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Study of Natural Scene Categories in Measurement

of Perceived Image Quality
Xiaohan Yang, Fan Li, Leida Li, Ke Gu, and Hantao Liu

Abstract—One challenge facing image quality assessment
(IQA) is that current models designed or trained on the basis
of exiting databases are intrinsically suboptimal and cannot deal
with the real-world complexity and diversity of natural scenes.
IQA models and databases are heavily skewed towards the
visibility of distortions. It is critical to understand the wider de-
terminants of perceived quality and use the new understanding to
improve the predictive power of IQA models. Human behavioural
categorisation performance is powerful and essential for visual
tasks. However, little is known about the impact of natural
scene categories on perceived image quality. We hypothesize
that different classes of natural scenes influence image quality
perception – how image quality is perceived is not only affected
by the lower-level image statistics and image structures shared
between different categories, but also by the semantic distinctions
between these categories. In this paper, we first design and
conduct a fully controlled psychovisual experiment to verify our
hypothesis. Then, we propose a computational framework that
integrates the natural scene category-specific component into
image quality prediction. Research demonstrates the importance
and plausibility of considering natural scene categories in future
IQA databases and models.

Index Terms—Image quality, natural scene categories, psycho-
visual experiment, perception, objective metric

I. INTRODUCTION

NOWADAYS, digital images are widely used in many

important research and commercial applications [1]-[4].

However, images are inevitably subject to a variety of distor-

tions in the process of acquisition, compression, transmission,

and storage. These distortions result in a degradation in image

quality, which affects human’s visual experiences. Therefore,

it is essential to develop reliable image quality assessment

(IQA) methods to quantify image quality in a broad range of

applications including image processing, computer vision and

pattern recognition [5]-[8].
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“Since human beings are the ultimate receivers in most

image-processing applications, the most reliable way of as-

sessing the quality of an image is by subjective evaluation.

Indeed, the mean opinion score (MOS), a subjective quality

measure requiring the services of a number of human ob-

servers, has been long regarded as the best method of image

quality measurement.” [9] Subjective testing must be thor-

oughly designed and test conditions must be closely controlled

so that the variable being measured is statistically meaningful

[10]. To guarantee the reliability and statistical significance

of the MOS of image quality measurement, subjective exper-

imental protocols and procedures have been developed and

adopted as parts of an international standard by the Interna-

tional Telecommunications Union (ITU) [10]. For example,

the standard recommends the minimum number of human

subjects for a typical subjective image quality assessment

experiment, as well as essential experimental settings and

subjective data processing steps, etc. Researchers have used

the best practice guidance to conduct subjective experiments

and generate MOS-based databases that can faithfully reflect

human perception of image quality [11]-[12] However, sub-

jective testing is cumbersome, expensive and time-consuming

[13], and thus can hardly be used in practical applications.

Therefore, a more realistic solution is to develop objective

IQA methods that can automatically evaluate image quality as

perceived by human beings.

There has been growing interest in developing objective

IQA methods. Depending on the availability of the pris-

tine reference image, objective IQA methods are classified

into three categories: full-reference IQA (FR-IQA) [14]-[15],

reduced-reference IQA (RR-IQA) [16]-[17] and no-reference

IQA (NR-IQA) methods. Nevertheless, in many real-world

applications, the pristine reference image is often unavailable,

which makes FR-IQA and RR-IQA inapplicable. Thus, it

has become increasingly important to develop effective NR-

IQA methods which can predict image quality without any

reference. NR-IQA is a very challenging scientific problem

mainly because little is known about the mechanisms of the

human visual system (HVS) in determining image quality. In

general, existing NR-IQA methods rely on the assumption that

the image distortion is the dominant factor for image quality

perception [18]-[21]. NR-IQA models have been developed

to establish the relationship between image distortions and

perceived quality. The traditional approach taken in NR-IQA

models is based on extracting image features that explicitly

describe distortions, and learning a shallow regression model

to map the image representations onto scalar quality scores.

In the literature, a majority of NR-IQA models make use



of the natural scene statistics to extract distortion-related

features to evaluate image quality, such as Gaussian scale

mixture (GSM) model in the wavelet domain [18], Weibull and

Generalized Gaussian distribution (GGD) model in the DCT

domain [19]-[20], the GGD model in the spatial domain [21].

Although the traditional NR-IQA methods have achieved good

prediction performance in certain databases/applications, the

obvious limitation is that these handcrafted features may not

be powerful enough to adequately represent complex image

structures and distortions. Therefore, there is still considerable

room for improvement in NR-IQA models.

A. Related work

Recently, researchers attempt to apply deep learning in the

development of objective NR-IQA models. A deep neural

network (DNN) has proven ability to capture discriminative

task-relevant features, which can be a promising method for

IQA problem. However, DNN models heavily rely on large-

scale annotated data, such as the ImageNet dataset [22]. In

the area of image quality, creating such “big” IQA databases

is practically very challenging. This is because a meaningful

subjective quality label, i.e., MOS must be derived from psy-

chophysical experiments under fully controlled conditions –

making a large database increases the number of images/labels

at the expense of the reliability of the psychophysical data.

