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Multiscale Voltage Reconstruction with Attention-based network  
for Volume Fraction Prediction  

of Industrial Oil-Water Two-Phase Flow by EIT 
 

Hao Yu, Zhixi Zhang, Yang Gao, Jiabin Jia, Senior Member, IEEE 

Abstract— Oil-water two-phase flow as a typical two-
phase flow type widely exists in various industrial processes 
and the accurate measurement of oil volume fraction plays 
a significant role in transporting and separating oil-water 
mixture in the processes. Electrical Impedance 
Tomography (EIT) as a merging technology with the 
advantages of non-invasive, low cost and real-time 
measurement is widely applied in the industrial field to 
measure the volume fraction for different types of two-
phase flows.  However, the measurement process of taking 
homogeneous reference voltages is time-consuming and 
costly. To cope with the problem, in the paper, by 
establishing an end-to-end mapping between measurement 
voltages and volume fraction, we propose an Attention 
UNet-Fully Connected (AU-FC) architecture. Relying on 
the attention mechanism, the reconstructed voltages having 
a strong correlation or a weak correlation with volume 
fraction is highlighted or suppressed respectively. Oil-water 
two-phase flow experiment was conducted in the NEL 
facility to collect EIT voltage data. Compared with six state-
of-the-art and existing machine learning methods, the 
proposed method performs better in predicting volume 
fraction. The results indicate that the proposed AU-FC 
architecture can accurately and real-time predict the 
volume fraction of oil-water two-phase flow, which 
improves the application potential of EIT combined with 
deep learning method in the industrial field. 

Index Terms—Electrical impedance tomography (EIT), 
oil-water two-phase flow, attention mechanism, volume 
fraction, deep learning. 

I. INTRODUCTION 
IL-WATER two-phase flow wildly exists and of great 
importance in the industrial field, such as drug production 

and petroleum exploit [1], [2]. Different from single-phase flow, 
two-phase flow has flow characteristics such as inter-phase 
relative velocity, inter-phase slip and nonlinear response [3]. 
Due to the complexity, randomness and uncertainty of oil-water 
two-phase flow behavior, it brings difficulty in measuring the 

flow parameters, such as Volume Fraction (VF) [4], which, as 
a typical parameter, plays a critical role in industrial process 
control and optimization of the production process [5]–[7]. 
Therefore, accurate measuring the oil volume fraction of oil-
water two-phase flow has attracted increasing attention in 
industrial and academic fields. 

Yu et al. [8] established a fractal-based modified attenuation 
model to estimate the oil VF of oil-water two-phase flow using 
the ultrasonic sensor. The effectiveness of the model was 
validated by numerical simulation and experiment results. 
Zhang et al. [9] utilized the differential pressure sensors and the 
mathematical relationship between volume fraction and 
difference between oil and water densities to calculate the 
dispersed volume fraction of oil-water two-phase flow. By 
combing the long-waist cone meter with the conductance ring 
coupled cone meter, Tan et al. [10] accurately measured the 
volume fraction. Sharifzadeh [11] et al. used a pencil-beam 
collimated gamma-ray to measure the VF.  

Electrical impedance tomography, as a merging and 
promising visual imaging technology, has been widely used in 
two-phase flows for estimating volume fraction due to the 
advantages of real-time non-invasive monitor, easy installation, 
safety, and low cost [12]–[14]. By adjacent excitation and 
adjacent measurement patterns, EIT can obtain the boundary 
voltages of the pipeline, and non-iterative algorithms such as 
Tikhonov [15], Linear Back Projection (LBP) [16] and 
Newton's One-step Error Reconstructor (NOSER) [17] could be 
used to real-time reconstruct the conductivity distribution, and 
then the dispersed phase volume fraction can be obtained 
according to the Maxwell equation [18]. In gas-water two-phase 
flow, with VF less than 30%, the VF measured by EIT is 
consistent with that of the wire-mesh sensor (WMS), a sensor 
with the excellent agreement to the VF measured by Electrical 
Capacitance Tomography (ECT) for an air/silicone oil flow 
[19]. Xu et al. designed a EIT device with 12 contactless 
sensors to collect raw data of gas–liquid two-phase flow and the 
volume fraction of three different flow types was estimated by 
data average method using five-electrode excitation pattern. 
Compared with the reference, the absolute error values are less 
than 5% [20]. Besides, for highly conductive oil-water two-
phase flow, the VF measured by EIT also has a great agreement 
with VF provided by NEL with error in ± 3% [12].  

