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ABSTRACT
Inertial measurement units (IMUs) increasingly function as a basic
component of wearable sensor network (WSN)systems. IMU-based
joint angle estimation (JAE) is a relatively typical usage of IMUs,
with extensive applications. However, the issue that IMUs move
with respect to their original placement during JAE is still a re-
search gap, and limits the robustness of deploying the technique
in real-world application scenarios. In this study, we propose to
detect and correct the IMU movement online in a relatively compu-
tationally lightweight manner. Particularly, we first experimentally
investigate the influence of IMU movements. Second, we design
the metrics for detecting IMU movements by mathematically for-
mulating how the IMU movement affects the IMU measurements.
Third, we determine the optimal thresholds of metrics by synthetic
IMU data from a significantly amended simulation model. Finally, a
correction method is proposed to correct the effects of IMU move-
ments. We demonstrate our method on both synthetic data and
real-user data. The results demonstrate our method is a promising
solution to detecting and correcting IMU movements during JAE.

CCS CONCEPTS
•Computer systems organization→ Sensors and actuators; •
Human-centered computing→Ubiquitous andmobile com-
puting systems and tools.
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1 INTRODUCTION
Wearable sensor networks (WSN), as a key component of the human-
centered Internet-of-Things (IoT), have been widely used for health
monitoring, risk and ability assessing and home automation [18, 28].
Among the various wearable sensors contained in the WSN, the
inertial sensors, i.e. the inertial measurement units (IMUs), provide
the information of bodymotions with relatively robust performance
and low cost, and increasingly serve as a basic configuration of
many WSN applications [15, 19]. One example of the IMU-based
body motion tracking is to estimate joint angles. IMU-based joint
angle estimation (JAE) is a relatively mature technique with exten-
sive applications, such as take-home rehabilitation [12], robotics
[20] and sports risk assessment [10]. Comparing with other joint
angle estimation techniques like the optical motion capture system
or the mechanical motion capture system, the IMU-based technique
benefits from its wearable and small-volume characteristics, thus
can enable an easy-to-integrate and low-cost usage [6].

An IMU includes a three-axis accelerometer, a three-axis gyro-
scope and optionally a three-axis magnetometer, providing linear
accelerations, angular rates and local magnetic fields in the form of
three-dimensional vectors. Using IMU measurements to estimate
joint angles generally relates to the following three steps. First,
the so-called “absolute orientations” or “attitudes” of IMUs can be
estimated to track the relative orientational relationship between
the IMU coordinate frames and the Earth coordinate frame during
body motions [17, 31]. In practice, the attitudes of IMUs cannot be
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used directly to estimate joint angles, because the IMU coordinate
frames are not aligned to the coordinate frames of body segments
or joints. This misalignment would cause a large estimating error.
This is the reason of performing the calibration procedures, which
are to align the IMU coordinate frames with the body coordinate
frames. The calibration procedures can be performed via specific
body postures [22], customized calibration devices [1, 11] or some
kinematic constraints [7, 24, 29]. Specific body postures or cus-
tomized calibration devices should be performed before joint angle
estimation. Developing the alignment using kinematic constraint
is to construct a cost function by assuming the existence of some
fixed joint axes or joint centres. It can be performed during JAE
using the IMU measurements in a buffer. Some of the kinematic
constraint-related methods can even avoid the estimation of IMUs’
attitudes [7, 24]. Finally, the rotational relationship between the
body frames of two adjacent body segments can be obtained by
multiplying the rotation matrices estimated by the first two steps.
Then, joint angles can be estimated by decomposing the rotational
relationship.

An implicit assumption of the currently used methods is that
the IMUs will not move with respect to their mounted body seg-
ments. And the calibration procedures shall only be performed once.
However, if the IMUs moved during JAE due to some occasional
collisions, large inertia or loose attachment, a large estimating er-
ror would be induced. The solution is to perform the calibration
procedures again and to re-establish the IMU-to-body alignment.
For the specific body postures or the calibration devices, the online
joint angle estimation should be terminated in order to perform the
calibration again. For the kinematic constraint-related methods, we
proposed to maintain a running buffer to update the estimates of
joint axes constantly, thus to update the IMU-to-body alignment [7].
As presented in our previous study [7], the joint angles can be esti-
mated constantly using the output of the last running buffer. Due to
the gradient-based optimization, the approach would use relatively
high computational resource thus might impede the real-time and
online detection of IMU movements. We aim to minimize the IMU
movements’ effects on the online JAE and avoid to interrupt the
online estimation progress as far as possible. Thus, we focus on
detecting the timing of the IMU movement and then correcting the
consequent error by re-establishing the IMU-to-body alignment
in a new buffer. And we will compare it with our previously used
method in this paper.

We aim to develop an online detection and correction algorithm
for IMUmovements, whichworks in an easy-to-usemannerwithout
consuming too much computational resource. The design principle
of the algorithm is 1) to measure the IMUmovement sensitively, and
2) not to cause too many misdetections, i.e. robustness. To this end,
we analyze what metrics can be used to detect the movements, how
sensitive the metrics can be, and how the experimental paradigm
can be designed to evaluate the effectiveness of the detection algo-
rithm. Based on the analysis, we propose to calculate the metrics
in sliding windows and detect the IMU movement if the metrics
exceed a threshold. Then, the errors caused by the IMU movement
can be corrected simply by restarting a buffer to estimate the joint
axes. The key challenges can be summarized as follows.

• The metrics of IMU movements: One of the most intuitive
metrics is the difference of the estimated joint axes between
sliding windows. The joint axis is the coordinate axis of
the body coordinate frame described in the IMU coordinate
frame. If IMU moves, the changes of the estimated joint
axis’ coordinates will be the direct consequence of the IMU
movement. However, it might not be the optimal metric.
Keeping estimating joint axes in sliding windows has to
perform gradient-based optimizations in each sliding win-
dow. The consequent computational time might impede the
real-time detection of IMU movements. An alternative is to
directly use the measurements of IMUs, i.e. the linear accel-
erations and angular rates, as metrics. Other than the IMU
movement-caused variation, the difference of the measure-
ments between sliding windows also contains the variations
caused by the body segment’s motions and measuring noise.
This might make the IMU movement-caused variation over-
whelmed by the variations caused by the factors except for
the IMU movement. Thus, the metrics that use IMU mea-
surements should be designed carefully. The relationship
between the IMU measurements and the IMU movements’
effects should be studied, aiming to instruct the design of
appropriate metrics.
• The threshold of detecting IMU movements: To make the
detection algorithm both sensitive and robust is to balance
the tradeoff between the possibility of misdetections and the
minimummagnitude of the detected IMUmovement. That is,
other than designing appropriate metrics, optimal thresholds
of the employed metrics should also be determined to detect
the minimum IMU movement and to accommodate the met-
rics’ variations caused by other factors like body motions
andmeasuring noise. The data that covers various conditions
under IMU movements should be leveraged to determine the
optimal threshold. Andmultiple factors should be considered.
For example, if we use the estimated joint axes’ coordinates
as the metric, determining the threshold should consider the
estimation error and the IMU movement-caused variations
of the coordinates. If the IMU measurements are used as met-
rics, the variations caused by body motions and measuring
noise should also be considered.
• The simulation model for IMU movements: As stated above,
a relatively large amount of data under various conditions
of IMU movements, body motions and IMU-to-body attach-
ments should be collected to determine the threshold and to
evaluate the efficiency of the detection algorithm. It would
be labor expensive to collect the data in real-user experi-
ments to include various magnitudes and directions of IMU
movements. Moreover, due to the irregular shape of body
segments and the deformable soft tissues of human, the mag-
nitudes and directions of IMU movements would be hard to
control and measure. To solve this issue, a reasonable and
efficient simulation model should be proposed to synthesize
the data under IMU movements during locomotion.