To exploit deep learning techniques in the context of the

nature of IQA databases, different approaches have been

attempted. In a so-called patch-based method [23]-[25], an

image is divided into patches with the aim to augment the

IQA database. The ground-truth quality label for each image

patch is approximated using either the corresponding overall

quality score or the score calculated by a traditional objective

IQA metric. However, the disadvantage is that the assigned

patch label does not accurately and faithfully reflect the actual

perceived quality, simply because no psychophysical data is

gathered at the patch level. This drawback hinders a DNN-

based model’s performance in predicting image quality. An

alternative approach taken in DNN-based models [26]-[28] is

to augment the IQA database by simulating extra new images

with distortions similar to the current data. In this approach,

transfer learning and domain adaptation are often adopted to

improve the sample efficiency and boost learning performance.

Some researchers also use multi-task learning methods to

reinforce the importance of the characteristics of distortions

in a DNN-based IQA model. In [29], the “distortion type”

sub-network is constructed and added to a DNN to optimize

its learning ability for image quality prediction. In [30], a two-

stream sub-networks (representing different distortion forms)

is designed and integrated to a DNN-based IQA model.

The common strategy of existing NR-IQA methods focuses

on establishing a mapping between image distortions and sub-

jective quality measures. However, other important factors that

can influence image quality remain largely unexplored [31].

Because of this single-factor focus, the construction of IQA

databases, for example, the widely used databases [32]-[35]

has been strongly skewed towards the single determinant of

image quality – distortion. This might have caused a potential

bias in the development of IQA models and complications in

their predictive power [36]. The urgent challenge facing the

IQA research is that models designed or trained on the basis of

existing IQA databases are intrinsically suboptimal and cannot

deal with real-world complexity and diversity of natural image

space [37]-[39]. It is critical to go beyond the single factor of

distortion and understand the wider determinants of perceived

image quality, and then use the new understanding to improve

the predictive power of IQA models.

B. Contributions

Vision literature reveals that humans are extremely profi-

cient at categorising natural scenes, despite subtle distinctions

between heterogeneous classes of natural scenes; they can

recognise natural scenes with exposures as brief as 100 ms,

and with little time to prepare for the categorisation tasks

[40]-[43]. Such powerful human behavioural categorisation

performance is essential for visual tasks such as navigation or

the recognition of objects in their natural environment [43]-

[44]. Little is known about how natural scene categories play

a role in image quality assessment, and how to integrate this

perceptually relevant aspect to objective IQA models.

An earlier attempt has been made in [45] to investigate the

impact of scene category in IQA. A JPEG database (158 dis-

torted images) and a Blur database (158 distorted images) were

created; each contained three scene categories (i.e., indoor,

outdoor natural, and outdoor manmade). Subjective quality

scoring experiments were conducted separately for these two

databases, where a controlled lab experiment was used for the

JPEG database and an uncontrolled crowdsourcing experiment

was used for the Blur database. The limitations of this study

are: first, the diversity is scene category is rather limited as

only three scene categories were used; second, the impact of

scene category on perceived image quality cannot be revealed

for the cross-distortion scenario, because subjective ratings

generated independently for the JPEG and Blur databases can-

not be compared due to the psychometric scale mismatch [46];

third, no objective IQA model was proposed, and the study

focused on testing the added value of incorporating hand-

crafted scene category features to existing IQA metrics using a

capacity-limited shallow regression (i.e., LSVR) method [47]-

[48]. Another attempt has been made in [49] to include scene

category information in aesthetic quality assessment (AQA),

which is a different but related area to IQA. AQA focuses on

categorising images into aesthetically higher or lower quality

(i.e., a “aesthetics classification” task [50]) and IQA focuses on

quantifying the image quality preference induced by visual sig-

nal distortions (i.e., a “preference regression” task). Although

no psychovisual experiment was conducted in this study, a

computational approach was proposed to exploit semantic

recognition to improve AQA. This work adopted a multi-

tasking learning framework, where the network architecture

design and optimisation take into account the specific charac-

teristics of the “aesthetics classification” task. This approach

can inspire a design towards a computational framework for

scene category-aware IQA. To overcome above challenges, our

work aims to (1) design and conduct a new and thorough

psychovisual experiment to analyse the impact of diverse



natural scene categories on perceived quality, and as a result

to faithfully reveal the human behavioural responses to image

distortions as a function of natural scene categories; and

(2) design and build a computational model, considering the

specific characteristics of the “preference regression” IQA task

in the model’s architecture and optimisation.

The DNN-based multi-task learning framework has been

recently exploited to improve IQA [51]-[52]. The IQA model

in [51] consists of two sub-networks – a distortion type

identification network and a quality prediction network –

sharing the early layers. The IQA model in [52] consists of

two sub-networks – a natural scene statistics (NSS) feature

prediction task and a quality prediction task – sharing a CNN

feature extractor. Both models exploit a highly distortion-

related feature (i.e., distortion type in [51] and distortion

characteristics in [52] ) prediction task as an auxiliary task

to enhance the network’s representation ability for the IQA

task. Based on the multi-task learning framework, it is critical

to investigate the impact of higher-level HVS features on IQA

and construct new plausible auxiliary tasks. However, it should

be noted that prior to modelling psychovisual study should

be in place to provide the grounding as well as HVS data so

that the new auxiliary task can faithfully learn the higher-level

HVS features in the presence/context of image distortions.