However, when applying EIT in the industrial field, prior 
information needs to be known that the pipeline needs to be 
fully filled with the single-continuous phase medium in 
advance to measure the reference voltages, a critical variable 
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for conductivity reconstruction, which is time-consuming and 
costly, even impossible to be executed. Besides, with the 
change in temperature and other factors, reference voltages will 
also vary with time, which hinders the accuracy of collecting 
voltages. Estimating reference voltages seems to be an effective 
way to cope with the problem. Wang et al. [21] used the 
Measurement-Scale Feature (MSF) method to estimate the 
reference voltages, however, the estimation accuracy in oil-
water two-phase flow cannot be guaranteed and even if the 
reference voltage is accurately estimated, the accumulation of 
its errors will result in the obtained volume fraction to be 
inaccurate.  

In recent years, with the explosive growth of data volume and 
the significant improvement in hardware performance, the deep 
learning, as a kind of representative machine learning method, 
generates an overwhelming enthusiasm in solving all kinds of 
nonlinear problems related to two-phase flows. For example, 
Gao et al. [22] proposed a Convolutional Neural Network 
(CNN) based temporal-channel-wise architecture to extract 
information from measurement currents to predict the gas void 
fraction and its category. Tan et al. [23] established a sparse 
batch normalization CNN framework to reconstruct the 
interface image of gas-liquid two-phase flow. Azizi et al. [24] 
employed Probabilistic Neural Network (PNN) and Multilayer 
Perceptron (MLP) network to predict the oil VF and flow 
patterns. Dang et al. [25] combined CNN with long short-term 
memory (LSTM) to extract time-dependent sensor information 
to predict flow parameters. Aiming at solving the ECT ill-posed 
problem of the image reconstruction for solid-gas two-phase 
flow, Chen et al. used an improved radial basis function (IRBF) 
network to get the initial reconstruction results, followed by the 
adaptive wavelet image enhancement technique to enhance the 
quality of images [26]. The pre-reconstruction and post-
processing process makes the method complex. Combing with 
the reference provided by air-filled sensor, Zhang et al. 
proposed a CVMF-ECT method based on deep network to 
reconstruct the air-water two-phase flow distribution [27]. 
Two-layer ECT was applied to collect the boundary voltages to 
predict the oil, gas flow rate and gas VF by CNN network [28]. 
Although the design of multi-layer convolutional connections 
network is simple, the problems of computational depth and 
performance degradation of the models are not addressed. All 
these contributions have confirmed the reliability and validity 
of deep learning method in solving two-phase flow regression 
and classification problems. 

 In this paper, inspired by [29], which introduced attention 
module in skip connection part of UNet network and [30],  
which proposed attention mechanism for EIT cell image 
reconstruction, a soft measure data-driven deep learning model: 
Attention UNet Fully Connected (AU-FC) model is proposed 
to directly predict the volume fraction of oil-water two-phase 
flow from the measurement voltages. The network uses the 
attention mechanism to strengthen the reconstructed multiscale 
voltages and accurately predicts the oil volume fraction through 
the fully connected layers. The experiments were carried out to 
establish the data set, and compared with the six competitive 
methods, the proposed model outperforms other methods. The 

main contributions of the work are as follows: 1) a novel 
network with the attention mechanism is proposed to perform 
voltage reconstruction to predict oil volume fraction of oil-
water two-phase flow. 2) The proposed regression network has 
good accuracy and has excellent prediction performance in the 
constructed data set. The work shows the feasibility of real-time 
online monitoring for the oil volume fraction using the deep 
learning method and provides the preliminary theoretical basis 
and experimental verification for the application of EIT 
combined with deep learning in two-phase flow. Besides, the 
designed attention network may also be suitable for the 
conductivity and permittivity reconstruction of EIT and ECT. 
Also, it can be used to predict the volume fraction of the 
multiphase flow with a slight change of the network. 

The structure of the paper is organized as follows. Section II 
details the measurement principle of volume fraction by EIT 
and proposes the AU-FC architecture to predict volume fraction. 
Also, the section presents six competitive methods as baselines. 
Section III introduces the experiment setup process and details 
the data normalization and training setting. Section IV 
compares the prediction performance under different methods. 
Finally, Section V gives a brief summary. 

