [[13|] except that training epochs are
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Fig. 7. Visualization of CAT.
different rotation perturbation.

Fig. 8. Visualization of FA. Rotation and translation-invariant representations generated by CAT and 3D objects transformed by Frame Aligment are red and

green, respectively.

changed to 290.

Evaluation Table [[V] shows results without voting trick. The
proposed method achieves the best accuracy under random
rotations on the ModelNet40 dataset. Though the current
point cloud recognition methods have harvested very high
accuracy, their performances degrade severely with rotations
perturbation, implying the vulnerability to rotations. PointNet
and DGCNN drop more than 70% classification accuracy
under rotations, failing to generalize to arbitrary orientations.
Though training with arbitrary rotations improves the rotation
robustness, the infinite 3D rotation group (SO3) makes it
impossible for existing models with high capacity to extract
consistent shape awareness features against random rotations.
Therefore, under AR/AR setting, there still exists a performance
drop from NR/NR. Compared with other rotation-invariant
methods, our model is 2.3% better than ClusterNet and
SRINet [22]]. The proposed method has a stable classification
performance with/without rotation augmentation, proving its
rotation invariance.

B. Real-world ScanObjectNN

Different from synthetic benchmark ModelNet40 dataset,
ScanObjectNN is a newly published real-world dataset

comprising of 2902 3D objects in 15 categories. We implement
the classification task on the ScanObjectNN to further
prove the robustness and generalization ability of our tech-
nique in real-world scenarios. The training strategy, network
architecture, and input settings are the same as the synthetic
benchmark. All experiments are conducted in “object onl” of
data split 1.

Evaluation Note that SRINet needs normal vectors as
input, while ScanObjectNN does not contain normal attributes.
Thus, we report the performance of SRINet in Table [V] without
normal vectors. Compared with the synthetic dataset, the
real-world benchmark is more challenging, with a noticeable
performance drop for all the compared methods. Table [V] shows
that the proposed method outperforms the others under random
rotations. The consistent performances on synthetic and real-
world datasets show the generalization and robustness of our
model, demonstrating its potential applications in the industrial
point cloud processing tasks with arbitrary rotations.

C. ShapeNet

In this section, we evaluate our method for part segmentation
task on ShapeNet part dataset containing 16,881 3D
objects from 16 categories and 50 annotated parts in total.



JOURNAL

TABLE VI

PART SEGMENTATION RESULTS ON SHAPENET DATASET. METRIC IS MEAN 10U (%).

Method Rotation-Invariant Input NR/NR NR/AR AmlIolU; AR/AR AmlIoU,
PointNet [[11]] No 2048 %3 83.2 31.3 -51.9 74.4 -8.8
PointNet++ [[12] No 2048 %3 84.6 36.7 -47.9 76.7 -79
PointCNN [36] No 2048%3 84.8 27.3 -57.5 71.4 -13.4
SpiderCNN [42] No 2048x3 82.4 35.5 -46.9 72.3 -10.1
DGCNN [13] No 2048 %3 84.7 43.8 -40.9 73.3 -11.4
ShellNet [38] No 2048 %3 82.8 40.8 -42.0 77.1 -5.7
PRIN [22] Yes 2048x3 71.5 57.4 -14.1 68.9 -2.6
RIConvNet [24] Yes 2048x3 75.5 75.3 -0.2 75.5 0
SRINet [25]] Yes 2048 %3 77.0 77.0 0 77.0 0
RI-Conv [_26] Yes 2048 %3 79.2 79.2 0 79.4 0
Our Yes 2048x3 81.4 814 0 814 0
e
DGCNN - *’_ _— %
Our /’

Ground Truth \

L

p il

Fig. 9. Visualization of part segmentation results on ShapeNet under arbitrary rotations.

Part segmentation is a fine-grained classification task aiming
to assign a semantic label to each point of a 3D object. Each
object contains less than 6 part category labels. We randomly
sample 2048 points from each object and split the dataset into
train, validation, and test parts as the official scheme.
Evaluation For a fair comparison, we use the mean
Intersection-over-Union (mloU) metric proposed in PointNet.
Results of the proposed method and other techniques are shown
in Table Note that ClusterNet [23]] is dedicated to classifi-
cation and not applicable to the part segmentation application.
Those state-of-the-art models lack rotation robustness, failing
to classify each part of the object with sharp performances
drop under rotations (Fig. [0). In our experiments, training
with rotation augmentation gives PointNet++ and DGCNN
an approximately 20% boost in mloU, achieving 58% and
62.7%, respectively. Though rotation augmentation slightly
improves their rotation robustness, there is still a performance
gap between those models and our method. As discussed
in Section nonlinear transformation methods, such as
RIConvNet [24]], SRINet [25] and RI-Conv [26]], inevitably
cause the ambiguity of local shapes which hamper the network
to extract discriminative shape awareness. The comparison of
classification results shown in Table [VI| demonstrates that the
proposed linear method outperforms other nonlinear methods,
achieving 81.4% mloU.

