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Magnetic Disturbance Detection for
Smartphone-based Indoor Positioning Systems with

Unsupervised Learning
Yinhuan Dong, Tughrul Arslan, Senior Member, IEEE, Yunjie Yang, Member, IEEE

Abstract—The smartphone magnetometer has been used in
many indoor positioning systems to provide location information,
such as orientation, user trajectory construction, and magnetic
field-based fingerprint. However, suffering from magnetic
disturbance, the magnetometer measurements are vulnerable to
interference from metal infrastructures, electrical equipment,
and other electronic devices in complex indoor environments.
This paper extracts and explores the statistical features of the
smartphone magnetometer measurements. Extensive experiments
in various conditions show that the covariance and the magnitude
difference can help detect the magnetic disturbance. Based on
this, two unsupervised learning-based methods using Gaussian
Mixture Model and k-means are developed to explore the two
features mentioned above in magnetic disturbance detection.
Experimental results demonstrate that the two proposed
approaches have superior detection accuracy, which is 5% to
20% higher than the widely adopted vector selection methods in
the literature.

Index Terms—Indoor positioning system, smartphone,
magnetometer, magnetic disturbance, unsupervised learning,
clustering.

I. INTRODUCTION

Nowadays, Location-Based Services (LBS) have played
a vital role in our daily lives. They provide many user-
centered applications in various contexts, such as work,
entertainment, health, and personal life. Since the LBS
industry’s key requirement is accurate position information,
positioning has gained significant interest in recent years. The
Global Positioning System (GPS) and its variations could
provide meter-level accuracy in many outdoor positioning
scenarios [1]. Nevertheless, GPS accuracy is considerably
limited by the walls, roofs, and other obstacles in complex
indoor environments. Moreover, people spend much more
time indoors than before, and 80% to 90% of our time is
spent indoors [2]. Therefore, indoor positioning has become
an attractive research area.

During the last decade, the wide expansion of smartphones
brought a surge in new applications and services. Meanwhile,
a variety of sensors built into modern smartphones show
great potential to provide location information. For instance,
the combination of inertial sensors, such as accelerometer,
magnetometer, and gyroscope, enables the construction of user
traces and trajectories while walking in indoor environments.
The widespread usage of smartphone sensors makes the

The authors are with the School of Engineering, University of
Edinburgh, Edinburgh, EH8 9YL, UK (e-mail: yinhuan.dong@ed.ac.uk;
tughrul.arslan@ed.ac.uk; y.yang@ed.ac.uk).

smartphone an excellent carrier to perform indoor positioning
tasks. A number of indoor positioning technologies have been
proposed, such as WiFi [3], radio frequency identification
(RFID) [4], pedestrian dead reckoning (PDR) [5] and magnetic
field [6].

The magnetometer is a sensor that measures the magnetic
field intensity at a given point. It has been widely employed
in many indoor positioning systems. These systems are
grouped as magnetic field-dominated and magnetic field-aided
approaches. On the one hand, a large body of works in
the magnetic field-dominated approaches used magnetic field
data to perform positioning tasks owing to its simplicity
and ease of adaptation [7]. Most of such works like [8]–
[10] follow the fingerprinting method, which estimates the
user position by comparing the user collected data to
the pre-recorded fingerprints (composed of magnetic field)
annotated with known locations. These approaches could
provide point-level and room-level positioning accuracy [11].
On the other hand, the magnetic field-aided approaches usually
convert the measured earth magnetic field strength to Euler
angle for user motion detection. A typical application is
an electronic compass that integrates the accelerometer and
magnetometer to determine the user heading relevant to the
earth frame. Electronic compass has been implemented in
many crowdsourced indoor positioning systems, such as in
[12]–[14] to construct the user trajectory and annotate the
trajectory with fingerprints (WiFi, Bluetooth, and other radio
frequency signals). Therefore, magnetic field-dominated and
magnetic field-aided approaches rely highly on the magnetic
field’s accurate measurement.