Aiming to solve the above mentioned challenges, we take an
initial trial to study some basic metrics of IMU movements and to
develop a detection and correction method. This proof-of-concept
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study focuses on the lower-limb angle estimation, due to its rel-
atively extensive researches and wide applications. We leave the
extension to upper-limb joints in our future work. Our key contri-
butions are as follows.

• To the best of our knowledge, this is the first study that in-
vestigates the IMU movement issue of joint angle estimation.
• We mathematically formulate the relationship between IMU
measurements and the effects of IMUmovements, and design
the metrics of IMU movements accordingly.
• We propose a reasonable simulation model to synthesize
data of IMU movements and use it to determine the optimal
threshold for the detection algorithm.
• Based on the designed metrics and optimal thresholds, we
demonstrate a convenient-to-use and computationally light-
weight method to detect IMU movements and correct the
consequent errors.

2 RELATEDWORKS
Before diving into our method, we would like to indicate some
experience that we learn from the literature and leverage in our
study.

Studies on IMU movement mainly focus on human activity
recognition (HAR). K. Kunze et al. [13] categorized the possible
IMU movements that might occur in HAR. According their cate-
gory scheme, considerable studies focused on the "displacement
within a body part", which aimed to find an IMU placement and
orientation-independent feature set or classifier [2, 3]. In this way,
the algorithm can perform HAR without limiting the specific place-
ments of an IMU with respect to its mounted body segment. Some
other studies focused on the "on-body placement", which proposed
to identify the body location the IMUs placed at [2]. In so doing,
body-location-specific or body-location-free algorithms can be per-
formed to let HAR accommodate more locations [2, 23]. Due to
the difference tasks, we focus on different aspects. If speaking with
their language, our scope is more like the "displacement within a
body part". We study IMU movements during JAE within a body
segment. Compared with HAR, there is no "on-body placement"
issue in JAE, since IMUs must be placed on the body segments
beside a joint of interest. And we do not focus on displacement
variations like putting IMUs in a pocket. Because JAE is with more
specific and professional usages than HAR, it would be hard to find
a scenario to place IMUs in a pocket and to calculate joint angles.

To the best of our knowledge, the study that relates to our scope
the most is [4] that studied the anatomical frame variation effect
on JAE. Compared with it, our study focuses on how sensor move-
ment affects the measurements of sensors rather than the results
of estimating joint angles. On investigating IMU movements, our
study can be seen as the preliminary of [4]. Moreover, our study
enables the real-time detection of IMU movements.

Metrics function as a key in detecting IMU movements. If con-
sidering the issue in a anomaly detection perspective, we aim to find
a way to detect the “collective anomalies” [9] and to accommodate
measuring noise and unideal conditions such that misdetections can
be suppressed. In this initial study, we would like to investigate the
metrics, i.e. what values obtained from the measurements are most
suitable for detecting IMU movements. With the studied metrics,

various anomaly detection algorithms could be easily integrated to
achieve a better performance in the future study.

As stated before, we leverage a simulationmodel to determine
the optimal thresholds. We use virtual simulation models rather
than mechanical gimbals. Mechanical gimbals benefit from its flat
surface, known geometric parameters and easy-to-control motions,
were extensively used in JAE-related studies [5, 30]. However, the
optimal thresholds of metrics would be significantly influenced
by the characteristics of human motions. It would be tricky for
gimbals to mimic human motions well. Virtual simulation models
could generate IMU movements from scratch [25] or from the data
obtained by optical motion capture system [33] or even from video
[14, 21]. Considering our emphasis on human motions, we choose
to synthesize IMU measurements from the data obtained by opti-
cal motion capture system using the model presented in [33] and
propose to amend it for synthesizing data under IMU movements.

3 PRELIMINARIES
In this section, we show how the IMU movements affect the accu-
racy of JAE, and introduce some basic background information of
JAE.

3.1 The Effect of IMU Movements
Set-up: One subject (male, 23 years old, 178cm, 65kg) was asked
to walk on a treadmill with his self-selected speed. As shown in
Fig., two IMUs (TrignoWireless system; DELSYS, Boston, MA, USA,
148.148Hz) were put on the subject’s thigh and shank. We used the
optical motion capture system as the reference of joint angles. The
system details are presented in section 5. During walking, the IMU
mounted on the shank was manually rotated, i.e. IMU movement
was induced.

Figure 1: The schematic diagram of inducing IMU move-
ments.

Performance analysis: We estimate the knee angles in the
sagittal plane using the measurements of the two IMUs. The em-
ployed algorithm is the work presented in [24]. The initial 2000
sample points during walking are used to estimate the joint axes.
We denote the estimated knee angles before and after moving the
IMU on the shank by normal and moved.

We present the estimated knee angles’ errors of normal and
moved. The one-way ANOVA is used to analyze the statistical
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significance. It can be seen in Fig. 2 that the knee angle estimation
error under the condition normal is similar to the error reported
in [24].It can be seen in Fig. 2 that the errors caused by the IMU
movement are significantly large, which cause an obvious deviation
of estimates.

Figure 2: The errors of estimated knee angles without IMU
movement (𝑛𝑜) and after an IMUmovement (𝑚𝑜𝑣𝑒).∗ denotes
the significant difference of themetric compared with other
metrics (ANOVA, p < 0.050).

Based on the performance, we could conclude that the IMUmove-
mentmay induce a dramatic error increase. Thismight further affect
the consequent usages of JAE, since estimated joint angles might
contribute to controlling robots or helping to make some clinical
decisions. Thus, the detection of IMU movements shall be timely.
Furthermore, considering JAE is often performed in edge nodes,
the detection algorithm should be computationally lightweight.

3.2 Terminology Definition
In the following, we describe the coordinate systems and the termi-
nologies we use in our study. As shown in Tab. 1 , we define the
following terminologies and signs to denote the terms we use. As
shown in Fig. 3, we use the following coordinate systems.
• The global coordinate frame [𝑔]: The internal frame whose
axes correspond to the gravity and the magnetic field.
• The body coordinate frame [𝑏𝑖 ]: The coordinate frame fixed
on body segment. The axes and the rotations between adja-
cent frames are determined by anatomy [27].
• The IMU coordinate frame [𝑠𝑖 ]: The coordinate frame fixed
on an IMU.The IMU measurements are described in the co-
ordinate frame.

4 THE 3-DOF SIMULATION MODEL FOR IMU
MOVEMENTS

In this section, we describe the simulation model that synthesizes
IMU measurements of two adjacent body segments linked by a
3-DoF joint. Also, the IMU movement model is included. As stated
above, the simulation model leverages the biomechanical principles
of joints and the kinematics measured by optical motion capture
system, so as to well incorporate the characteristics of human body
motions. In this section, without the loss of generality, we assume

Figure 3: The schematic diagram of coordinate systems and
vectors.

1) two IMUs are placed on the thigh and the shank, respectively, in
order to estimate knee angles; 2) the IMU on the thigh is moved.

4.1 Data Preparation
As stated above, in order to incorporate the characteristics of body
motions, we choose to synthesize IMU measurements on the basis
of real-user data. We use the optical motion capture system (Mo-
Cap) to collect the real-user data, i.e. the three-dimensional angles,
orientations and positions of body segments and joints with respect
to the global coordinate frame. The details of the system and the
experiments are stated in section 5.

4.2 The Simulation Model
As stated in section 2, we use the data from optical motion capture
system to synthesize the IMU measurements mainly based on the
IMUSim [33]. In our study, we set hip as the base of forward kine-
matics and use IMUSim to derive the orientations and positions
of each limb and joint. We just focus on the measurements of ac-
celerometer and gyroscope. Moreover, we amend some details to
the algorithm of IMUSim in order to adapt it to our paradigm.
• We synthesize arbitrary orientations between body coordi-
nate frames and the global coordinate frame in each sim-
ulation run. As shown in line 2 of Algorithm 1, IMUSim
leverages the orientation between the body coordinate frame
on the hip and the global coordinate frame of the MoCap
system. This might limit variety of the synthesized data.
• We synthesize arbitrary orientations between body-fixed
coordinate frames and IMU coordinate frames in each simu-
lation run. As shown in line 6 of the algorithm, IMUSim lever-
ages the orientation built by the single standing calibration
procedure, which may just provide one kind of IMU-to-body
alignment. This might also limit variety of the generated
data.
• We synthesize the data under IMU movements.