In addition, both models in [51]-[52] adopt the shared layer

feature strategy in the network architecture design. However,

the strategy is rather straightforward without fine-grained

analysis on the influence of different shared layer locations

on the performance of the IQA model. It is worthwhile to

thoroughly analyse the impact of shared layer locations in

order to optimise the network performance.

In this paper, we first investigate the impact of an HVS-

based determinant – natural scene categories – on perceived

image quality via a psychovisual experiment. In the ex-

perimental design, the independent (i.e., scene categories)

and dependent (i.e., perceived quality) variables are fully

controlled to ensure the results are unbiased and statistical

meaningful. Building upon our preliminary work [36], current

contribution lies in providing further justifications and analyses

to verify our hypothesis. This results in a “Scene Category

IQA” database that is the first and largest of its kind. Second,

substantial contributions have been made in this paper that

after gathering psychovisual evidence and data, we build a

new computational model to integrate natural scene category-

specific information to objective image quality assessment.

The model is based on multi-task learning with deep neural

networks, which jointly optimise scene-specific component

and distortion-specific component for image quality prediction.

In modelling, to leverage deep learning with limited data in

IQA, we take advantage of transfer learning combined with

dedicated optimisation strategies to enhance sample efficiency

and maximise the model’s learning performance.

The remainder of this paper is organized as follows. Section

II illustrates the psychovisual study and data analysis. Section

III describes the proposed computation method and the exper-

imental results. Section IV gives a discussion, and Section V

concludes the paper.

II. PSYCHOVISUAL STUDY AND ANALYSIS

A. Hypothesis

To enhance an IQA metric’s ability in handling complex

and diverse natural image space, researchers attempt to incor-

porate the functional mechanisms of the human visual system

(HVS) [32]-[35]. Since human’s ability to categorise natural

scenes has proven significant in perceiving and understanding

visual content [40], we hypothesize that different classes

of natural scenes influence image quality perception. How

image distortions are perceived may not only affected by the

image structure and low-level image statistics shared between

different categories, but also by the semantic distinctions

between these categories. In the literature, there is a paucity

of research on the impact of the natural scene categories

on image quality assessment. Most image quality perception

studies were conducted using a small number of original visual

scenes. Also, visual scenes were randomly selected without a

systematic way of content classification. This poses difficulties

for studying the influence of scene categories on image quality.

It should be noted that a perception study must be conducted

under fully controlled experimental conditions (with minimum

uncontrolled variables in the experimental design), otherwise,

the findings cannot faithfully reflect human sensory perception

[53]. We recently created a new IQA database including

natural scene categories, namely the CUID database as detailed

in [36]. We now briefly summarise the database, and give

further analysis on natural scene categories.

B. The CUID database

A total of sixty source images (original visual scenes)

were collected from the Unsplash website [54]. They were

high-quality images and had a resolution of 1920 × 1080
pixels. Ten different natural scene categories (six images were

chosen to capture the high variability within each category)

were purposely selected in a systematic way including ACT

(Action), BNW (Black and White), CGI (Computer-Generated

Imagery), IND (Indoor), OBJ (Object), ODM (Outdoor Man-

made), ODN (Outdoor Natural), PAT (Pattern), POT (Portrait),

and SOC (Social). These ten categories of sixty source images

are illustrated in Fig. 1.

The original images were distorted by applying three dif-

ferent types of common image distortions: contrast change

(i.e., CC), JPEG compression (i.e., JPEG), and motion blur

(i.e., MB). These different distortion types essentially give

distinctive impairments in images. By varying the distor-

tion parameters, the strength of distortion is adjusted, which

generates distorted images of varying quality. Fig. 2 shows

an example of distortion simulations, where a source image

leads to nine distorted images. For each distortion type, three

different levels of distortion/quality (i.e., Q1, Q2 and Q3) are

stimulated, reflecting distinctive levels of perceived quality: Q1

indicates ‘perceptible but not annoying artifacts’, Q2 indicates

‘noticeable and annoying artifacts’, and Q3 indicates ‘very

annoying artifacts’. This results in a total of 600 test stimuli

(including the original visual scenes).

A perception experiment was carried out at a laboratory

at School of Computer Science and Informatics, Cardiff



Fig. 1. Ten categories of 60 source images contained in the CUID dataset [36].

Fig. 2. Exemplars of distorted stimuli contained in the CUID dataset [36].