However, the magnetic field data measured by the
smartphone magnetometer is vulnerable to hard-iron and
soft-iron magnetic distortions [15]. In complex indoor
environments, the magnetometer measurements are easily
interfered with by metal infrastructures, electrical equipment,
and other electronic devices, which results in severe
error, particularly in magnetic field-aided approaches.
Interfered magnetometer measurements are detrimental to
the user heading estimation, consequently the user trajectory
construction and the positioning accuracy. Some methods
attempted to detect the magnetic disturbance by assuming
a specific model of the magnetic disturbance. For example,
Roetenberg et al [22] first proposed to model the magnetic
disturbance as a first order Markov process. Some indoor
positioning systems like [23] and [24] proposed in recent years
have adopted such a method. Nevertheless, these model-based
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Fig. 1. Coordinate system relative to the smartphone.

methods are not resilient enough to the complex magnetic
disturbance. Significant errors will occur if the disturbance
does not obey the presupposed model [16]. Compared to the
model-based methods, the vector selection method (VSM)
has been widely adopted by many works such as [17]–
[20]. Without extra computation, VSM detects the magnetic
disturbance by setting thresholds of magnitude, dip angle, or
both of them. Although such methods are easy to implement
with low computation complexity, it is challenging to detect
magnetic disturbance among the unstable values close to the
threshold [21].

Different from the literature, this paper explores the
statistical features of the pure and interfered samples and
proposes two novel unsupervised learning-based magnetic
disturbance detection (MDD) methods for smartphone-based
indoor positioning systems. The main contributions of this
paper are as follows:

• To the best of the authors’ knowledge, this study is
the first to propose to employ unsupervised learning
to detect magnetic disturbances for smartphone-based
indoor positioning systems.

• This study extracts and explores the statistical features of
the pure and interfered samples from a large number of
magnetometer measurements in various settings and show
their effectiveness in detecting magnetic disturbances.

• Based on the statistical features, two magnetic
disturbance detection methods using unsupervised
learning are developed. The proposed methods
are evaluated in static and dynamic situations to
show their reliability and robustness. The proposed
method demonstrates superior performance under all
experimental conditions compared with conventional
methods.

II. MOTIVATION

A. Element of the Magnetometer Measurement

The magnetic field measured by the smartphone
magnetometer has three components along the x, y and
z axis as shown in Figure 1. For a group of samples, Mx,
My , and Mz are used to denote all the measurements
along each axis, respectively. So that one magnetometer
measurement can be defined as a three-dimensional vector:

mj =

 mx,j

my,j

mz,j

 (1)

TABLE I
NUMBER OF SAMPLES IN EACH SET

Dataset Pure
samples

Interfered
samples Total

SET 1 5970 5404 11374
SET 2 3161 3396 6557
SET 3 3287 3044 6331
SET 4 3672 2725 6397
SET 5 2345 2341 4686
SET 6 5562 5144 10706

where mj denotes the jth measurement; mx,j , my,j and mz,j

represent the three magnetic field components in micro teslas
(µT ).

B. Problem Analysis

In indoor environments, the magnetic field strength is
vital in providing location information such as user heading
and geomagnetic fingerprint. The magnetic field strength is
a 3-dimensional vector that most mobile wireless devices
can obtain. However, magnetic field strength measurements
are usually inaccurate due to the magnetic disturbance
caused by metal infrastructures and other electronic devices
in the complex indoor scenario. Therefore, we collected
a large number of measurements of the magnetic field
strength and conducted a preliminary analysis. In this paper,
the measurements with/without disturbance are defined as
pure/interfered samples.

Figure 2 shows a large amount of three-axis magnetic
field strength measurements from different settings, including
different orientations, attitudes, test smartphones, and
interference sources (the details of the experiment settings
can be found in Section IV-A). The size of each set is listed in
Table I. The only difference between the pure and interfered
samples in each set is whether the interference source is
added/removed. It can be observed from the figure that the
joint variability of the three-axis magnetic field strength in
different conditions (pure/interfered) is distinct. The interfered
samples usually show higher variation than the pure samples
in each set.

For further analysis, the covariance matrix is first calculated
according to the covariance between the samples along each
axis through the following equation:

C = cov(Mx,Mx) cov(Mx,My) cov(Mx,Mz)
cov(My,Mx) cov(My,My) cov(My,Mz)
cov(Mz,Mx) cov(Mz,My) cov(Mz,Mz)


(2)

then the p−norms (p = 2 in our study) of the diagonal variance
in the covariance matrix is calculated by:

lpi = ∥Cdiag∥ (3)

where Cdiag can be expressed by:

Cdiag = [cov(Mx,Mx), cov(MY ,MY ), cov(MZ ,MZ)]
(4)
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Fig. 2. A large amount of magnetic field strength measurements in different conditions. Each set stands for a collection with different settings.