As shown in Algorithm 2, we develop a simulation model for 3-
DoF lower-limb joints based on IMUSim [33]. The IMUs are assumed
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Table 1: The Terminologies

Terminologies Meanings
𝒙 A vector
𝒙 A vector after an IMU movement
𝚫𝒙 𝒙 - 𝒙
𝒙[𝒇 ] The vector 𝒙 described in the coordinate frame [𝑓 ]

(𝒙)𝑤𝑖𝑛𝑑𝑜𝑤 The vector 𝒙 in a sliding window
R A rotation matrix

R[𝑓 1][𝑓 2] The rotation matrix denoting the rotation from the coordinate frame [𝑓 1] to the coordinate frame [𝑓 2]
R𝐽𝑘 (𝑡) The rotation matrix denoting the rotation of the joint 𝐽𝑘 at time t
𝒂𝒊 (𝑡) The measured acceleration of the 𝑖th body segment at time t, 𝑖 = 𝑇, 𝑆, 𝑑𝑒𝑛𝑜𝑡𝑖𝑛𝑔𝑡ℎ𝑖𝑔ℎ𝑎𝑛𝑑𝑠ℎ𝑎𝑛𝑘

𝝎𝒊 (𝑡) The measured angular rate of the 𝑖th body segment at time t
𝒈(𝑡) The measured gravity acceleration at time t
𝒋𝑱𝒌 The real value of the joint axis 𝑗 of the 𝑘th joint 𝐽𝑘
𝒋𝑱𝒌 The estimate of the joint axis 𝑗 of the 𝑘th joint 𝐽𝑘

𝜃 𝐽𝑘 (𝑡) The joint angle of the 𝑘th joint 𝐽𝑘 at the time instance
[𝑠𝑖 ] The IMU coordinate frame mounted on the 𝑖th body segment
[𝑔] The global coordinate frame
[𝑏𝑖 ] The body coordinate frame of the the 𝑖th body segment

𝒓[𝒔𝒊],𝑱𝒌 The vector from the origin of the IMU coordinate system to the rotation center of joint 𝐽𝑘

Algorithm 1 The Algorithm of IMUSim [33]
Require: Input: data from MoCap , StartTime, EndTime
1: Smoothing and interpolating the data from MoCap
2: 𝒂

[𝒈]
𝒊 (𝑡),𝝎

[𝒈]
𝒊 (𝑡), 𝒓

[𝒈]
[𝒔𝒊],𝑱𝒌

, R𝐽𝑘 (𝑡) ← Forward kinematics using
the data from MoCap from StartTime to EndTime

3: Adding effects of mechanical and electrical components of
sensors by subsystem modeling

4: Adding effects of wireless communication

to be rigidly attached to the segments. The simulation model can
be developed in the following steps.

1. For each simulation run (i.e. each 𝑆𝑖𝑚𝑁𝑢𝑚), as shown in line
2 and 3, we randomly synthesize the placements of IMUs. Partic-
ularly, we randomly synthesize a rotation matrix R[𝑏𝑇 ][𝑔] to denote
an arbitrary pose of the base of the forward kinematics, i.e. the hip.
Since the orientation between the body coordinate frame on the hip
and the global coordinate frame of the MoCap system is assumed
to hold in IMUSim. We synthesize various attitudes of body coordi-
nate frames by changing the orientation of the global frame (i.e. the
matrix R[𝑏𝑇 ][𝑔] ). The rotation matrix R[𝑠𝑖 ][𝑏𝑖 ] is also randomly synthe-
sized to denote arbitrary orientations between a body coordinate
frame and the IMU coordinate frame placed on the body segment.
As shown in Algorithm 3, three unit vectors that are perpendicular
to each other are randomly synthesized to construct the rotational
matrix, 𝑅 [𝑓 2][𝑓 1] . The three vectors are to denote the three coordinate
axes of [𝑓 1] coordinate frame described in [𝑓 2] coordinate frame
[8].

Then, we randomly synthesize vectors 𝒓 [𝒈]
[𝒔𝑻 ],𝑱𝒌

and 𝒓
[𝒈]
[𝒔𝑺 ],𝑱𝒌

to
denote the vectors from the origin of IMU coordinate frames to the

origin of body coordinate frames. These vectors are to represent
the translational placements of IMUs.

As shown in line 7 and 11 of Algorithm 2, our synthesized rota-
tions are applied on the forward kinematics and synthesized IMU
measurements. As shown in Eq. (1) and (2), we raise thigh and hip
as the example, and the accelerations and angular rates are obtained
by multiplying the rotation matrices with the synthesized vectors.

𝒂[𝒔𝑻 ]𝑻 = R[𝑠𝑇 ][𝑏𝑇 ] · R
[𝑏𝑇 ]
[𝑔] · (𝒂

[𝒈]
𝒉𝒊𝒑
+ Rℎ𝑖𝑝 · 𝒂

[𝒈]
𝑻,𝒎𝒐𝒕 𝒊𝒐𝒏) + 𝜹𝒂 (1)

𝒂
[𝒈]
𝑻,𝒎𝒐𝒕 𝒊𝒐𝒏 = ¤𝝎

[𝒈]
𝑻 × 𝒓 [𝒈]

[𝒔𝑻 ],𝒉𝒊𝒑
+ (𝒓 [𝒈]

[𝒔𝑻 ],𝒉𝒊𝒑
· 𝝎[𝒈]

𝑻 ) · 𝒓
[𝒈]
[𝒔𝑻 ],𝒉𝒊𝒑

𝝎[𝒔𝑻 ]
𝑻 = R[𝑠𝑇 ][𝑏𝑇 ] · R

[𝑏𝑇 ]
[𝑔] · 𝝎

[𝒈]
𝑻 + 𝜹𝝎 (2)

2. We synthesize the IMU movements’ effects on IMU measure-
ments. We consider two consecutive windows. The first window
contains the IMU measurements before the IMU movement, while
the second one contains the IMUmeasurements after the IMUmove-
ment. In each simulation run, we first randomly generate an initial
time instant 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 denoting the start time of the first window. As
shown in lines 15 of Algorithm 2, we then use the IMU measure-
ments in the first window to estimate the joint axes (𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
)𝑤𝑖𝑛𝑑𝑜𝑤1

and (𝒋[𝒔𝑺]
𝒌𝒏𝒆𝒆
)𝑤𝑖𝑛𝑑𝑜𝑤1. For the second window, IMU movements are

synthesized and denoted by the rotation R[𝑠𝑇
′ ]

[𝑠𝑇 ] and a translation
𝒓𝒎𝒐𝒗𝒆 . As shown in Algorithm 4, the movement-caused rotation
is denoted by three Euler angles, i.e. the three elements of 𝚽. The
movement-caused translation is randomly synthesized to denote
the translation of the origin of the IMU coordinate frame, which will
induce the change of the body motion-caused linear accelerations.
The detailed caculation is presented in Algorithm 5.