University. The laboratory was set up as a standard office

environment with fully controlled viewing conditions [10]. A

19-inch LCD monitor was used to display the test stimuli. The

viewing distance was approximately 60 cm. The experimental

procedures followed a single-stimulus method as prescribed by

[?]. Participants scored image quality using a rating scale that

ranged from 0 to 100. The within-subjects experimental design

[76] was adopted to ensure subjective results are reliable and

consistent. This means each participant must view and score

all stimuli in the entire dataset. To eliminate the undesirable

carry-over effects due to participant fatigue or boredom [53],

multiple sessions were arranged for each participant to com-

plete the rating task as detailed in [36]. Nineteen participants

were recruited to take part in the experiments. They were 8

males and 11 females, between age 23-52, and inexperienced

with subjective image quality assessment. The characteristics

of the assessment panel were determined in accordance with

the standard in [10]. In order to make participants familiar

with the test stimuli and the use of scoring scale, a training

session was provided to each participant before they started

the actual rating session.

After stimuli are evaluated by the assessment panel, the

mean opinion score (MOS) – representing the overall sub-

jective quality of an image – is derived as the average of

individual subjective scores [9]. To account for the potential

differences between participants when using the rating scale,

z-score is calculated to convert a raw subjective score into a

standard (calibrated/normalised) score [55]:

ZSij = (RSij − µi)/σi (1)

where RSij indicates the raw-score of the j-th test image rated

by the i-th participant, µi indicates the mean of all raw-scores

given by the participant i, and σi indicates the corresponding

standard deviation.

A standard procedure to remove outliers (detailed in [55])

was applied. Ultimately, MOS was calculated:

MOS =
P∑

i=1

ZSij (2)

where P denotes the number of scores (excluding outliers)

for the j-th image. After MOS values are generated, they

are linearly mapped to the range of [0, 100] to match with

the original value range of the rating scale. This results in a

Cardiff University Image quality Database (CUID). For a well-

balanced IQA database, the MOS values of test stimuli should

have a uniform distribution across the range of perceived

quality. The MOS distribution of the CUID database (see detail

in [36]) shows that the test images are, to some extent, evenly

distributed across the quality range, which is consistent to

other widely recognised IQA databases, such as the LIVE

database [32]. The reliability measure of the MOS as per

[56] – Pearson correlation between MOS values and individual

ratings (IR), i.e. MOSIR is calculated for individual subjects.

The 95 % confidence interval of the MOSIR is [0.75, 0.8],

indicating a subjective database of high reliability

C. Analysis of MOS and natural scene categories

Now, for the CUID database, the unique new feature is that

natural scene categories have been systematically built into

the database. Since the within-subjects design was used to

generate the MOS, the MOS of an image from one category

can be fairly compared to the MOS of an image from any

other category [53], without any additional experiments for

scale realignment [32].

Fig. 3. The CUID database: natural scene ”category-wise” MOS.
Error bars indicate a 95% confidence interval.

Fig. 3 shows the natural scene ”category-wise” MOS of

the CUID database. As can be seen from the figure, when

the same distortions equally were applied to each category of

natural scenes in the CUID database, the perceived quality of

OBJ category and CGI category is higher than that of other

categories. This might suggest OBJ and CGI images are less

impacted by the same distortions used in the CUID database.

The SOC category is largely affected by distortions, resulting

in a lower perceived image quality. The above observation

implies that natural scene categories tend to impact perceived

image quality. This impact might be attributed to the human

cognitive processes, such as emotion or aesthetics. The ob-

served tendencies are further statistically analysed. An analysis

of variance (ANOVA) is conducted by selecting perceived

quality as the dependent variable, and the categorical natural

scene as the independent variable. The ANOVA results show

that the categorical natural scene has a statistically significant

effect on perceived quality (F-value=8.63, p-value=5.17E-

13<0.001 at 95% level).

III. THE PROPOSED COMPUTATIONAL METHOD

We propose a computational framework for the integra-

tion of natural Scene Categories in Image Quality predic-

tion, namely SCIQ. The schematic overview of the proposed

framework is illustrated in Fig. 4. The framework is based

on a multi-task deep neural network, which contains two

branches respectively addressing the influence of natural scene

categories and distortions. The scene category-specific branch

is trained to classify natural scenes, and its output probability

of classification is used to guide the quality prediction branch.

By doing this, the two branches are jointly optimised to

learn the interactions of image distortions and natural scene

categories for the image quality prediction task.



Fig. 4. The proposed framework of SCIQ with a scene category (SC) sub-network and a quality prediction (QP) sub-network.

A. The proposed SCIQ model

1) The SCIQ architecture: The SCIQ architecture contains

two sub-networks, including the scene category (SC) sub-

network and the quality prediction (QP) sub-network. We

adopt the architecture of the pre-trained VGG network [59],

including 13 convolution (C) layers, 5 max-pooling (P) layers

and 3 fully-connected (FC) layers. The large-scale ImageNet

dataset [22] has been used to pre-train the VGG network. By

using the pre-trained VGG, the learned parameters/weights of

the network can be transferred to the SCIQ task to significantly

improve the sample efficiency.

For the scene category (SC) sub-network, since the pre-

trained VGG network is powerful for the image classification

task, it has potential for the natural scene classification in our

model. The number of the last FC layer is modified to n, which

aims to discriminate scene categories in the CUID database.