Fig. 3. Covariance of the interfered and pure samples in each set.

Fig. 4. Average magnitude of the interfered and pure samples in each set.

As the covariance norm lpi of pure and interfered samples are
shown in Figure 3, it can be seen that the covariance of the
interfered samples is usually higher than the pure samples in
each set.

Besides, the average magnitude of the samples in each set is
also calculated for comparison through the following equation:

1

n

n∑
j=1

|mj | (5)

where the magnitude |mj | is calculated by:

|mj | =
√
(mx,j)2 + (my,j)2 + (mz,j)2 (6)

As presented in Figure 4, it can be seen that the average
magnitude of interfered samples is usually higher than the
pure samples.

The above statistical analysis motivates us to develop
algorithms to detect the magnetic disturbance utilizing the
covariance and magnitude difference between the pure and
interfered samples.

C. Problem Formulation

The first step of detecting magnetic disturbances is
to automatically partition the dataset into two unlabeled
clusters according to different statistical features
(covariance/magnitude). Then, each cluster should be
determined whether it is interfered or pure according to
the characteristics of different features. The two steps are
illustrated as follows:

• Automatic Clustering: Given a set of n test samples
{mj}n where mj is the jth measured magnetic field
strength vector. As there should be only two clusters
of pure and interfered samples in the entire dataset, the
samples can be clustered by:

Ci = f(mj) j = 1, 2, ...n (7)

where Ci denotes the ith (i ∈ {0, 1}) cluster, f(·) denotes
the operation that divides the dataset into two clusters.

• Empirical Labeling: After obtaining two clusters of
samples, it should be determined which cluster is most
likely to be the representative of the interfered or pure
samples:

Li = g(Ci) (8)

where Li ∈ {−1, 1} is the label of the predicted cluster
(L = −1 denotes that the cluster is interfered and L =
1 denotes that the cluster is pure); g(·) stands for the
algorithm that developed to determine the label for each
predicted cluster.

To solve the problems mentioned above, this study proposes
two unsupervised learning-based magnetic disturbance
detection (MDD) methods to partition the samples into two
sets and determine the conditions of the predicted clusters.
The details are discussed in the next section.

III. UNSUPERVISED LEARNING-BASED MAGNETIC
DISTURBANCE DETECTION

This section details the key elements of the proposed
methods to solve the magnetic disturbance detection problem.
As the framework is shown in Figure 5, this paper develops
and compares two unsupervised learning-based MDD methods
using Gaussian Mixture Model and K-means. The two
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Fig. 5. The framework of the proposed MDD methods.

methods share the same pipeline with two main steps of
Automatic Clustering and Empirical Labeling.

A. Preprocessing of Sensor Data

For each component of the magnetometer measurements, a
filter is designed to smooth the data, which can be expressed
by:

mj = δmj−1 + (1− δ)mj (9)

where δ is the coefficient which can be expressed by:

δ =
∆t

∆t+ 1
fc

(10)

where ∆t denotes the sampling interval; fc represents the cut-
off frequency (7 Hz in our case).

B. Gaussian Mixture Model-based MDD Method

As mentioned above, the analysis shows that the three-axis
magnetic field measurements’ covariance could help identify
whether the samples have interfered. Hence, the probability
algorithm of Gaussian Mixture Model (GMM) is used to
automatically partition the samples into two sets. Considering
a dataset M ∼ {m1,m2, . . . ,mn}, a GMM can be regarded
as an algorithm that generates k Gaussian models from M.
Expectation maximization (EM) algorithm is employed to get
the model parameters and determine which model is most
likely to generate each sample from the dataset. The samples
generated from the same model will finally be clustered as
one group.