As shown in line 2 and 4 of Algorithm 5, the IMU movement-
caused translation induces a change of the body-motion-caused
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Algorithm 2 Our Amended Algorithm For Simulation
Require: data from MoCap , window, interval, StartTime, End-

Time
1: for Φ𝑚𝑎𝑔 = 0→ 𝜋 do
2: for 𝑆𝑖𝑚𝑁𝑢𝑚 = 0→ 1000 do
3: R[𝑏𝑇 ][𝑔] , R[𝑠𝑖 ][𝑏𝑖 ] ← Generate RanRot

4: 𝒓
[𝒈]
[𝒔𝑻 ],𝒌𝒏𝒆𝒆

, 𝒓 [𝒈]
[𝒔𝑺],𝒌𝒏𝒆𝒆

← A unit vector ∗ length ∈
(0, 0.3)

5: for 𝑡 = 𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 → 𝐸𝑛𝑑𝑇𝑖𝑚𝑒 do
6: Smoothing and interpolating the data from MoCap
7: Forward kinematics using the data fromMoCap and

𝒓
[𝒈]
[𝒔𝑻 ],𝒌𝒏𝒆𝒆

, 𝒓 [𝒈]
[𝒔𝑺],𝒌𝒏𝒆𝒆

, R[𝑏𝑇 ][𝑔]
8: Adding effects of mechanical and electrical compo-

nents of sensors by subsystem modeling
9: Adding effects of wireless communication
10: Transforming signals into IMU coordinate frames

using 𝑅 [𝑠𝑖 ][𝑏𝑖 ]
11: end for
12: 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∈ [0, EndTime-window-interval]
13: R[𝑠𝑇

′ ]
[𝑠𝑇 ] , 𝒓𝒎𝒐𝒗𝒆 ← Generate Movements

14: (𝝎[𝒔𝒊]
𝒊 )𝑤𝑖𝑛𝑑𝑜𝑤1 =𝝎

[𝒔𝒊]
𝒊 (:,𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 → 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 +𝑤𝑖𝑛𝑑𝑜𝑤),

(𝒂 [𝑠𝑖 ]𝒊 )𝑤𝑖𝑛𝑑𝑜𝑤1 = 𝒂[𝒔𝒊]𝒊 (:,𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 → 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 +𝑤𝑖𝑛𝑑𝑜𝑤)
15: (𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
)𝑤𝑖𝑛𝑑𝑜𝑤1,(𝒋

[𝒔𝑺 ]
𝒌𝒏𝒆𝒆
)𝑤𝑖𝑛𝑑𝑜𝑤1 ← Estimate Join-

tAxis
16: (𝝎̂[𝒔𝒊]

𝒊 )𝑤𝑖𝑛𝑑𝑜𝑤2, (𝒂
[𝒔𝒊]
𝒊 )𝑤𝑖𝑛𝑑𝑜𝑤2 ← Generate Move-

mentEffect
17: (𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
)𝑤𝑖𝑛𝑑𝑜𝑤2,(𝒋

[𝒔𝑺]
𝒌𝒏𝒆𝒆
)𝑤𝑖𝑛𝑑𝑜𝑤2 ← Estimate Join-

tAxis
18: Calculating metrics
19: end for
20: end for

Algorithm 3 Generate RanRot
1: 𝒙 ,𝒚← random unit vectors
2: 𝒛 = 𝒙 ×𝒚
3: 𝒚 = 𝒛 × 𝒙
4: 𝑅

[𝑓 2]
[𝑓 1] = [𝒙 ,𝒚,𝒛]

Algorithm 4 Generate Movements
Require: Φ𝑚𝑎𝑔

1: 𝚽← Φ𝑚𝑎𝑔 ∗ a random unit three-element vector
2: R[𝑠𝑇

′ ]
[𝑠𝑇 ] ← generate a XYZ rotation according to 𝚽

3: 𝒓𝒎𝒐𝒗𝒆← a random unit three-element vector ∗ 𝛼 , 𝛼 ∈ (0, 0.15)

acceleration. The IMU movement-caused rotation induces the mea-
surements of both angular rates and linear accelerations. Finally, we
use the synthesized measurements (𝝎̂[𝒔′𝑻 ]

𝑻 )𝑤𝑖𝑛𝑑𝑜𝑤2,(𝒂
[𝒔′𝑺 ]
𝑺 )𝑤𝑖𝑛𝑑𝑜𝑤2

to estimate the joint axes (𝒋[𝒔𝑻 ]
𝒌𝒏𝒆𝒆
)𝑤𝑖𝑛𝑑𝑜𝑤2,(𝒋

[𝒔𝑺 ]
𝒌𝒏𝒆𝒆
)𝑤𝑖𝑛𝑑𝑜𝑤2, using

the method presented in [29].

Algorithm 5 Generate MovementEffect

Require: R
[𝑠′
𝑇
]

[𝑠𝑇 ] , 𝒓𝒎𝒐𝒗𝒆 , 𝝎[𝒔𝑻
𝑻 , 𝒂[𝒔𝑻 ]𝑻 , window, interval, 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙

1: for 𝑡 = (𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) → (𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 +𝑤𝑖𝑛𝑑𝑜𝑤)
do

2: (𝝎̂[𝒔′𝑻 ]

𝑻 )𝑤𝑖𝑛𝑑𝑜𝑤2 (:, 𝑡) = R
[𝑠′
𝑇
]

[𝑠𝑇 ] · (𝝎
[𝒔𝑻 ]
𝑻 )𝑤𝑖𝑛𝑑𝑜𝑤2 (:, 𝑡)

3: (𝝎̂[𝒔𝑺 ]
𝑺 )𝑤𝑖𝑛𝑑𝑜𝑤2 (:, 𝑡) = (𝝎

[𝒔𝑺 ]
𝑺 )𝑤𝑖𝑛𝑑𝑜𝑤2 (:, 𝑡)

4: Calculating 𝒂
[𝒔′𝑻 ]

𝑻 by multiplying R
[𝑠′
𝑇
]

[𝑠𝑇 ] and adding 𝒓𝒎𝒐𝒗𝒆

with 𝒓
[𝒈]
[𝒔𝑻 ],𝒉𝒊𝒑

in Eq. 1

5: (𝒂[𝒔𝑺 ]𝑺 )𝑤𝑖𝑛𝑑𝑜𝑤2 (:, 𝑡) = (𝒂
[𝒔𝑺 ]
𝑺 )𝑤𝑖𝑛𝑑𝑜𝑤2 (:, 𝑡)

6: end for

3. We calculate and store the metrics in each simulation run. The
metrics are calculated by the equations in section 5.2. Moreover, we
also calculate the change of the estimated coordinates of joint axes
( 𝚫𝒋[𝒔𝒊]

𝒌𝒏𝒆𝒆
) and the error of estimating the joint axes (𝒆𝒓𝒓𝒐𝒓𝒋[𝒔𝒊]

𝒌𝒏𝒆𝒆
).

𝒆𝒓𝒓𝒐𝒓𝒋[𝒔𝒊]
𝒌𝒏𝒆𝒆

is given by:

𝒆𝒓𝒓𝒐𝒓𝒋[𝒔𝒊]
𝒌𝒏𝒆𝒆

= 𝒋[𝒔𝒊]
𝒌𝒏𝒆𝒆

− 𝒋[𝒔𝒊]
𝒌𝒏𝒆𝒆

(3)

5 THE MATHEMATICAL FORMULATION
AND THE METRIC DESIGN

In this section, we formulate the effects of IMUmovements, i.e. how
IMU movements affect IMU measurements. With this mathematical
formulation, we design the metrics that can be used to detect IMU
movements and determine the optimal threshold for the metrics
through a greedy algorithm.

5.1 Mathematical Formulation
In order to instruct the design of the metrics and the detection al-
gorithm, we mathematically formulate the IMU movements’ effects
on the IMU measurement. Essentially, the IMU movement relates
to the change of the IMU-to-body alignment. That is, the IMU co-
ordinate frame rotates with respect to the body coordinate frame.
The coordinates of the joint axis described in the IMU coordinate
frame change. We can simply claim that coordinates’ change of
the joint axis represent the effects of the IMU movement. Thus, we
formulate the changes of IMU measurements and the coordinates
of the joint axis if an IMU moves.