II. METHODS  
In this section, the volume fraction measurement method by 

EIT is introduced and a deep learning method: AU-FC is 
proposed to reconstruct multiscale voltages to predict volume 
fraction. The loss function is described. Besides, to reveal the 
superiority of the proposed architecture, six state-of-the-art and 
competitive methods are described. 

A. EIT Volume Fraction 
By EIT, the relative conductivity distribution of dispersed 

phase, such as oil, and continuous phase, e.g., water can be 
obtained in two-phase flow as shown in Fig. 1. The blue patch 
represents the continuous phase (water) and the gray represents 
the dispersed phase (oil). Due to the conductivity difference of 
two-phase flow, the Maxwell relationship [18] can be used to 
calculate pixel volume fraction as follows, 

 1

1

2 2

2 i
i

iσ
σ

α
σ
σ

−

+
=  (1) 

 
Fig.1. The reconstructed relative conductivity distribution of the oil-water 
two-phase flow. 
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where αi is i-th pixel VF and the frame VF is the average VF of 
total pixels in one frame, which is 316 in the paper.  σi  is the 
mixture conductivity obtained from EIT and σ1  is the 
conductivity of continuous phase (water). The ratio of σi/σ1, a 
316 × 1 vector, is the only variable in the equation (1).  

Modified Sensitivity Back Projection (MSBP) [31] algorithm, 
as a common non-iterative EIT reconstruction method, is 
adopted to reconstruct the relative conductivity change and the 
expression is as follows,  

 
1

1
·( )T

Re f

i

MeaS U / U
σ
σ

≈  (2) 

where S is the sensitivity matrix, also called the Jacobin matrix, 
UMea and URef are the measurement and reference voltages, 
respectively. 

To mitigate the variation error of frame VF, in the paper 
the average of 2000 frames is used as the measurement VF. 

B. Attention-UNet Fully Connected Network 
In the paper, our goal is to establish an end-to-end nonlinear 

mapping between measurement voltages and volume fraction 
of oil-water two-phase flow, and the task can be converted into 
the following mathematical problem, 

 ( ) 2 2
22

1

1arg min Mea

N

k

f Uf
Nθ

α λ θ
=

= − +∑  (3) 

where f is the AU-FC network model, f (UMea) is the predicted 
volume fraction, α is the volume fraction measured by EIT and 
the latter term is the l2 regularization with regularization 
parameter λ. θ = {W, b} denotes the training parameters: 
weights and bias of the network, N represents the total sample 

number in the training set.   
The architecture of AU-FC is shown in Fig. 2 and the detailed 

dimension change of voltages for the proposed architecture is 
shown in Table I. Before inputting the measurement voltages 
which are without reference voltages into the network, the 
voltages should be preprocessed to adapt to the network 
structure. Inspired by [32], the 1×208 voltage vector is reshaped 
to a 16×13 voltage matrix, and each row represents the induced 
voltage between adjacent electrodes under the excitation of the 
specified electrode. Then, the 16×13 voltage matrix is projected 
into a 16×16 voltage matrix by padding 0 to the three columns 
in gray. After the multiscale voltage, a 16×16 matrix is 
reconstructed by the attention UNet, a fully connection layer is 
followed with 256, 104 and 1 dimensions to predict the volume 
fraction for oil-water two-phase flow.  

The detailed structure of the multiscale voltage 

         

 
Fig.2. Architecture of the AU-FC Network. 

          
Fig.3. Architecture of the multiscale voltage reconstruction block. 

 

 TABLE I 

OUTPUT SIZE OF THE PROPOSED AU-FC 

Layers AU-FC Output size 

Input \ 1×208 
Data Pre-

processing Block 
Reshape 

Padding 0 
16×13 
16×16 

Multiscale 
Voltage 

Information 
Reconstruction 

Block 

Conv 3×3+ Skip 
connection+ Attention 

gate 
Maxpooling 
Up-sampling 

16×16×1 

Volume Fraction 
Block (Output) 

Flatten 
Fully connected 
Fully connected 

1×256 
1×104 

1×1 
*Height×Width×Channel 
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reconstruction block is shown in Fig. 3. The network is built 
based on the UNet structure. After data pre-processing block, 
the 16×16 voltage matrix is operated by two 3×3 convolution 
layers and a 2×2 maxpooling layer in each step. After three 
identical operation steps, the bottom layer passes through a 2×2 
up-sampling layer, and similarly, followed by two 3×3 
convolution layers with also three same steps. Finally, at the last 
step, a 1×1 kernel is adopted to adjust the number of output 
channels, followed by a Sigmoid activation function to 
reconstruct the voltages, 

 1( )
1 xS x

e−=
+

 (4) 

where x is the input of the Sigmoid function, and S(x) is the 
output of the function. 