A GMM is composed of a weighted sum of k component
densities, which can be expressed by:

p(mj | θ) =
k∑

i=1

λip (mj | µi,Σi) (11)

where λi is the coefficient (λi ≥ 0); p (mj | µi,Σi) represents
the component Gaussian density that has a mean µi and a
covariance Σi, which can be expressed in the form of Gaussian
function:

p (mj | µi,Σi) =
1

(2π)D/2 |Σi|1/2
×

exp

{
−1

2
(mj − µi)

′
Σ−1

i (mj − µi)

}
(12)

the parameters of a complete GMM contains λi, µi and Σi

are collectively denoted by the notation θ.

The model parameters are estimated by maximizing
likelihood estimation through the iteration of expectation-
maximization (EM) algorithm [25]. According to p(mj | θ),
the logarithmic likelihood function can be expressed by:

l(θ) =
n∑

j=1

log p(mj | θ) (13)

so that the parameter θ̂ can be computed by maximizing the
logarithmic likelihood function:

θ̂ = argmax l(θ) (14)

The iteration of EM algorithm first initializes the parameter
θ, and then the parameter is replaced by a new estimated θ for
the next iteration. Such a process is repeated until convergence.
On each iteration, the parameters of the model are estimated by
a posterior probability Prji through the following formulas:

λ̂i =

∑n
j=1 Prji

n
(15)

µ̂i =

∑n
j=1 Prji mj∑n

j=1 Prji
(16)

σ̂i
2 =

∑n
j=1 Prji m

2
j∑n

j=1 Prji
− µ̂i

2 (17)

where σ̂i
2 is the diagonal covariance; the posteriori probability

Prji (j = 1, 2, ..., n, i = 1, 2, ..., k) is given by:

Prji =
λip (mj | µi,Σi)∑k
i=1 λip (mj | µi,Σi)

(18)

Now k (k = 2 in this study) components of Gaussian
models are obtained which are responsible for modeling a
group of samples from the dataset. Then, the probability of
each sample mj is calculated, which could be generated by
the ith model by Equation 18:

P (mj) =[Pr1i, P r2i, . . . , P rki] (19)

where

Prji =
λip (mj | µi,Σi)∑k
i=1 λip (mj | µi,Σi)

,

k∑
i=1

λi = 1 (20)

the samples are allocated to cluster Ci according to their
highest probability ˆPrji.

After then, the norm of the diagonal covariance of each
mixture component is computed to determine which cluster is
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interfered. Our analysis demonstrates that the covariance norm 
of interfered samples is larger than the pure samples caused 
by magnetic disturbance. Hence the samples are divided into 
two clusters by:

mj ∈

{
C1, lp1 ≥ lp0
C0, lp1 < lp0

(21)

where
lpi = ∥σ̂i

2∥ (22)

so that the set with higher covariance (C1) denotes the cluster
of interfered samples (L1 = −1, L0 = 1). lpi is the norm of
the ith component diagonal covariance (p = 2 in this study).

C. K-means-based MDD Method

In addition to the GMM-based MDD algorithm, this paper
also proposes a k-means-based MDD algorithm to cluster the
samples according to the difference in magnitude. K-means
clustering is an unsupervised machine learning algorithm,
which aims to find natural clusters for datasets according to
the potentially similar patterns among individuals within the
same cluster. For the dataset M ∼ {m1,m2, . . . ,mn}, the n
samples are divided into k(≤ n) clusters Ci(i = 1, 2, . . . , k).
The principle of k-means clustering is to minimize the sum of
squares of the divided clusters [26], which can be expressed
by:

argmin
M

k∑
i=1

∑
mj∈Ci

∥mj − ci∥2 , j = 1, 2, ...n (23)

where ci is the mean value of the magnetic field strength in
cluster Ci. To be more specific, the Euclidean distance can be
expressed by the following function:

||mj − ci||2 =√
(mx,j − cx,i)2 + (my,j − cy,i)2 + (mz,j − cz,i)2

(24)
Each training sample is allocated to its nearest neighbor

centroid according to the Euclidean distance. After
initialization, the new centroid for each cluster will be
computed using the average of training samples in the
corresponding cluster. The iteration of updating the centroid
will stop once the Euclidean distance between the new and
last centroid is less than the threshold.