For lower-limb joints, there is always a main axis around which
the joint rotates the most time during gait cycles. This rationalizes
the assumption that lower-limb joints can be approximated as hinge
joints [7, 24, 29]. Following this commonly adopted assumption, Eq.
(4) holds for the angular rates and the joint axis.

𝐹1 = 1/2·
∑︁
𝑡

(∥𝝎[𝒔𝑻 ]
𝑻 (𝑡)×𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
∥22−∥𝝎

[𝒔𝑺 ]
𝑺 (𝑡)×𝒋[𝒔𝑺 ]

𝒌𝒏𝒆𝒆
∥22) = 0 (4)

If the IMU mounted on the thigh is moved, both the measure-
ments of the IMU and the joint axis’ coordinates described in the
IMU coordinate frame will change. That is, the coordiantes of 𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆

and 𝝎[𝒔𝑻 ]
𝑻 will change. If Eq. (4) holds, the consequent change of 𝐹1,

denoted by Δ𝐹1𝒋[𝒔𝑻 ] , will be counteracted by 𝐹1’s change caused
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by the change of 𝝎[𝒔𝑻 ]
𝑻 (Δ𝐹1𝝎𝑻 ). That is,

Δ𝐹1𝒋[𝒔𝑻 ] + Δ𝐹1𝝎𝑻 = 0 (5)

Following the Taylor series expansion, Δ𝐹1𝝎𝑻 and Δ𝐹1𝒋[𝒔𝑻 ] can
be approximately expressed as:

Δ𝐹1𝝎𝑻 ≈
∑︁
𝑡

𝜕𝐹1

𝜕𝝎[𝒔𝑻 ]
𝑻 (𝑡)

· 𝚫𝝎[𝒔𝑻 ]
𝑻 (𝑡)

= −
∑︁
𝑡

(𝝎[𝒔𝑻 ]
𝑻 (𝑡))𝑇 · 𝑠𝑖𝑛(∠𝜔,𝑗 ) · 𝚫𝝎[𝒔𝑻 ]

𝑻 (𝑡)

Δ𝐹1𝒋[𝒔𝑻 ] ≈
∑︁
𝑡

𝜕𝐹1

𝜕𝒋[𝒔𝑻 ]
𝒌𝒏𝒆𝒆

· 𝚫𝒋[𝒔𝑻 ]
𝒌𝒏𝒆𝒆

=
∑︁
𝑡

∥𝝎[𝒔𝑻 ]
𝑻 (𝑡)∥22 · 𝑠𝑖𝑛(∠𝜔,𝑗 ) · (𝒋

[𝒔𝑻 ]
𝒌𝒏𝒆𝒆
)𝑇 · 𝚫𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆

where ∠𝜔,𝑗 =< 𝝎[𝒔𝑻 ]
𝑻 (𝑡), 𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
>, denoting the angle between

𝝎[𝒔𝑻 ]
𝑻 (𝑡) and 𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
>, 𝚫𝝎[𝒔𝑻 ]

𝑻 (𝑡) and 𝚫𝒋[𝒔𝑻 ]
𝒌𝒏𝒆𝒆

denote the differ-
ences of angular rates and joint axis’ coordinates caused by the
IMU movement, respectively. Substituting Δ𝐹1𝝎𝑻 and Δ𝐹1𝒋[𝒔𝑻 ] in
to Eq.(5), we can obtain∑︁

𝑡

(𝝎[𝒔𝑻 ]
𝑻 (𝑡))𝑇 ·𝚫𝝎[𝒔𝑻 ]

𝑻 (𝑡)

−
∑︁
𝑡

∥𝝎[𝒔𝑻 ]
𝑻 (𝑡)∥22 · (𝒋

[𝒔𝑻 ]
𝒌𝒏𝒆𝒆
)𝑇 · 𝚫𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
= 0 (6)

We imagine the condition when the moved IMU moves back to
its original orientation under the same body motion. The changes
of the angular rates and the coordinates of the joint axis, denoted
by 𝚫𝝎̂[𝒔𝑻 ]

𝑻 (𝑡) and 𝚫𝒋
[𝒔′𝑻 ]

𝒌𝒏𝒆𝒆
, can be expressed as

𝚫𝝎̂[𝒔𝑻 ]
𝑻 (𝑡) = 𝝎[𝒔𝑻 ]

𝑻 (𝑡) − 𝝎̂[𝒔𝑻 ]
𝑻 (𝑡) = −𝚫𝝎[𝒔𝑻 ]

𝑻 (𝑡)

𝚫𝒋
[𝒔′𝑻 ]

𝒌𝒏𝒆𝒆
= 𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
− 𝒋[𝒔

′
𝑻 ]

𝒌𝒏𝒆𝒆
= −𝚫𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
(7)

Then, we go through again and do the same thing for 𝚫𝝎̂[𝒔𝑻 ]
𝑻 (𝑡)

and 𝚫𝒋
[𝒔′𝑻 ]

𝒌𝒏𝒆𝒆
. We can obtain

−
∑︁
𝑡

(𝝎̂[𝒔𝑻 ]
𝑻 (𝑡))𝑇 ·𝚫𝝎̂[𝒔𝑻 ]

𝑻 (𝑡)

+
∑︁
𝑡

∥𝝎̂[𝒔𝑻 ]
𝑻 (𝑡)∥22 · (𝒋

[𝒔𝑻 ]
𝒌𝒏𝒆𝒆
)𝑇 · 𝚫𝒋[𝒔

′
𝑻 ]

𝒌𝒏𝒆𝒆
= 0

(8)

Because 𝚫𝝎[𝒔𝑻 ]
𝑻 (𝑡) and 𝚫𝝎̂[𝒔𝑻 ]

𝑻 (𝑡) have the same magnitude, we
can get the following equation by summing Eq. (6) and Eq.(8).

−
∑︁
𝑡

∥𝚫𝝎[𝒔𝑻 ]
𝑻 (𝑡)∥22 +

∑︁
𝑡

∥𝝎[𝒔𝑻 ]
𝑻 (𝑡)∥22 · ∥𝚫𝒋

[𝒔𝑻 ]
𝒌𝒏𝒆𝒆

∥22 = 0 (9)

Thus, the magnitude of the IMU movement-caused change of
joint axis’ coordinates, i.e. the magnitude of 𝚫𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
, can be calcu-

lated by

∥𝚫𝒋[𝒔𝑻 ]
𝒌𝒏𝒆𝒆

∥22 =

∑
𝑡 ∥𝚫𝝎

[𝒔𝑻 ]
𝑻 (𝑡)∥22∑

𝑡 ∥𝝎
[𝒔𝑻 ]
𝑻 (𝑡)∥22

(10)

Eq.(10) suggests that the magnitude of IMU movement-caused
changes relates to the changes of angular rates. That is, under the

assumption we adopt, we obtain the magnitude of IMU movements’
effects analytically.

We consider the linear accelerations. Under the hinge-joint as-
sumption, we can get the following equation [7].

𝐹2 = ((𝒂[𝒔𝑻 ]𝑻 )𝑇 · 𝒋[𝒔𝑻 ]
𝒌𝒏𝒆𝒆
)2 − ((𝒂[𝒔𝑺 ]𝑻 )𝑇 · 𝒋[𝒔𝑺 ]

𝒌𝒏𝒆𝒆
)2 = 0 (11)

Similarly, if the IMU mounted on the thigh is moved, the joint
axis-caused change of 𝐹2 ( Δ𝐹2𝒋[𝒔𝑻 ] ) will be counteracted by the
acceleration-caused change of 𝐹2 (Δ𝐹1𝒂𝑻 ). And Eq. (12) holds.

Δ𝐹2𝒋[𝒔𝑻 ] + Δ𝐹2𝒂𝑻 = 0 (12)

Then, the Taylor series expansion can be used to approximate
Δ𝐹2𝒋[𝒔𝑻 ] and Δ𝐹1𝒂𝑻 .