Besides, the attention mechanism module is added to the skip 
connection part of the traditional UNet network, and the 
additive spatial self-attention mechanism module can enhance 
the feature learning ability of the network for EIT measurement 
voltages, so that the reconstructed voltage can extract more 
scale information, thereby improving the accuracy of the 
volume fraction prediction rate and reducing prediction error. 

The additive attention gate in the skip-connection part is 
shown in Fig. 4. F represents the feature map number, and H, 
W are the height and width of the voltage matrix. The attention 
gate could filter the neuron activations during both forward and 
backward passes, and mathematical expressions of the gate are 
as follows,  
 ( )( )1

l T T l T
att x i i xg gq bW x W gf bb ψψ += +++  (5) 

where Wx and Wg are the feature weight matrix, 𝑥𝑥𝑖𝑖𝑙𝑙 and gi are the 
encoder and decoder matrix. f1 is the ReLU activation function, 
ψ is the convolutional operator with 1×1 kernel. bx, bg and bψ 
are the bias terms of the corresponding convolutional operation. 
𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙

 is the intermediate matrix. 
The attention coefficient [0 1]l

iu ,∈ is defined as follows, 

 ( )( )2 ( ); l l l
i att i i a g x gt xtu f q x ,g ,W ,W , b ,b b, ψψ= Θ  (6) 

where f2 is the Sigmoid function, attΘ represents a set of 
parameters containing Wx, Wg, ψ, bx, bg and bψ. 

The attention gate output 𝑥𝑥�𝑖𝑖𝑙𝑙  is the element-wise 
multiplication of attention coefficient 𝑢𝑢𝑖𝑖𝑙𝑙 and encoder matrix 𝑥𝑥𝑖𝑖𝑙𝑙. 
By multiplication as shown in equation (7), the weight of the 
EIT voltages that has a strong correlation with the volume 
fraction would be increased, and oppositely, the weight of 
voltages with weak impact would be decreased. The output 
obtained is the multiscale reconstruction voltage with the 
attention mechanism. 
 l l l

i i ix̂ u x=   (7) 
The AU-FC network makes use of the weighting method to 

extract the characteristic voltages of different depths obtained 
in the encoding part, and then concats with the characteristic 
voltages of halved dimensions obtained by upsample layers to 
reconstruct the specific details of the voltages, so as to achieve 
the selective and full extraction of the voltage features. 

C. Loss Function 
In the paper, the hybrid loss function is adopted and 

described by, 
  MATo Etal MAEP L L Lβ γ= +  (8) 
where β and γ are the loss function component weights. LTotal is 
the total loss. LMAE is the Mean Absolute Error (MAE) loss 
component. LMAPE is the Mean Absolute Percentage Error 
(MAPE) loss component. They are described as follows, 

 1 -
N

i i
i

ˆMAE
N

α α= ∑  (9) 

 
1

-100% N
i i

i i

ˆ
MAPE

N
α α
α=

= ∑  (10) 

where iα̂ is the predicted volume fraction and iα is the reference 
volume fraction calculated by EIT. 

 
Fig.5. Architecture of the MLCNN Network. 

 
Fig.4. Structure of the attention gate. 
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Larger weights represent that the corresponding loss term is 
more critical to the total loss function, and after a series of 
careful experiments with a purpose to balance MAE and MAPE 
metrics, β and γ are set to 0.2 and 1, respectively. 

D. Model Comparisons 
To reveal the superiority of the AU-FC architecture, different 

state of art and existing machine learning methods are presented, 
and the brief introduction of the methods are as follows. 

Support Vector Regression (SVR): SVR [33] is one category 
of Support Vector Machine (SVM) to deal with regression tasks, 
and the mathematical model fSVR(x) is described as follows,  

 ( ) ( )
1

( ) *
SVR

N

i i i
i

f x K x ,x bο ο
=

= − +∑  (11) 

where K(xi, x) is the kernel function, oi and oi* are the Lagrange 
multiplier, and b is the bias. In the paper, we select Gaussian 
kernel, also called Radial Basis Function (RBF) kernel as kernel 
function. 