In this study, as two conditions that the samples are collected
with or without magnetic disturbance are considered, the
number of predicted clusters k is set to 2. Therefore, the
previous formula can be simplified to:

argmin
M

2∑
i=1

∑
mj∈Ci

∥mj − ci∥2 , j = 1, 2, ...n (25)

After obtaining two sets of samples automatically
partitioned by k-means, the two clusters are labeled according
to the Euclidean distance from the centre of the cluster to the
origin. The Euclidean distance can be calculated by:

di = ∥ci − o∥2 (26)

where cj is the centroid (mean value) of the jth cluster; o is the
coordinate of the origin (0, 0, 0). According to our previous
analysis, the cluster can be labeled by:

mi ∈

{
C1, d1 ≥ d0

C0, d1 < d0
(27)

so that has cluster C1 with further Euclidean distance to the
origin is labeled as interfered, while another one is pure (L1 =
−1, L0 = 1).

IV. EXPERIMENTS AND EVALUATIONS

This section presents the experiments set to analyze the
magnetic disturbance detection problem and evaluate the
performance of the proposed MDD methods.

A. Sites and Implementations

This subsection elaborates all eight experiments and eight
different datasets in this study. Experiment 1 to Experiment
6 were set to collect a large number of magnetic field
measurements from smartphones for our preliminary statistical
analysis in Section II-B. Experiments 7 and 8 were set to
test the performance of the proposed MDD methods. Different
interference sources were used in the experiments to simulate
real situations in people’s lives. A metal box was used
to simulate the interference from keys, metal accessories,
or other metal components in people’s bags and pockets.
A smartphone was used to simulate the interference from
electronic devices. And a heating radiator was used to simulate
the magnetic disturbance from some infrastructures in indoor
environments. All experiments were performed in open indoor
environments away from crowd and obstacles/infrastructures
unless specified.

Two different test phones are used in the experiments
(see Figure 6). Both phones are integrated with the same
magnetometer of AK09915. The location of the magnetometer
in each phone is shown in Figure 7. The sensing range of this
magnetometer is 4.7mT to 5.2mT.

For both pure and interfered samples in all experiments,
the magnetometer measurements were read and recorded
continuously with the sensor refresh rate of 50Hz. The
smallest sampling interval of recording the magnetometer
measurements was 0.04s.

1) Experiment 1 (SET1): In this experiment, a metal (iron)
box was set as the interference. The perturbed samples were
collected when test phone 1 was set in the box with the lid
opened (as shown in Figure 8). In contrast, the pure samples
were collected when the box was removed and away from
other magnetic materials or structures. A digital rotating stand
was used to simulate the heading direction changes of a user
when the phone is held by the user horizontally. The digital
rotating stand kept spinning clockwise at a speed of 3 rounds
per minute when collecting samples.

2) Experiment 2-5 (SET2-5): These experiments were
outdoors, away from any magnetic materials or structures on
a different smartphone (test phone 2). An interference phone
was used to create a magnetic disturbance in this experiment.
The pure samples were collected when only test phone 2 was



6

Fig. 6. Experimental devices: from left to right, test phone 1 (Google Pixel
2XL) in a metal box, test phone 2 (Google Pixel), interference phone (iPhone
SE 2020) and a digital rotating stand.

Fig. 7. The approximate location of the hall effect sensor (magnetometer): at
the bottom of the motherboard of test phone 1; at the top of the motherboard
of the test phone 2. Note that the actual size of the sensor is much smaller
than the ones in the figure.

Fig. 8. Experimental settings of Experiment 1 for the preliminary analysis:
test phone 1 is set in the metal box on the digital rotating stand to collect
interfered data in Experiment 1.

with the volunteer, while the interfered samples were collected
when the interference phone was attached to test phone 2. As
the settings are shown in Figure 9, the volunteer was asked to
take the phone(s) in different attitudes (Holding, Swing, Shirt
Pocket, and Pant Pocket) and walked randomly as a pedestrian.

Fig. 9. Experimental settings of Experiment 2-5 for the preliminary analysis:
the volunteer as asked to collect the interfered samples from test phone 2 in
Experiment 2-5 in four different attitudes.

Fig. 10. Experimental settings of Experiment 6 for the preliminary analysis:
test phone 2 is set on the digital rotating stand near a heating radiator to
collect interfered samples for Experiment 6.