Then, the softmax layer is used to obtain the accuracy of scene

category, as shown in equation 3.

~P = [p1, p1, ..., pn] (3)

where ~P denotes the outputs of the last FC layer in the scene

category sub-network, the number of outputs is 10. pi (i=1 to

n) denotes the probability of the ith scene category.

Similarly, the quality prediction (QP) sub-network is also

based on the pre-trained VGG network. The number of outputs

of the last FC layer is altered to 10, which is to obtain a vector

of image quality scores, as show in equation 4.

~S = [s1, s1, ..., sn] (4)

where ~S denotes the outputs of the last FC layer in the quality

prediction sub-network, the number of outputs is 10. si (i=1

to n) denotes the quality score of the ith instance.

The two sub-networks share the mid-level deep features

(i.e., at the 10th C layer in our experiment), which aims to

speed up the feature discrimination for different tasks [60],

[61]. Finally, the image quality Q is obtained by associating

the image quality score vector ~S with the corresponding scene

category vector ~P .

Q = ~S ⊙ ~P =
n∑

i=1

sipi (5)

where ⊙ represents the weighted sum of element-wise multi-

plication.

2) The design choices: In our SCIQ algorithm, the mid-

level shared features design is proposed, as shown in Fig. 4.

This design is based on the fact that the shallow layers of

a DNN contain general features, such as edges and textures

and deep layers contain specific features, such as higher-level

semantics [66]. For multi-task learning, a mid-level shared fea-

tures design gives a good balance between minimizing training

parameters and extracting common attributes for distinctive

tasks. The network architecture also features the discrimination

ability of specific tasks by providing a transition from common

attributes to specific attributes. In principle, the two sub-tasks,

scene category (SC) and quality prediction (QP) share some

common attributes, such as saliency; while they have their

specific attributes, such as local properties for SC and local

distortions for QP [28], [61]. So, the mid-level shared features

design well captures this property of multi-task learning.

3) The loss function: The two sub-networks are jointly

trained using the following loss function L.

L = λ1L1(w; θ) + λ2L2(w; θ) (6)

where L1 is the cross entropy loss function [59] of scene

category (SC) sub-task. L2 represents the squared Euclidean

distance as the loss function [26] of the quality prediction (QP)

sub-task. λ1 and λ2 control the two components of the final

combined loss function.

4) The training strategy: Prior to training the SCIQ model,

the parameters contained in the first 10th convolution layers of

the pre-trained VGG-network are shared. The rest parameters

are initialized randomly. The last FC layer of the pre-trained

VGG network is modified to a ten-dimensional output to suit

the scene category and quality prediction sub-tasks.

Then, the SCIQ is trained by using the CUID database.

The input image is cropped randomly. The size of cropped

images is 224 × 224 pixels. The label for training the scene

category sub-network is a vector containing ten elements,

indicating the likelihood of scene categories. Meanwhile, the

label for training the quality prediction sub-network is a vector

of ten quality scores, indicating the ground truth image quality.

Finally, the end-to-end optimization strategy is adapted to

minimize the losses of the two sub-networks.

B. Experimental results

1) Experimental setup: To evaluate the performance of

an image quality metric, two commonly used measures are



quantified. They are PLCC (i.e., Pearson Linear Correlation

Coefficient) and SROCC (i.e., Spearman Rank-Order Corre-

lation Coefficient) calculated between the estimated visual

quality scores Qpre and the subjective quality scores Qsub,

as:

SROCC(Qpre, Qsub) = 1−
6
∑

di
m(m2 − 1)

(7)

PLCC(Qpre, Qsub) =
cov(Qsub, Qpre)

σ(Qsub)σ(Qpre)
(8)

where m indicates the number of test stimuli; di indicates

the rank difference of the i th test sample; cov(.) represents

the covariance between Qpre and Qsub; σ(.) represents the

standard deviation. PLCC measures the prediction accuracy

and SROCC measures the prediction monotonicity. The mag-

nitude of both correlation measures ranges from 0 to 1, with 0

indicating no correlation and 1 indicating perfect correlation.

Therefore, the larger the measure, the better the model’s

performance in predicting the subjective image quality [62]-

[63].

In training the SCIQ model, we randomly divide the dis-

torted images of each scene category in the CUID database

into a training set and a test set. The training set includes four

source scenes and the test set includes the two source scenes.

By doing so, no overlap occurs between the training set and

test set.

The SCIQ model is trained using the Caffe framework. In

our experiment, We set the min-batch to be 11; the momentum

and weight decay to be 0.9 and 0.0005, respectively; and the

learning rate to be 1e-6. Also, we make the training rates

decrease by a factor of 0.1 per 10K iterations for a total of

50K iterations. We set the dropout regularization ratio to be

0.5. Note these are commonly used settings for the hyper-

parameters of the Caffe deep learning framework [64]-[65].

The relative importance weights are set to be 0.8 and 0.2

in equation 6. The value range of the loss function of the

scene category (SC) subtask is between 0 and 1; while the

value range of the loss function of the quality prediction

(QP) subtask is found to be wider than that of SC subtask.