TABLE VII
RTIT INTEGRATED INTO VARIOUS POINT CLOUD PROCESSING MODELS. *
DENOTES OUR METHODS.

Method NR/NR NR/AR AAcc
PointNet [[11]] 89.2 12.5 -76.7
PointNet++ [12] 90.6 21.4 -69.2
PointCNN [37] 92.2 29.6 -63.6
DGCNN [13] 92.9 20.6 -72.3
CAT* + PointNet 83.5 83.5 0
CAT* + PointNet++ 88.3 88.3 0
CAT* + PointCNN 86.1 86.1 0
CAT* + DGCNN 89.0 89.0 0

D. Generality of RTIT

In this section, we use CAT to enhance the rotation and
translation robustness of four classical networks, such as
PointNet [11]], PointNet++ [12], PointCNN [36], and DGCNN
[13]]. As discussed in Section CAT is agnostic to the
feature extraction network. CAT maps the arbitrary orientation
point cloud to rotation and translation-invariant representations,
which can be directly processed by various point cloud recogni-
tion methods. Table[VII|indicates that equipping with parameter-
free CAT enables these classical point cloud processing models
to obtain rotation robustness, i.e., without performance degra-
dation under rotation perturbations, which also demonstrates
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Fig. 10. Robustness evaluation. Rotation-Invariant Transformation methods under different sampling densities and noises. Blue stands original points and red
denotes transformed points by CAT approach. All the methods are evaluated in NR/AR.

TABLE VIII
ABLATION STUDY. ALL THE EXPERIMENTS ARE IMPLEMENTED ON
MODELNET40 [27]] AGAINST ARBITRARY ROTATIONS.

Method | #points CAT FA | Acc(%)
A 1k 20.6
B 1k 4 87.9
C 1k Vv 89.0
D 1k V4 Vv 89.5
E 2k N4 Vv 89.5

the effectiveness of theoretical results shown in Proposition
1. Therefore, CAT is a generic method complementary to the
existing point cloud processing techniques.

E. Ablation Study

In this section, we conduct an ablation study of SCT to
figure out how each module affects the overall performance.
All experiments are implemented on ModelNet40 [27] against
rotations, and the performance metric is the accuracy (%).
Models are trained without rotation augmentation and tested
under arbitrary rotations. Table [VII illustrates the results of the
ablation study with (z,y, z) coordinates. The baseline (Model
A) denotes DGCNN [[13], only remaining a classification
accuracy of 20.6%. When employed with FA, it obtains
rotation invariance and is improved to 87.9% (model B). The
interpretation is that FA transforms each object into an intra-
class frame. As rotation perturbations could be viewed as
frame transformations, each rotated object has a different frame.
Therefore, FA adjusts frames of rotated objects, and accordingly,
model C harvests rotation robustness. Besides, we apply the
CAT with DGCNN (model C), which outperforms FA methods.
Moreover, combining the FA and CAT (model D) gives model C
another 0.5% boost and achieves state-of-the-art under arbitrary
rotations.

Based on the performances of models A, B, C, and D, it
is evident that both CAT and FA improve rotation robustness.
We train the model with 2,048 points (Model E) but find no
boost.

F. Robustness Evaluation

In this section, we conduct experiments to evaluate the
robustness of the proposed method under different sampling
densities and noises. To this end, the robustness of RTIT

Partial Visibility

80

—4— RIConvNet
SRINet
ClusterNet
CAT (Ours)

CAT+FA (Ours)

60

Aceuracy (%)

—a—
—o—
L_._
40
1.0

Fig. 11. Evaluation on partial visible point clouds. All methods are evaluated
in NR/AR.

0.9 0.8
Partial Ratio

0.7

on sampling density is shown in Fig. [T0] We test the CAT
with sparser points of 1024, 768, 512, and 256, respectively.
For a fair comparison, all the RTIT methods are fed into
DGCNN model. Note that we do not use random input
dropout augmentation during training. Visualization results
in the leftmost of Fig. [I0] demonstrate that CAT consistently
transforms points based on contours under different sampling
densities. Fig. [I0] shows that our CAT is more robust than other
methods. The interpretation is that nonlinear transformation
techniques rely on local geometry structures, which are more
sensitive to density differences. Besides, the Gaussian noise
with different standard deviation (Std) is added to each point
independently, shown in the right of Fig. [I0] CAT is more
robust than other methods in terms of noise perturbations.
Moreover, FA module further improves the robustness of CAT
and adaptively transforms point clouds.