Δ𝐹1𝒂𝑻 ≈ 2 ·∑𝑡 (𝒂
[𝒔𝑻 ]
𝑻 (𝑡))𝑇 · 𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
) · (𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
)𝑇 · 𝚫𝒂[𝒔𝑻 ]𝑻 (𝑡)

Δ𝐹2𝒋[𝒔𝑻 ] ≈ 2 ·∑𝑡 (𝒂
[𝒔𝑻 ]
𝑻 (𝑡))𝑇 · 𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
) · (𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
)𝑇 · 𝚫𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
Then, we get∑︁

𝑡

(𝒂[𝒔𝑻 ]𝑻 (𝑡))𝑇 · 𝒋[𝒔𝑻 ]
𝒌𝒏𝒆𝒆
) · (𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
)𝑇 · 𝚫𝒂[𝒔𝑻 ]𝑻 (𝑡)

+
∑︁
𝑡

(𝒂[𝒔𝑻 ]𝑻 (𝑡))𝑇 · 𝒋[𝒔𝑻 ]
𝒌𝒏𝒆𝒆
) · (𝒂[𝒔𝑻 ]𝑻 (𝑡))𝑇 · 𝚫𝒋[𝒔𝑺 ]

𝒌𝒏𝒆𝒆
= 0 (13)

With the same operation, the relationship between 𝚫𝒂[𝒔𝑻 ]𝑻 (𝑡)

and 𝚫𝒋
[𝒔′𝑻 ]

𝒌𝒏𝒆𝒆
can be obtained and summed with Eq. (13), given by∑︁

𝑡

(𝚫𝒋[𝒔𝑻 ]
𝒌𝒏𝒆𝒆
)𝑇 · 𝚫𝒂[𝒔𝑻 ]𝑻 (𝑡) = 0 (14)

Eq. (14) suggests that the direction of the IMU movement-caused
changes relates to the changes of linear accelerations. That is, under
the assumption we adopt, we obtain the direction of IMU move-
ments’ effects analytically.

5.2 Metric Design
In the following, we consider how to design the metrics using
the mathematical formulation. First, there are some limitations of
the mathematical formulation that might influence the detection
performance.

• Slidingwindow: All the differences, i.e.𝚫𝒋[𝒔𝑻 ]
𝒌𝒏𝒆𝒆

,𝚫𝝎[𝒔𝑻 ]
𝑻 ,𝚫𝒂[𝒔𝑻 ]𝑻 ,

are calculated in the same sliding window. In the detection
algorithm, we shall calculate such differences between dif-
ference sliding windows.
• 1-DoF assumption: In the mathematical formulation, we take
the hinge-joint assumption. For real lower-limb joints, there
are rotations around other axes.

Considering the limitations, we transform Eq.(10) into the following
metrics to accommodate the condition of different sliding windows.

Metric1:

𝑚𝑒𝑎𝑛((
∑
𝑡 ∥𝚫𝝎

[𝒔𝑻 ]
𝑻 (𝑡)∥22∑

𝑡 ∥𝝎
[𝒔𝑻 ]
𝑻 (𝑡)∥22

)𝑤𝑖𝑛𝑑𝑜𝑤1, (
∑
𝑡 ∥𝚫𝝎

[𝒔𝑻 ]
𝑻 (𝑡)∥22∑

𝑡 ∥𝝎
[𝒔𝑻 ]
𝑻 (𝑡)∥22

)𝑤𝑖𝑛𝑑𝑜𝑤2)

Metric2:
∑

𝑡 ∥𝚫𝝎
[𝒔𝑻 ]

𝑻 (𝑡 ) ∥22
(∑𝑡 ∥𝝎

[𝒔𝑻 ]

𝑻 (𝑡 ) ∥2)𝑤𝑖𝑛𝑑𝑜𝑤1 · (
∑

𝑡 ∥𝝎
[𝒔𝑻 ]

𝑻 (𝑡 ) ∥2)𝑤𝑖𝑛𝑑𝑜𝑤2

Similarly, we transform Eq.(14)into the following metrics.
Metric3: ∥𝑚𝑒𝑎𝑛(∑𝑡 𝚫𝒂

[𝒔𝑻 ]
𝑻 (𝑡))∥
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Metric4: ∥𝑚𝑒𝑎𝑛(∑𝑡

𝚫𝒂
[𝒔𝑻 ]

𝑻 (𝑡 )
∥𝚫𝒂[𝒔𝑻 ]

𝑻 (𝑡 ) ∥
)∥

Metric5:

∥𝑚𝑒𝑎𝑛(
∑︁
𝑡

(
(𝒂[𝒔𝑻 ]𝑻 (𝑡))𝑤𝑖𝑛𝑑𝑜𝑤1

∥(𝒂[𝒔𝑻 ]𝑻 (𝑡))𝑤𝑖𝑛𝑑𝑜𝑤1∥
−
(𝒂[𝒔𝑻 ]𝑻 (𝑡))𝑤𝑖𝑛𝑑𝑜𝑤2

∥(𝒂[𝒔𝑻 ]𝑻 (𝑡))𝑤𝑖𝑛𝑑𝑜𝑤2∥
))∥

The magnitudes of 𝚫𝒂[𝒔𝑻 ]𝑻 (𝑡) or the accelerations in different
windows are divided, since the difference of accelerations only
relates to the direction of IMU movements.

Moreover, the difference of the estimates of the joint axes is
calculated as another metric, for a comparison purpose. The differ-
ence of the estimated joint axes, 𝚫𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
, is calculated as Metric6:

∥(𝒋[𝒔𝑻 ]
𝒌𝒏𝒆𝒆
)𝑤𝑖𝑛𝑑𝑜𝑤2 − (𝒋

[𝒔𝑻 ]
𝒌𝒏𝒆𝒆
)𝑤𝑖𝑛𝑑𝑜𝑤1∥

5.3 The Optimal Threshold For Each Metric
In the following, we determine the thresholds for the metrics we
design above. An ideal threshold is expected to 1) exclude the
variations of normal measurements such that misdetection can
be avoided, 2) include the abnormal measurements caused by the
IMU movement such that a minimum IMU movement can be de-
tected. With this in mind, we propose to use a greedy algorithm to
search the optimal threshold for every metric we design and aim to
check to what extent each metric can fulfil the expectations of an
ideal threshold.

Algorithm 6 A Greedy Method For finding the optimal threshold
Require: Metric𝑖 with Φ𝑚𝑎𝑔 = 0→ 𝜋

1: Initialize 𝛼 = max(𝑀𝑒𝑡𝑟𝑖𝑐𝑖 (Φ𝑚𝑎𝑔 = 0)), 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑛𝑜𝑟𝑚𝑎𝑙 =

0.9, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑚𝑜𝑣𝑖𝑛𝑔 = 0.95, 𝑘 = 0
2: Calculating 𝑟𝑛𝑜𝑟𝑚𝑎𝑙 = 𝑁𝑢𝑚𝑏𝑒𝑟 (𝑀𝑒𝑡𝑟𝑖𝑐𝑖 (Φ𝑚𝑎𝑔 = 0) <=

𝛼)/𝑁𝑢𝑚𝑏𝑒𝑟 (𝑀𝑒𝑡𝑟𝑖𝑐𝑖 (Φ𝑚𝑎𝑔 = 0))
3: if then𝑟𝑛𝑜𝑟𝑚𝑎𝑙 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑛𝑜𝑟𝑚𝑎𝑙

4: Break the loop, go to line 7
5: end if
6: for doΦ ∈ { Φ | Φ𝑚𝑎𝑔 ≠ 0}
7: k ++
8: 𝑟𝑚𝑜𝑣𝑖𝑛𝑔 (𝑘) = 𝑁𝑢𝑚𝑏𝑒𝑟 ((𝑀𝑒𝑡𝑟𝑖𝑐𝑖 (Φ) ≥