LeNet: LeNet [34] is a typical CNN-based model with two 
convolution-maxpooling layers, followed by fully connected 
layers and a Sigmoid activation function. Referring to [32], to 
adapt the EIT regression problem, the Sigmoid function is 
replaced with the ReLU function. 

Multilayers Convolutional Neural Network (MLCNN): 
MLCNN as shown in Fig. 5 is improved based on VGG 
architecture [35], with 7 similar sequential blocks, consisting of 
a 3×3 convolution kernel, a Batch Normalization (BN) layer, a 
maxpooling layer and a ReLU activation function, to extract 
EIT voltages information, finally followed by FC layers and a 
ReLU activation function. 

ResNet: ResNet18 [36] proposes 18 layers to extract deep 
network information. By residual learning, the degradation 
problem of the network can be solved. In the paper, ResNet18 
is selected as backbone, followed by FC layers to predict 
volume fraction. 

Fully Connected (FC): To validate the effectiveness of 
reconstructed multiscale voltages process, after preprocessing 
the input voltages into 16×16 matrix, FC layers are directly 
connected with the voltage matrix. 

UNet- Fully Connected (UNet-FC): we choose the UNet 
architecture mentioned in [37] as the backbone, after 
reconstructing multiscale voltages, the FC mentioned above is 
connected with UNet to predict volume fraction. 

III. EXPERIMENT SETUP 
In this section, information about the TUV NEL facility is 

introduced, and three regression metrics are used in the paper 
to evaluate the prediction performance under different methods. 
Finally, the hyperparameter setting is described. 

A. Experiment Setup 
The schematic of NEL two-phase flow facility is shown in 

Fig. 6 and in the experiment, no gas was utilized. ITS v5r 
Electrical Impedance Tomography system was applied to 
acquire the boundary voltages of oil-water two-phase flow. 
Paraflex HT9 refined oil and aqueous solution of Magnesium 
Sulphate were used as the dispersed and continuous phase 
medium, respectively. When the mixed oil and water fluid 
cyclically flow through the experimental section, the boundary 
voltages are measured by dual layers ERT sensor and in this 
way, the oil-water two-phase flow data set is established.  

It should be mentioned that the device can only measure the 
volume fraction with a certain range for oil-water two-phase 
flow [12], because when the volume fraction is more than 0.5, 
the mixed liquid which oil becomes the continuous phase will 
affect the current excitation of the sensor, resulting in the 
measured voltages to be inaccurate. 

Detailed experimental procedures are described in [12]. 

B. Data Preprocessing 
The measurement voltages are obtained from 33 cases with a 

different mixture of oil flow and water flow, and each case 
includes 2000 sets of data, a total of 66000 EIT measurement 
voltages and corresponding volume fractions, ranging from 0-
0.45, in the oil-water two-phase flow dataset. The VF is 
calculated by EIT based on (1) and (2). In the paper, the 
calculated VF from EIT is used as the label. It is also possible 
to adopt the reference VF provided by NEL or other reliable 
sensors, such as ultrasonic devices or high-speed cameras. 

 

 
Fig.6. Schematic of TUV NEL multiphase flow facility. 
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The dataset is randomly divided into three parts with the 
proportion of 70% training set, 20% validation set and 10% test. 
Before fed into the networks, the data is normalized. After 
normalization, the generality of the network would be greatly 
improved. The expression is given by, 

 i mean _ tra
i

std _ tra

U U
U

U
−′ =  (12) 

where Ui and Ui' are the original and normalized measurement 
voltages. Umean_tra and Ustd_tra are the mean value and standard 
deviation of the training set.  

 It should be mentioned that the measurement voltages in 
validation and test sets are also normalized by Umean_tra and 
Ustd_tra. In the oil-water two-phase flow dataset, the volume 
fraction measured by EIT is ranged from 0-0.45, so it is not 
necessary to normalize them anymore. 

C. Evaluation Metrics 
Three regression metrics: Mean Squared Error (MSE), Mean 

Absolute Error (MAE) and Mean Absolute Percentage Error 
(MAPE) are adopted to quantitatively analyze the volume 
fraction prediction ability under different methods. MAE, 
similar to MSE, evaluates the absolute value of the deviation 
between the real value and the predicted one; while MAPE 
evaluates the relative value of the deviation. The closer the 
indicators are to 0, the more accurate the prediction is. The 
definition of these regression metrics are as follows, 

 2

1

1 ( - )
n

i i
i

ˆMSE
n

α α
=

= ∑  (13) 

 
1

1 -
n

i i
i

ˆMAE
n

α α
=

= ∑  (14) 

 
1

-100% n
i i

i i

ˆ
MAPE

n
α α
α=

= ∑  (15) 

where n is the total number in the validation set or test set. 