G. Fartial Visibility

In this section, we conduct experiments on partially visible
point clouds, which are common in autonomous driving
applications. We simulate partial visibility following [56] with
partial ratios from 1 to 0.7. Specifically, all compared models
are trained on the complete point cloud (1024 points). The
leftmost of Fig. [T1] demonstrates some visualization examples
of partially visible point clouds. The rightmost of Fig. [TT] shows
that the proposed CAT is more robust than other methods. When
nonlinear RTIT techniques handle partially visible point clouds,
local graphs generated from complete and partial point clouds
are different. Therefore, the proposed CAT is more suitable
for real-world applications with partial visibility point clouds.
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TABLE IX
COMPARISONS OF MODEL COMPLEXITY ON MODELNET40. * DENOTES
OUR METHODS.

Method Model size Inference time NR/AR (%)
DGCNN 1.81M 28.4 ms 20.6
SRINet [25] 1.81M 29.6 ms 86.1
RI-Conv [26] 1.83M 40.3 ms 82.6
ClusterNet [23]] 1.85M 42.8 ms 86.4
CAT* 1.81M 29.1 ms 89.0
CAT*+ FA* 2.61M 34.3 ms 89.5

H. Model Complexity

We conduct comparisons of model complexity, inference
time and performances against rotations on ModelNet40 [27]]
in Table For a fair comparison, we adapt DGCNN as the
backbone for rotation-variant methods. We report the inference
time with batch size 16. Table [X] shows that CAT achieves the
best computational complexity (measured as inference time)
among these rotation-invariant methods. Equipping CAT and
FA improves the classification accuracy of DGCNN from
20.6% to 89.5% against rotations. This improvement is at
the price of 0.8M parameters and a 5.9 ms inference time
increase. Therefore, the proposed method achieves the best
trade-off between accuracy and computational complexity and
is applicable to real-time industrial scenarios.

VII. CONCLUSION

In this paper, a novel SCT has been proposed for point cloud
recognition against arbitrary rotations. SCT provides efficient
and strict rotation and translation invariance by introducing CAT.
CAT transforms Cartesian coordinates of points to rotation and
translation-invariant representations. Moreover, a FA module
has been proposed to transform point clouds to the intra-class
frame to enhance discriminative shape awareness extraction.

Furthermore, as demonstrated in theoretical analysis and
experimental results, CAT outperforms nonlinear methods with
lower computational complexity. CAT does not rely on local
geometry structures of point cloud and is more robust under
density differences and noises. More crucially, SCT can be
flexibly integrated into existing point cloud processing models.
Experimental results demonstrate that SCT achieves state-of-
the-art performance on classification and part segmentation
tasks on synthetic and real-world datasets against arbitrary
rotations. In summary, owing to its efficiency, robustness under
noises, sample densities, and partial visibility, and generality,
SCT can be applied in real-world industrial applications.

APPENDIX

For ¢ = (z1,79,23)T and y = (y1,%2,y3)T, the inner
product is given by,

- y=ac'y=y (A.1)

It is convenient to express matrix in terms of its columns. For
a 3x3 matrix M = [a b ¢], the adjoint [21] is

(bxe)T

(exa)T (A2)
(a x b)T

adjM = adj([a b ¢]) =

And [xx] is the cross product matrix, defined by

0 —I3 o
[xx] = T3 0 —-x (A.3)
—x2 I 0
Then
a(x xa) a’(xxb) a’(x xc)
MTxx]M = | b'(x xa) b'(xxb) b (xxc)
cl(xxa) cf(xxb) cl'(zxec)
(A.4)

According to Eq. (A.T) , Eq. (A.4) is equal to

M7T[xx]|M

[a-(xxa) a-(xxb) a-(xXc)

=| b:-(xxa) b:-(xxb) b:-(xXc)

| c-(xxa) c-(xxb) c-(xxc)

[ 0 —(axb)-x) (cxa)-x

=| (axb) -z 0 —(bxe)-z

| —(ecxa)-z (bxc)-z 0
(AS)

Considering Eq. (A.2), and Eq. (A.3), Eq. (A.5) reduces to
MT[zx]M = [{(adjM)zx} x]. (A.6)

Setting M = RT, when R is a proper orthogonal 3x3 matrix
and adjacency matrix adjM = R, then

R[xx|RT = [(Rx)x], forR € SO(3). (A7)
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