𝛼)/𝑁𝑢𝑚𝑏𝑒𝑟 (𝑚𝑒𝑡𝑟𝑖𝑐𝑠 (Φ))
9: end for
10: 𝛼 = 𝛼 − 5𝑒 − 3, go to line 2
11: Output min𝑘 (𝑟𝑚𝑜𝑣𝑖𝑛𝑔 (𝑘) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑚𝑜𝑣𝑖𝑛𝑔), 𝛼 + 5𝑒 − 3

As shown in Algorithm 6, we calculate the optimal threshold of
each metric by detecting IMU movements with a minimum possi-
bility of 0.95 and maintaining a maximum misdetection possibility
of 0.9. We set 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑛𝑜𝑟𝑚𝑎𝑙 as the maximum misdetection pos-
sibility and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑚𝑜𝑣𝑖𝑛𝑔 as the minimum detection possibility.
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑛𝑜𝑟𝑚𝑎𝑙 is set to be smaller than 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑚𝑜𝑣𝑖𝑛𝑔 , because
the cost of misdetection is just to restart a new buffer and to esti-
mate the joint axes, which is smaller than the cost of not detecting
an IMU movement.

6 EXPERIMENTS AND RESULTS
The experiments are designed with the following aims: 1) demon-
strating the simulation model of IMU movements, 2) evaluating

the mathematical formulation presented in section 5.1, and 3) eval-
uating the designed metrics,4) evaluating the correction method
for IMU movements. Since the magnitudes and orientations of
IMU movements are hard to control in real-user experiments, we
combine the simulation and the real-user experiments for the eval-
uations. For the hyper-parameters of our algorithm, we set𝑤𝑖𝑛𝑑𝑜𝑤
as 2000s following the experience of our previous study, and set
the lengths of the 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 between windows as 3000s and 5000s
for a comparison purpose. The software we use to process data is
MATLAB B 2015.

6.1 Data Collection
Ten healthy subjects (7 males and 3 females, age range: 20-30 years,
height range: 155-184cm, weight range: 50kg-90kg) were asked to
walk with self-selected speeds to walk on the level ground. The
experiment on each locomotion mode was repeated 3 times, each
lasting about 2-3 min. The order of the task modes was randomly
assigned. Rest periods were allowed between trials to avoid fatigue.
In this experiment, we focused on the IMUmovements on thigh and
shank. As shown in Fig. 4, two sets of IMUs (TrignoWireless system;
DELSYS, Boston, MA, USA, 148.148Hz) were attached to subjects’
thigh and shank, each set consisting of six IMUs. As shown in Fig.,
No.1 - No.5 IMUs were attached closely, we used them to study the
minimum movement we can induce in real-user experiments. No.6
was attached to the composite side of No.1 IMU with random orien-
tations, in order to study the effect of a movement with a relatively
large magnitude. Sixteen retro-reflective markers were attached to
subjects’ pelvis and lower limbs following the principles of [16, 26].
Both No.1 and No.6 IMUs were attached three additional markers,
respectively, in order to obtain the positions and orientations of
both IMUs [32]. The 3-D locations of the markers were recorded
(100 Hz) using an 8-camera video system (Vicon, Oxford, UK). The
joint angles were calculated by the pose estimation and inverse
kinematics model embedded in the software Visual 3D. The signals
from nine-axis IMUs and the video system were synchronized by
the trigger and time stamps.

Figure 4: The schematic diagram of the experimental setup.

6.2 Evaluation
1.Demonstrating the simulationmodel: Following the method
in [33], we use the positions and orientations of No.1 and No.6
IMUs to calibrate the simulation model, respectively. In so doing,
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we can get simulated signals for both IMUs. We treat No.1 IMU as
the original IMU and treat No.6 IMU as the consequence of IMU
movement. That is, we assume No. 1 IMU is moved to the position
and orientation of No. 6 IMU at a random instant. Specifically,
for each subject, we first randomly generate a time instant 𝑡 as
the timing of an IMU movement. We use the measurements of
No1 IMU before 𝑡 and use the measurements of No.6 IMU after 𝑡 .
Then, we replace the relative position and orientation of both IMUs
obtained by the MoCap system into our simulation model. We can
simulate the IMU movement from No. 1 IMU to No.6 IMU. Finally,
we evaluate our simulation model by comparing the simulated
signals and the measurements of No.6 IMU.

Results: Similar to the evaluation of [33], we also present our
results in terms of 3-second curves and correlations. As shown in
Fig. 5, the correlations before IMU movements between simula-
tions and measurements are 0.9711 for acceleration and 0.9402 for
angular rate. The correlations after IMU movements between simu-
lations and measurements are 0.9692 for acceleration and 0.9521
for angular rate.

(a) Comparison of measured and simulated data without IMU movement.

(b) Comparison of measured and simulated data with an IMU movement.

Figure 5: Comparison ofmeasured and simulated data. Solid
lines in time series plots are simulated data, faded lines are
real IMU measurements.

2. Evaluating the mathematical formulation: We evaluate
our mathematical formulation of the metrics by 1) evaluating them
under our adopted assumptions and 2) evaluating their variations
using our full simulation model. Note that we evaluate the math-
ematical formulation by our simulation model. For the first pur-
pose, we simulate the 1-DoF condition and calculate the metrics
in the sliding windows at the same time duration. The only dif-
ference between the two sliding windows is the IMU movement,
i.e. one window containing original IMU signals and the other
containing moved IMU signals. And the interval of the two win-
dows is 0. Under our adopted assumptions, both windows con-
tain the simulated signals from the same time duration. We cal-
culate 𝑐𝑟𝑜𝑠𝑠 (𝒂, 𝒋) = (∑𝑡 (𝚫𝒋

[𝒔𝑻 ]
𝒌𝒏𝒆𝒆
)𝑇 · 𝚫𝒂[𝒔𝑻 ]𝑻 (𝑡)), and 𝑑𝑖 𝑓 𝑓 (𝝎, 𝒋) =

(∥𝚫𝒋[𝒔𝑻 ]
𝒌𝒏𝒆𝒆

∥22 −
∑

𝑡 ∥𝚫𝝎
[𝒔𝑻 ]

𝑻 (𝑡 ) ∥22∑
𝑡 ∥𝝎

[𝒔𝑻 ]

𝑻 (𝑡 ) ∥22
) in each pair of sliding windows.

Note that we use the real value of the difference of the joint axis be-
fore and after the IMU movement, i.e. 𝚫𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
rather than 𝚫𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
.

For the second purpose, we use our full simulation model to syn-
thesize data for real IMU movements. We evaluate the averages,
standard deviations (SDs) and histograms of our designed metrics
without IMU movement and under IMU movements with various
magnitudes. Then, we perform the repeated measures analysis of
variance (ANOVA) on the averages and SDs and plot the histograms.
In so doing, we can evaluate the statistical differences of the metrics
with and without IMU movement. For plotting the histograms, we
select the histograms of no IMU movement, IMU movement with
magnitudes of 1/200 ·𝜋 , 1/2·𝜋 and 𝜋 as examples.

Results: When evaluating for the first purpose, the averages
and standard deviations of 𝑐𝑟𝑜𝑠𝑠 (𝒂, 𝒋) and 𝑑𝑖 𝑓 𝑓 (𝝎, 𝒋) are 2.3𝑒 −
4 ± 0.2𝑒 − 4 and 1.2𝑒 − 10 ± 1𝑒 − 10, respectively. As shown in
Fig.6 (a), significant differences exist in all the metrics between
with and without IMU movement. And the all the metrics present
larger values. This would indicate that all the metrics could be used
to detect IMU movements. As shown in Fig. 6 (b), the histograms
of the metrics without IMU movement are difference from those
with IMU movements. Moreover, the differences of the histograms
increase when the magnitude of IMU movements increases. This
would indicate the feasibility of determining the optimal threshold.