Fig. 11. Experimental settings of Experiment 7 for the static test: the
interference phone was moved past the test phone 2.

The details of the four situations are illustrated below:

• Holding (SET2): The smartphone is held horizontally by
the volunteer.

• Swing (SET3): The smartphone is held in hand and
swung beside the volunteer’s body.

• Shirt Pocket (SET4): The smartphone is placed in the
front shirt pocket of the volunteer.

• Pant Pocket (SET5): The smartphone is placed in the
front pant pocket.

3) Experiment 6 (SET6): In Experiment 6, the interference
was again changed. Similar to Experiment 1, the smartphone
was set on the digital rotating stand to collect samples. As
shown in Figure 10, test phone 2 was placed near a heating
radiator to collect interfered samples. In contrast, the pure
samples were collected away from the heating radiator and
other magnetic materials or structures.
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Fig. 12. Experimental settings of Experiment 8 for the dynamic test: the
volunteer was asked to hold the test phone 2 and pass the heating radiator.

TABLE II
DETAILS OF THE DATASETS USED IN THE REAL TESTS

Test Dataset Interference
duration

Pure
samples

Interfered
samples Total

Static test SET7 10s 338 252 590
Dynamic test SET8 6.7s 393 169 562

4) Experiment 7 (SET7): This Experiment was set to
evaluate the performance of the proposed MDD methods in
the static mode. As the setting is shown in Figure 11, the
samples were recorded while moving the interference phone
slowly and pass the test phone 2. The test phone was fixed at
a certain location. Note that both test and interference phones
were set on a wooden desk horizontally. The measured samples
were then labeled according to the time when test phone 2 was
approaching/leaving the interference zone.

5) Experiment 8 (SET8): This Experiment was set to
evaluate the performance of the proposed MDD methods in the
dynamic mode considering a more critical condition. As the
setting is shown in Figure 11, the samples were recorded while
the volunteer was holding the test phone 2 and walking past
the heating radiator. Similar to Experiment 7, the measured
samples were then labeled according to the time when test
phone 2 was approaching/leaving the interference zone.

B. Evaluation

This subsection evaluates the proposed methods by applying
them to the samples collected in the experiments illustrated in
the previous subsection. The details of the datasets used are
shown in Table II. This study comprehensively evaluates the
proposed methods from the following aspects:

• The disturbed samples are compared to the reference to
show the detected distortions visually.

• Statistical features of the predicted samples/clusters are
calculated and compared to the ground truth to verify the
consistency of the proposed models.

• 3-D visualization of the samples with predicted and true
labels are presented to further verify the proposed models.

• Detection accuracy is computed to quantify the
performance of the proposed methods.

• A widely adopted vector selection method (VSM) [17]–
[20] is implemented for comparison.

1) Static test (Experiment 7): This test was to evaluate
the proposed MDD methods when the test phone was in

TABLE III
COMPARISON OF THE DETECTION ACCURACY AMONG DIFFERENT

METHODS

Test Detection accuracy using different methods
GMM k-means VSM1∗ VSM2∗ VSM3∗

Static test 94.41% 89.83% 70.68% 74.07% 69.83%
Dynamic test 94.13% 85.77% 70.46% 80.25% 77.40%
∗ The threshold was set as 0.1, 0.2 and 0.3µT in VSM1, VSM2 and
VSM3, respectively.

static mode. Data in SET 7 was used in this test. The
measurements without any interference are shown in Figure
13a as a reference. It can be noticed that as the test phone
is in static mode, the 3-axis measurements are all very stable
with almost no fluctuations. Compared to such reference, it
can be seen that the measurements show a different level of
distortions when the interference phone was approaching, in,
and leaving the interference zone. The figure shows that the
distortion level increases when the interference phone is close
to the test phone and decreases when the interference phone
is away from the test phone. Based on such reference, it can
be observed from Figure 13c and 13d that the proposed two
methods can well detect the magnetic disturbance even if the
disturbance level is very low when the interference phone was
approaching (from 5s to 8s) and leaving the interference zone
(from 13s to 15s).

In addition, to further analyze the predicted results,
statistical features of the predicted clusters were computed
and compared to their true values. As shown in Table IV, the
predicted values of the covariance and the average magnitude
of both pure and interfered samples are very close to the
true values. This illustrates that both the GMM-based MDD
method and k-means-based MDD method can well cluster
the unlabeled samples according to their statistical features.
The clusters predicted by both methods always have similar
characteristics as the true clusters.