To compensate for the difference between two loss functions

and balance their contributions towards the combined loss, we

assign a relatively larger weight value to SC subtask and a

relatively smaller weight value to QP subtask. To verify the

weight assignment and demonstrate how difference assignment

combinations can impact the model performance, we conduct

experiments and the results are listed in Table I. It shows that

the best performance of the SCIQ model is achieved when

λ1=0.8 and λ2=0.2 are used.

This training process is repeated six times to eliminate the

performance bias. For each repetition, the training and test sets

are randomly selected as described above. The average values

of the SROCC and PLCC are reported as the final results.

Note, increasing the times of model running may help reduce

possible fluctuation in performance. We run an experiment to

increase the times of running the model from six to ten, and

compare the model’s performance as reported in Table II. It

can be seen from the table that the model has reached stable

TABLE I
The performance (i.e., SROCC and PLCC) of the proposed SCIQ
model using different λ1 and λ2 settings for the combined loss

function.

λ1 λ2 SROCC PLCC

0.2 0.8 0.856 0.860

0.4 0.6 0.861 0.866

0.5 0.5 0.878 0.875

0.6 0.4 0.880 0.884

0.9 0.1 0.885 0.890

0.8 0.2 0.909 0.905

performance when running it for six times.

TABLE II
The impact of model running times on the performance (i.e.,

SROCC and PLCC) of the proposed SCIQ model.

Running of SCIQ model SROCC PLCC

Six times 0.909 0.905

Ten times 0.910 0.903

2) Performance on the CUID database: Now, we want

to verify the proposed design: (1) whether the SC guidance

actually contributes to the prediction power of the network;

(2) after which convolution layer the network should break

up in to two sub-networks. We run experiments with the

CUID database using various design options: (1) a DNN

without the SC sub-network; (2) a DNN with both the SC

and QP sub-networks; (3) a DNN with the SC and QP sub-

network breaking up at different places (i.e., the number of

first convolution layers of the pre-trained VGG network used

as shared feature layers). As can be seen in Fig. 5 that

the prediction power (as measured by the Spearman rank

order correlation coefficient (SROCC) between the MOS and

predictions) with the scene category guidance is higher than

that without the guidance. Also, for the network with the SC

guidance, the best performance is achieved when the network

breaks up at the 10th convolution layer, meaning the first 10

convolution (C1-C10) layers are used as shared feature layers.

This result is in line with the mid-level shared features design

in [29], which suggests that the choice should be at the mid-

level layers (i.e., C5-C10) to avoid shared features being too

general or too specific.

We compare the performance of our proposed SCIQ model

to the state-of-the-art image quality assessment (IQA) algo-

rithms, including both Full-reference (FR) and No-reference

(NR) models. The FR models include PSNR [67], SSIM

[14] and VIF [68]. The NR models include traditional and

deep learning-based methods. Since our proposed model is

DNN-based, we decided to include only two representative

traditional NR-IQA, i.e., BLIINDSSII [20], and BRISQUE

[21], and focus on the comparison amongst deep learning-

based IQA models. It should be noted that a fair comparison

is possible only when the source code is available for all IQA

models under study, and the same fine-tuning procedure is

consistently applied for all models. We include nine DNN-



Fig. 5. The prediction power of the network with various design
choices.

based NR-IQA, i.e., Alexnet [75], VGG [59], CNN [23],

BIECON [69], DIQaM [71], RankIQA[70], WaDIQaM [72],

GraphIQA [73], and TTL SFTnet [74]. Note Alexnet [75] and

VGG [59] represent two well-known general DNN models.

We simply applied them for the IQA task by first pre-training

the model with the ImageNet [22] database and then directly

fine-tuning the model on the CUID database. The other models

are specifically designed for IQA, therefore, they were directly

fine-tuned on the CUID database. Note the same fine-tuning

procedure is consistently applied for those nine IQA models

to ensure the results are comparable. To the best of our knowl-

edge, this represents a comprehensive comparison of state-of-

the-art deep learning-based IQA models that have made their

source code publicly available so far in the literature.

Table III shows the performance of these IQA methods. It

can be seen that our proposed SCIQ outperforms other IQA

metrics.

TABLE III
The performance of different IQA methods on the CUID database.

Note for DNN-based NR-IQA, only the IQA models with their
source code made publicly available so far in the literature are

included in our comparative experiment.

Type Method SROCC PLCC

FR-IQA
PSNR 0.123 0.109
SSIM 0.522 0.494
VIF 0.697 0.598

Traditional NR-IQA
BLIINDSSII 0.716 0.729
BRISQUE 0.722 0.736

DNN-based NR-IQA

AlexNet 0.794 0.797
VGG 0.858 0.870
CNN 0.533 0.515

BIECON 0.772 0.752
DIQaM 0.847 0.845

RankIQA 0.867 0.866
WaDIQaM 0.857 0.853
GraphIQA 0.803 0.817

TTL SFTnet 0.862 0.868
Our SCIQ 0.909 0.905

The performance of FR-IQA is unsatisfactory as the corre-

lation (i.e. in terms of PLCC and SROCC) is rather low. For

the traditional NR-IQA, the limitation mainly lies in the use

of handcrafted features, which can not adequately capture the

perceptual characteristics of the combination of image content

and distortions, and therefore, their prediction performance

is also quite low. Most Deep learning-based methods give

good performance due to the fact that deep features represent-

ing perceptual image quality can be automatically extracted.