3. Evaluating the designed metrics: The thresholds of the
metrics determined by Algorithm 6 using different 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙s are
presented in Tab. 2. Tab. 2 also presents the minimum magnitude
that a metric can detect using the synthetic data and Algorithm
6, denoted by𝑚𝑖𝑛𝑚𝑜𝑣𝑒 . We use the thresholds and the metrics to
detect the IMU movements in real-user data. As stated above, we
treat No. 1 IMU as the original IMU and treat the rest five IMUs as
the moved ones. We randomly generate ten 𝑡s for each subject, and
perform our detection algorithm on the data flow. Then we evaluate
the detection performance by the ratio of successful detections and
misdetections and the time delay of detections. We denote the ratio
of successful detections by 𝑅𝑑𝑒𝑡 , the ratio of misdetections by 𝑅𝑚𝑖𝑠 ,
the calculation time of each metric the time delay of detections as
Δ𝑡 , where 𝑅𝑑𝑒𝑡 and 𝑅𝑚𝑖𝑠 are given by:

𝑅𝑑𝑒𝑡 = number of windows when IMU movements are success-
fully detected / number of windows when an IMUmovement occurs

𝑅𝑚𝑖𝑠 = number of windows when misdetections occur / number
of windows of the whole data flow
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(a) The averages and standard devia-
tions of the metrics.∗ denotes the sig-
nificant difference between with and
without IMU movements (ANOVA, p <
0.050).

(b) The histogram of the metrics under dif-
ferent magnitudes of IMU movements.

Figure 6: The analysis on the metrics using the data synthe-
sized by our full simulation model.

Table 2: The Thresholds and Minimal Detected Movement

Metrics Thresholds 𝑚𝑖𝑛𝑚𝑜𝑣𝑒 (1/200 · 𝜋 )
3000 5000 3000 5000

Metric1 0.481 0.495 47 47
Metric2 2.94e-4 3.028e-4 48 50
Metric3 0.155 0.234 3 6
Metric4 0.531 0.822 3 6
Metric5 0.0188 0.0276 3 6
Metric6 0.556 0.570 134 143

Table 3: The Calculation Time

Metrics Calculation time (ms)
Metric1 2.42 ± 0.23
Metric2 2.56 ± 0.21
Metric3 2.94 ± 0.12
Metric4 2.15 ± 0.19
Metric5 2.66 ± 0.28
Metric6 4.87 ± 0.11

Moreover, the algorithm is performed on a desktop computer(Intel
i7. 3.4 GHz (Intel, Santa Clara, CA, US), 12 Gb RAM, windows 10),
and we get the calculation time for each metric from MATLAB.

Results: As shown in Fig. 7, all the metrics except for Metric6
present over 90% successful detection rates, and present significant
differencewithMetric6. Moreover, themisdetection rates ofMetric4
and Metric5 are significantly smaller than those of other metrics. It
can be seen in Tab. 3 that all the metrics except for Metric6 present
similar calculation time. The calculation time of Metric6 is larger.

4.Evaluating the correctionmethod:After detecting the IMU
movement, we restart a buffer to collect data and use the data to

Figure 7: The analysis of successful detection rates and mis-
detection rates. ∗ denotes the significant difference of the
metric compared with other metrics (ANOVA, p < 0.050).
In the bottom figure, Metric4 and Metric5 present signifi-
cant difference with other metrics, but without difference
between them.

estimate the coordinates of joint axes, thus re-align the IMU to the
body segment. We evaluate the angle estimation errors 𝑏𝑒 𝑓 𝑜𝑟𝑒 the
IMU movement and 𝑎𝑓 𝑡𝑒𝑟 developing the realignment.

Results: The errors of the estimates 𝑏𝑒 𝑓 𝑜𝑟𝑒 the IMU movement
and 𝑎𝑓 𝑡𝑒𝑟 developing the realignment averaged over subjects are
shown in Fig. 8. The ANOVA indicates that there is no significant
difference between 𝑏𝑒 𝑓 𝑜𝑟𝑒 and 𝑎𝑓 𝑡𝑒𝑟 , regardless of the estimates.
A demo is presented on the website1.

Figure 8: The errors of the estimated angles and joint axis’
coordinates 𝑏𝑒 𝑓 𝑜𝑟𝑒 the IMUmovement and 𝑎𝑓 𝑡𝑒𝑟 developing
the realignment.

7 DISCUSSION
In this study, we sought to propose an initial step toward online
detecting and correcting IMU movements during JAE, with light-
weight computations. We first propose a simulation model for IMU
movements and integrate it in IMUSim for synthesizing IMU mea-
surements from optical motion capture data. Then, we mathemati-
cally formulate how IMU movements affect the IMU measurements
and propose metrics accordingly. Based on the synthesized data,
we determine optimal thresholds for our proposed metrics. In the
evaluation, we demonstrate our simulation model for IMU move-
ments using a similar evaluating paradigm of IMUSim. In addition,
we evaluate our proposed metrics and thresholds by real-user data
1https://www.youtube.com/watch?v=PFbHtYrtYy8
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and evaluate the correction method, in terms of accuracy and cal-
culation time. The results show that Metric5 and Metric4 have
better detecting accuracy, lesser misdetection rate can relatively
lower calculation time. Moreover, the correction method presents
a considerable accuracy of restoring JAE online. These findings
indicate that our proposed method is a promising solution to online
detecting and correcting IMU movements during JAE.

The simulation model for IMU movements present a similar
accuracy when evaluated in a similar manner as IMUSim. As shown
in Fig. 5, the correlations are similar to those presented in [33], when
the simulations are evaluated against the IMU movements induced
in real-user experiment. This indicate that our simulation model
could synthesize IMU measurements under IMU movements with
enough validity.

Our designed metrics present different performance on real-user
data when using them and the optimal thresholds to detect IMU
movements. Metric1, Metric2,Metric3,Metric4 and Metric5 present
similar successful detection rates and calculation time. But the
misdetection rates of Metric4 and Metric5 are significantly lower
than those of Metric1, Metric2 and Metric3. This seems to meet the
phenomena of the minimal detected movement presented in Tab.2,
which are determined by synthetic data. This could also indicate
Metric4 and Metric5 might be a better selections to detect IMU
movements.

Surprisingly, Metric6, i.e. 𝚫𝒋[𝒔𝑻 ]𝒌𝒏𝒆𝒆
does not present satisfying

results, which might violate our intuitions. This can be attributed
to the estimation error of the joint axes’ coordinates. The estima-
tion errors of 𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
and 𝒋[𝒔𝑺 ]

𝒌𝒏𝒆𝒆
are similar to the errors reported in

[2012 Seel]. The errors make the differences of joint axes’ coordi-
nates between sliding windows present a considerable variation,
thus might contribute to the lower detection rate. Moreover, the
calculation time of calculating 𝚫𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
is larger than that of cal-

culating other metrics, since optimizations have to be performed.
This makes 𝚫𝒋[𝒔𝑻 ]

𝒌𝒏𝒆𝒆
a less attractive metric.

The correction method that restarts a buffer and estimates joint
axes present considerable accuracy. The accuracy shown in Fig.
shows that re-estimating joint axes would not significantly harm
the accuracy of JAE. This makes the correction method a promising
solution.

8 CONCLUSION AND FUTUREWORK
In this work, we reveal the issue of IMU movements during JAE
by real-user experiments, mathematically formulate how the IMU
movement affects IMU measurements and technically demonstrate
our proposed metrics and correction method. The IMU movement
detection and correction method we propose is an initial trial and
demonstrated to be effective and computationally lightweight. Fu-
ture work includes the extension to the upper limb joints and trying
to accommodate novelty detection algorithms.
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