D. Training Setting 
Support Vector Regression (SVR) is based on Sklearn, and 

the deep learning methods are implemented in the Pytorch 
environment. All the methods were run in the computer with 
NVidia GeForce RTX 2070 8GB GPU, Intel Core i7-9700K 
CPU (3.6 GHz) and 32 GB RAM. For the SVR method, the 
optimized parameters-penalty coefficient is adjusted to 2 and 
0.002 for the kernel coefficient. For the AU-FC deep learning 
method, Adam [38] is adopted as the optimizer and warm-up 
strategy [39] is selected to balance the convergence of initial 
network training and the speed of network training. The warm-
up stage lasts for 10 epochs with a linear increase of learning 
rate from 5×10-5 to 5×10-4, and then the learning rate decays by 
0.1 every 20 epochs. The maximum number of epochs is 100 in 
the training process. The batch size is set to 200, and the weight 
decay, l2 regularization term, is set to 10-5 to avoid overfitting. 
Random initialization is adopted. The hyperparameters of other 
deep learning methods mentioned above are carefully 
optimized by empirical and manual parameters search. Finally, 
the epoch with the smallest loss in the validation set is selected 
as the optimal epoch for the test set.  

IV. RESULTS AND DISCUSSION 
For 33 cases, the comparison between VF measured by EIT 

and that provided by NEL is shown in Fig. 7. Similarly to the 
conclusion drawn from [12], the VF provided by NEL is 
slightly larger than that measured by EIT when the VF is 
between 0 to 0.3, and when the VF is out of range 0-0.3, the 
value is overestimated compared with that of NEL. The reason 
that we didn’t select the VF from the readings of the valves on 
TUV NEL facility as reference in the training process is that 
those VFs are calculated based on the superficial flow rates of 
oil and water before mixing, not the true local VF at the testing 
section. Because of the slip between oil and water, the VF based 
on the superficial flow rates of oil and water tends to be 
overestimated. When the VF is larger than 0.35, the oil-water 
flow ends water continuous phase, where EIT cannot provide 

 TABLE II 

TRAINING TIME AND AVERAGE PREDICTION TIME UNDER DIFFERENT 
METHODS  

Methods Training time (min) Average predication 
time (ms) 

SVR 0.01 0.01 

LeNet 11.36 1.27 

MLCNN 11.40 2.10 

ResNet 14.10 3.94 

FC 11.34 1.06 

UNet-FC 34.23 4.25 

AU-FC 26.81 5.33 

 

         TABLE III 

EVALUATION METRICS UNDER DIFFERENT METHODS  

Methods MSE MAE MAPE (%) 

SVR  16.30 3.43 33.93 

LeNet 3.43 1.11 6.11 

MLCNN 1.00 0.27 1.27 

ResNet 0.61 0.10 0.48 

FC 26.23 3.30 18.58 

UNet-FC 1.24 0.17 0.80 

AU-FC 0.59 0.08 0.35 
*Best results are highlighted in bold. 
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Fig.7. Comparison between VF measured by EIT and VF provided by NEL.  
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reliable results anymore.  However, although there are some 
differences in VF in quantitative analysis, it can still be seen 
from Fig. 7 in qualitative analysis that the volume fraction by 
two methods has the same change trend. Besides, the error is 
almost within ±5%. Possible reason for abnormal values is 
measurement errors in the instrument. 

The training time and average prediction time per set of data 
for different methods are shown in Table II. The UNet-FC 
method consumes the most training time (34.23 minutes). Due 
to the shallower structure of LeNet, MLCNN, ResNet and FC 
networks, the training time of these methods is faster than 
UNet-FC and AU-FC, which have similar training time. Since 
the parameter setting is optimized by empirical method without 

iterative process, SVR method has the shortest training time. In 
terms of average prediction time per set of data, all the methods 
can be executed within 6 ms, which is fast enough to be applied 
in the industrial facility for monitoring the volume fraction 
change in real-time. Among them, the prediction time of SVR 
is the shortest with 0.01 ms, and that of AU-FC is the longest 
with 5.33 ms. Considering that the implementation of the 
methods is an offline training and online prediction process, as 
long as the training time is within a reasonable range, the 
prediction performance is the main concern. 34 minutes of 
training time is acceptable in the work. 