The predicted features of each sample of both methods were
also visualized in Figure 14. It can be seen from the figure that
the pattern of the pure samples in Figure 14b is similar to the
reference in Figure 14a, while the interfered samples show
a distinct pattern. The covariance of each sample predicted
by the GMM-based MDD method is marked by different
colors and visualized in Figure 14c. It can be observed from
the figure that the visualization of the samples’ covariance
is consistent with their true labels. The interfered samples
are always in a lighter color than the pure samples. This
indicates that the interfered samples have higher covariance
than the pure samples. Similarly, different colors are used
to denote the magnitude of each sample in Figure 14d.
It can be observed from the figure that the pure samples
usually have less magnitude than the interfered samples. The
results mentioned above are consistent with the results in the
preliminary experiments and analysis in Section II-B.

Additionally, to further analyze the predicted results, the
statistical features of the predicted clusters were computed
and compared to their true values. As shown in Table IV, the
predicted values of the covariance and the average magnitude
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TABLE IV
COMPARISON OF THE STATISTICAL FEATURES BETWEEN THE PREDICTIONS AND THE TRUE VALUES

Label of clusters Static test (Experiment 7) Dynamic test (Experiment 8)
Norm of covariance∗

(µT 2)
Magnitude in average†

(µT )
Norm of covariance∗

(µT 2)
Magnitude in average†

(µT )

Pure (true label) 0.90 50.25 13.79 47.86
Interfered (true label) 57.91 61.51 90.08 49.86
Pure (predicted label) 1.30 50.92 13.42 47.20

Interfered (predicted label) 56.87 63.70 77.22 55.60
∗ The covariance of each cluster with different labels predicted by GMM-based MDD method is calculated by its diagonal covariance matrix.
† The magnitude in average of each cluster with different labels predicted by k-means-based MDD method is calculated by the distance between the
predicted centorid and the origin.

(a) (b)

(c) (d)

Fig. 13. 2D-visualization of the experimental results of Experiment 7: (a) reference (no interference); (b) samples with true labels; (c) samples with predicted
labels using GMM-based MDD method; (d) samples with predicted labels using k-means-based MDD method.

of both pure and interfered samples are very close to the
true values. This illustrates that both the GMM-based MDD
method and k-means-based MDD method can well cluster
the unlabeled samples according to their statistical features.
The clusters predicted by both methods always have similar
characteristics as the true clusters.

To quantify the performance of the proposed methods on
the magnetic disturbance detection problem, the identification
accuracy of the two methods were calculated and compared
to the conventional vector selection method (VSM). As the
results are listed in Table III, the proposed GMM-based MDD
method shows the best accuracy of 94.41%. At the same time,
the proposed k-means-based MDD method can also offer a
good performance of nearly 90%. However, the VSM methods
with different thresholds can only provide detection accuracy
lower than 75%.

2) Dynamic test (Experiment 8): More critically, a dynamic
situation is considered to evaluate the performance of the
proposed methods against the magnetic disturbance from the

infrastructures when the pedestrian holds the device using
the data in SET 8. A heating radiator was used as the
interference in this test. Similar to the previous test, the
measurements when the volunteer was far away from the
interference (heating radiator) are plotted in Figure 15a as
a reference. It can be observed from the figure that some
expected fluctuations are caused by pedestrian vibrations even
if there is no interference. When the smartphone enters the
heating radiator’s interference zone, the measurements show
strong distortions. The measurements tend to be stable when
the smartphone leaves the heating radiator. As shown in Figure
15c and Figure 15d, the proposed GMM-based MDD method
shows better performance than the k-means-based MDD
method when the disturbance level is relatively low when the
volunteer was approaching and leaving the interference zone
(from 6s to 7s and 10.5 to 12s approximately).