Amongst those deep learning-based metrics, Our SCIQ model

is the best, possibly due to the scene categories are explicitly

included and quantified.

3) Cross-database evaluation: In the literature, cross-

database evaluation is often used in the image quality com-

munity to measure the generalization ability of IQA models,

particularly for machine learning-based and deep learning-

based models [24],[27],[70]. The performance of an IQA

model could be evaluated on the CUID database only using

the conventional train-test split technique as the procedure

used in Section III.B 2). However, a more critical performance

evaluation would be to use the CUID database as the training

set and use a different unseen IQA database (i.e., obtained

from a different laboratory, such as the popular LIVE, CSIQ,

TID2013 or LIVEMD database [32]-[34]) as the test set.

This cross-database evaluation can reveal how well the model

can generalise – the ability of a learning model to perform

accurately on new, unseen examples after having learned a

training set. If a learning model successfully built a general

model about the IQA space using the training examples of

CUID, it would produce sufficiently accurate predictions for,

e.g., LIVE, CSIQ, TID2013 and LIVEMD. As shown in

Table IV, compared to other state-of-the-art deep learning-

based IQA models, i.e., AlexNet, VGG, CNN, BIECON,

DIQaM, RankIQA, WaDIQaM, GraphIQA and TTL SFTnet,

our proposed SCIQ model shows superior generalization abil-

ity in the demanding cross-database evaluation.

4) Ablation experiments: A series of systematic ablation

experiments are carried out to further verify the rationality

of our proposed SCIQ model. Note some ad hoc ablation

experiments have been initially conducted in Section III B.2).

Contribution of “shared layer features”: We run four com-

parative experiments to verify the effectiveness of the mid-

level shared features (SF) design choice. In the first experiment

(i.e., referred to as “QP-only”), the quality prediction (QP)

sub-network is trained and model is rendered as the image

quality predictor. In the second experiment (i.e., referred to

as “SC-only”), the scene category (SC) sub-network is first

trained to classify 10 categories; then the last FC layer of the

sub-network is modified to 1 and network is train to predict

image quality. In the third experiment (i.e., referred to as

“QP-SC-without SF”), the scene category sub-network and

quality prediction sub-network are trained separately without

considering the mid-level shared features, and the last FC

layer is fused to produce a score as the prediction of image

quality. In the last experiment (i.e., referred to as “QP-SC-with

SF”), the proposed SCIQ architecture is used. The results are

listed in Table V. It can be seen that our SCIQ architecture

is superior to the method without considering the mid-level

shared features.



TABLE IV
Cross-database evaluation. Model performance is quantified by SROCC (note, PLCC exhibits the same trend of SROCC). Note only the

DNN-based IQA models with their source code made publicly available so far in the literature are included in our comparative experiment.

Train Test AlexNet VGG CNN BIECON DIQaM RankIQA WaDIQaM GraphIQA TTL-SFTnet SCIQ

CUID LIVE 0.602 0.655 0.528 0.807 0.713 0.752 0.710 0.679 0.761 0.853
CUID CSIQ 0.586 0.602 0.505 0.791 0.695 0.758 0.677 0.658 0.728 0.783
CUID TID2013 0.597 0.638 0.500 0.560 0.516 0.713 0.702 0.635 0.726 0.751
CUID LIVEMD 0.610 0.643 0.541 0.712 0.661 0.705 0.690 0.600 0.746 0.773

TABLE V
The contribution of shared features (SF) to SCIQ design.

Different model design options SROCC PLCC

QP-only 0.853 0.870

SC-only 0.860 0.874

QP-SC-without SF 0.866 0.868

QP-SC-with SF (proposed SCIQ) 0.909 0.905

Contribution of “natural scene categories”: To verify the ra-

tionality of including the natural scene categories, we run two

comparative experiments. In the first experiment (i.e., referred

to as “Direct-SC”), without using the scene category (SC) sub-

network, we directly provide the SC vector to the network; and

use the vector to weight the quality score vector obtained from

the last FC layer of the quality prediction (QP) sub-network to

generate the final quality score. In the second experiment (i.e.,

referred to as “Learned-SC”), we use our SCIQ architecture to

adaptively learn the relationships between scene categories and

image distortions. The results are shown in Table VI. It can

be seen that including the scene category (SC) sub-network

enhances learning the complex relationships between natural

scene categories and image quality assessment.

TABLE VI
The contribution of natural scene categories to SCIQ design.