Comparisons between the oil volume fraction measured by 
EIT and the predicted oil volume fraction under different 
methods are shown in Fig. 8. On qualitative analysis, it can be 
seen that predicted VF shares the same change trend with VF 
measured by EIT. The slope between predicted VF and 
measured VF is nearly 1 for the AU-FC method and the 
scattered points are mainly concentrated near the standard line. 
Due to the existence of the attention mechanism, the network 
will pay more attention to the local measurement voltages rather 
than all voltages, thereby extracting deeper voltage information, 
thus making the red cycles are more clustered around the 
standard line, compared with SVR, LeNet, MLCNN, ResNet, 
FC and UNet-FC methods. The performance difference 
between methods is mainly due to the differences in network 
depth between networks, attention mechanism, residual 
connection, etc. Furthermore, the VF predicted by AU-FC and 
that calculated by EIT are consistent in the overall trend within 
the ±5% error range, but still some differences in scattered data 
points. These errors mainly come from the measurement error 
of the equipment and the estimation error of the prediction 
model. 

The quantitative analysis results are shown in Table III. The 
AU-FC outperforms SVR, LeNet, MLCNN, ResNet, FC and 

         

 
Fig.8. Predicted oil volume fraction under different methods. (a) SVR. (b) 
LeNet. (c) MLCNN. (d) ResNet. (e) FC. (f) UNet-FC. (g) AU-FC. 
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Fig.9. The reconstructed multiscale voltages by AU-FC. 
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UNet-FC methods in predicting VF for oil-water two-phase 
flow with the smallest MSE 0.59, MAE 0.08 and MAPE 0.35%. 
By suppressing irrelevant areas in the input voltage data and 
highlighting salient features in specific local areas, the attention 
module allows the network to focus on important information 
and learn it fully, thus giving the network a deeper learning 
depth and improving the predictive performance of the VF. As 
the baseline, FC method reveals the necessarility of 
reconstructed multiscale voltages. By multiscale voltages 
which include deeper features, the prediction results are more 
accurate. Besides, the prediction results of UNet-FC prove the 
effectiveness of additive attention gate and compared with 
UNet-FC method, the MSE of AU-UC decreases from 1.24 to 
0.59, the MAE is from 0.17 to 0.08 and MAPE is from 0.80% 
to 0.35%. Due to the residual connection structure of ResNet, 
the prediction network retains the original state of the gradient 
during the backpropagation process, which reduces the risk of 
gradient disappearance or gradient explosion in the network, 
thereby making the prediction network more effective and 
precise. The prediction performance of ResNet, with MSE 0.61, 
MAE 0.10 and MAPE 0.48%, ranks second among all 
introduced methods, followed by UNet-FC, MLCNN, LeNet, 
SVR and FC methods. Besides, due to the shallow structure of 
LeNet and MLCNN networks, the prediction performances are 
general. 

Reconstructed multiscale voltages by AU-FC of three oil-
water two-phase flow cases, with 24.70%, 28.17% and 38.45% 
VF are shown in Fig. 9. After the voltage reconstruction process, 
the reconstructed multi-scale voltage variation range of the 
input voltage will be smaller and some reconstructed voltage 
areas are highlighted. In three cases, the predicted VF are 
24.71%, 28.22% and 38.41%, respectively. 

V. CONCLUSION 
In the work, a supervised attention UNet-fully connected 

network is proposed to directly predict the volume fraction of 
oil-water two-phase flow with EIT measurement voltages as 
input. The proposed method copes with the problem of 
measuring reference voltages, which is costly and time-
consuming. Oil-water two-phase flow experiments are carried 
out to collect EIT boundary voltages based on the TUV NEL 
facility. Compared with six competitive machine learning 
methods: SVR, LeNet, MLCNN, ResNet, FC and UNet-FC, the 
proposed method has a better performance in terms of MSE, 
MAE and MAPE regression indexes with 0.59, 0.08 and 0.35% 
respectively. The proposed method increases the feasibility and 
applicability of EIT combined with the deep learning method in 
the industrial field. In the future work, we will explore multitask 
deep learning method to predict the flow category, flow 
velocity and volume fraction for two-phase flow in one network. 
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