Also, the true and predicted statistical features were
calculated for comparison. It can be observed from Table
IV that the difference between the predicted and the true
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(a) (b)

(c) (d)

Fig. 14. 3D-visualization of the experimental results of Experiment 7: (a) reference (no interference); (b) samples with true labels; (c) samples are marked
by different color according to the predicted covariance using the GMM-based MDD method; (d) samples are marked by different color according to the
predicted magnitude difference using k-means-based MDD method.

statistical features of the interfered samples in dynamic mode
is larger than the static mode. This is mainly caused by
the smartphone’s vibration when the volunteer was walking.
However, such an expected prediction error caused by the
vibration does not significantly degrade the proposed methods’
performance.

The samples were also visualized according to the statistical
features for further analysis. As it can be observed from Figure
16 that although the distributions of the pure and interfered
samples in dynamic mode are much more complex than the
static mode, the proposed methods can still well partition the
samples into two clusters according to their covariance and
magnitude. The figure again proves that the interfered samples
usually have higher covariance and magnitude than the pure
samples. This result is consistent with the results obtained in
the previous static test and the preliminary analysis.

Similar to the previous test, the detection accuracy is
calculated. As listed in Table III, the detection accuracy
of the k-means-based MDD method decreases from 89.83%
to 85.77%. In contrast, the GMM-based MDD method can
maintain an accuracy of over 94%. The proposed methods are
again compared to the conventional VSM methods. Although
there are some improvements in the performance of the VSM
methods, their results are still far worse than the proposed

methods.

Summary: The experimental results show that both the
GMM and k-means-based MDD methods can better detect
magnetic disturbance than the widely adopted VSM methods
in both static and dynamic modes. The experiments in this
subsection again prove that the interfered samples usually
have higher covariance and magnitude than the pure samples.
This is consistent with our preliminary analysis in Section
II-B. Moreover, it can be observed from the results that the
GMM-based MDD method is more reliable than the k-means-
based method in detecting a low level of disturbance. This is
because the interfered and pure samples show distinct variation
characteristics among the 3-axis measurements, which can be
better represented by the covariance rather than the average
magnitude in some cases.

However, the proposed methods show much higher
computation complexity in trade of better detection
performance. The time complexity of GMM and k-means-
based MDD method are O(k ∗ n ∗ d3) and O(k ∗ n ∗ d),
respectively (k denotes the number of clusters; n is the
number of total samples; d represents the dimension of each
sample). While VSM methods do not need extra computation
as illustrated in the literature [16].
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(a) (b)

(c) (d)

Fig. 15. Experimental results of Experiment 8: (a) reference (no interference); (b) samples with true labels; (c) samples with predicted labels using GMM-based
MDD method; (d) samples with predicted labels using k-means-based MDD method.

V. CONCLUSION

This paper first extracted and explored the statistical
features of the magnetometer measurements. Then, two
unsupervised learning-based methods were proposed to
detect magnetic disturbances for smartphone-based indoor
positioning systems. To the best of the authors’ knowledge,
this paper is the first to employ unsupervised learning
to tackle the magnetic disturbance detection problem. In
this paper, the preliminary analysis based on extensive
experiments with various experimental settings shows that the
covariance and magnitude of the 3-axis measurements can
help identify the magnetic disturbances. Based on this, two
unsupervised learning-based magnetic disturbance detection
methods using the GMM and the k-means were proposed
to further explore the potential of using such two features
to cluster the unlabeled samples, respectively. Unlike the
widely adopted vector section methods, evaluations under
critical conditions demonstrate that the proposed methods can
provide outstanding detection accuracy in static and dynamic
situations. Moreover, comparisons between the two proposed
methods reveal that the GMM-based method is more reliable
than the k-means-based method. However, in trade of better
disturbance detection performance, the GMM-based MDD
method shows higher computation complexity than the k-
means-based MDD method. Also, the proposed methods in
this study are designed for non-real-time use. This means that
the methods can perform once the data have been collected.
And hence the proposed methods are not suitable for some
real-time applications, such as pedestrian dead reckoning or
other real-time navigation applications.

The proposed methods can be integrated into various

magnetometer-dominated and magnetometer-aided indoor
positioning systems for different applications. It will be
worth exploring the proposed methods in large crowdsourced
indoor positioning systems taking into account the complex
indoor environments and diverse devices (smartphones and
magnetometers). One aspect of our future work is to extend the
proposed algorithms to heading estimation in user trajectory
construction for crowdsourced indoor positioning systems.
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