Different model design options SROCC PLCC

Direct-SC 0.879 0.879

Learned-SC (proposed SCIQ) 0.909 0.905

The contribution of “core modelling strategies”: To verify

the rationality of our core modelling strategies (i.e., “transfer

learning (TL)” and “shared features (SF)”, we run four com-

parative experiments. In the first experiment (i.e., referred to

as “NO TF & NO SF”), the model does not contain shared fea-

tures between SC and QP sub-networks and is trained directly

on the CUID database without transferring information from

the pre-trained VGG. In the second experiment (i.e., referred

to as “NO TF & YES SF”), shared features design is included,

but model is rendered without transfer learning. In the third

experiment (i.e., referred to as “YES TF & NO SF”), the model

does not include the shared feature design but does make use

of transfer learning. In the forth experiment (i.e., referred to

as “YES TF & YES SF”), the complete SCIQ design is used

including both transfer learning and shared feature design. The

results are shown in Table VII. It can be seen that both core

modelling strategies significantly contribute to the proposed

SCIQ model.

TABLE VII
The contribution of core modelling strategies (i.e., transfer learning

(TF) and shared feature (SF)) to SCIQ design.

Different model design options SROCC PLCC

NO TF & NO SF 0.523 0.506

NO TF & YES SF 0.569 0.581

YES TF & NO SF 0.866 0.868

YES TF & YES SF (proposed SCIQ) 0.909 0.905

IV. DISCUSSION

In this paper, we focus on single-distortion image quality

assessment, where each stimulus is degraded by only one of

many possible distortion types. The vast majority of literature

has been focusing on single-distortion IQA mainly because

the impact of individual distortion types on perceived quality

can be thoroughly studied. It should be noted in practical

imaging chain, the images often undergo multiple stages

of quality degradation, therefore, multiple-distortion image

quality assessment is of high practical relevance [34],[78].

An immediate extension of research is to build upon the

methodologies established in the current work and investigate

the ”natural scene categories” in multiple-distortion IQA by

simulating multiple distortion stages and generating multiply

distorted images.

To facilitate image quality research, more psychovisual

studies should be conducted to provide a better understanding

of wider determinants of image quality as perceived by human

beings. However, it should be noted that subjective data

are meaningless unless they are gathered by well-designed

psychometric tests with fully controlled experimental condi-

tions. Also, a great deal of attention has been paid to the

image quality assessment behaviour of an average human

observer (i.e., MOS), but little attention has been paid to the

subjectivity of individuals. Future work could investigate the

variances between subjective opinions and their implications

on objective IQA models.

To facilitate the development of advanced DNN-based IQA,

it is important for developers to make the source code of IQA

models as well as IQA databases publicly available so that

a fair comparative study can be conducted. Table III so far

represents a comprehensive comparison of DNN-based IQA

models that have made their source code publicly available.

Further comparison can be easily conducted if new IQA source

code is released in future.



There is a growing trend to use image quality methodologies

to advance technology developments in emerging applications,

such as video blending, underwater image enhancement, and

image fusion, etc. [79]-[80]. One way to develop useful

application-specific IQA models is to understand the charac-

teristics of the visual stimuli through subjective evaluation,

and build these application-specific features into objective IQA

models. The latter involves an important step to test whether

existing IQA models are readily applicable, if so, these models

could be modified or adapted to the new application domain.

Here, we give an exploratory example of using the proposed

SCIQ model in image fusion. Fig. 6 shows two fused images

created by different image fusion methods, namely G12 [81]

and ShutaoLi12 [82]; and their ground truth image quality (i.e.,

MOS) scores derived from subjective experiments [83]. Our

proposed SCIQ is directly applied to produce objective scores

for the fused images, as the results shown in Fig. 6. It can

be seen that there is a good level of agreement between the

subjective and objective scores, suggesting that our proposed

SCIQ model has the potential to be used for assessing the out-

put quality of image fusion methods. However, to effectively

adapt our SCIQ model to image fusion, more work is needed

including gathering reliable subjective data – output quality of

various image fusion methods – via psychovisual experiments

as per methodologies used in [81]-[83], and fine turning the

SCIQ model on the new subjective image quality scores.

   

(a) G12 (MOS=3.957 vs. SCIQ=2.798)     (b) ShutaoLi12 (MOS=8.739 vs. SCIQ=8.024) 

Fig. 6. An example of two fused images created by different image
fusion methods. (a) Fused image generated by G12 [81]. (b) Fused
image generated by ShutaoLi12 [82]. Ground truth image quality (i.e.,
mean opinion score – MOS, note the range is [1,10]) derived from
subjective experiments [83] versus objective image quality predicted
by our proposed SCIQ model (note, SCIQ is directly applied without
fine-tuning on the fused images) is illustrated for each image.

V. CONCLUSION

In this paper, we have verified an important hypothesis

that natural scene categories significantly impact image quality

assessment. Through the design and conduct of a fully con-

trolled psychovisual experiment, we found that when the same

distortions are applied, different categories of natural scenes

intrinsically induce different human behavioural responses to

image quality. Building on this psychovisual evidence, we

have proposed a computational framework that integrates the

natural scene category-specific component to image quality

prediction. We have demonstrated the importance of natural

scene categories in improving the reliability of image quality

models. We suggest that future research should consider

natural scene categories in both subjective and objective image

quality assessment.
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