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Input and Output Manifold Constrained Gaussian

Process Regression for Galvanometric Setup

Calibration
Ivan De Boi, Seppe Sels, Olivier De Moor, Steve Vanlanduit, and Rudi Penne

Abstract—Data-driven techniques are finding their way into
the calibration procedure of galvanometric setups. However,
they bypass the underlying physical or mathematical model
completely. Recent work has shown that a simple assumption
about an underlying truth can improve the predictions: laser
beams leaving the device follow a straight line. In this paper we
take that approach a step further. Both the inputs (the pairs of
rotations of the two mirrors) and outputs (the straight lines) lie
on a manifold. We can incorporate this prior knowledge in the
model via constraints built in the formulation of a covariance
function. We propose two constrained models: one in which a
linear constraint on the direction vector is written as a differential
equation and one in which a quadratic constraint is imposed
by a reparametrization of the line coordinates. We compare
them to data-driven and unconstrained model-based approaches.
We show that enforcing constraints improves the quality of the
predictions significantly and thus the accuracy of the calibration.
We validate our findings against real world data by predicting
points on validation planes, calculating line segment distances,
considering the training times for the models and assessing how
much a predicted line resembles an actual straight line.

Index Terms—galvanometer calibration, Gaussian processes.

I. INTRODUCTION

MANY applications of galvanometric setups [1] demand

accurate calibration. This means being able to control

both the direction and the location of the laser beam guided by

the rotating mirrors. This plays a vital role in Laser Doppler

Vibrometry [2], 3D laser scanners [3], medical imaging [4],

LIDAR systems [5] and in computer vision for self driving

cars [6].

The common pinhole model, that is used in camera cali-

bration, cannot be used for calibrating a galvanometric setup,

because there is no single centre of projection. Several models

have been proposed to correct the effects of the geometric

distortion [7]. In [8], a transformation of a coordinate system

is described. The main drawback of these approaches is

their complexity, resulting in difficult non-convex optimization

tasks. Furthermore, the models fail to account for all distor-

tions such as the ones caused by non-planar mirrors.

Recently, more data-driven approaches have been proposed

in various fields, in which the calibration challenge is trans-

formed into a regression problem. This approach is also proved
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fruitful in spectroscopic calibration [9], [10], infrared spec-

troscopy [11], camera calibration [12] and LIDAR calibration

[13].

Data-driven calibration for galvanometric laser scanners was

proposed in [14], [15]. The authors implemented artificial

neural nets (ANN), Support Vector Regression (SVR) and

Gaussian processes (GP). The latter are a way to perform

statistical (Bayesian) inference and learn a non-parametric re-

gression model directly from the data. GPs are explained more

in depth in section B. These methods proved to outperform the

mathematical model of [7] and look-up table-based calibration

procedures.

In [16], this idea was taken a step further by combining

these two approaches: a semi-data-driven or hybrid approach.

This model was formulated with only one major assumption

about the underlying physical truth: laser beams guided by the

two mirrors follow a straight line. This assumption is lacking

in the purely data-driven approaches.

Our previous work [16] as well as [14], [15] naively

assumed independent outputs for the GPs. Over the last years,

multi-output GPs, in which the outputs are correlated, have

been thoroughly investigated. An extensive review can be

found in [17]. In our case, the outputs are not correlated.

However, they are not fully independent either. Information

about one of the outputs does not imply knowledge about any

of the other outputs. But together, the outputs do follow a cer-

tain rule or constraint. Knowledge about all the outputs except

one, does encode the underlying value for the missing one. For

example, assume that a 3D direction vector is normalized to a

length of one. Knowledge about one of the components does

not reveal anything about the other two. However, knowing the

values for the x- and y-component allows for the calculation

of the z-component via x2 + y2 + z2 = 1.

We can exploit these constraints via covariance functions

or kernels of our GPs. Over the past years, several methods

for doing so have been formulated in [18], [19]. An elaborate

overview, including methods beyond those two, is given in

[20].

In this work, we investigate both the input and output

space of the dataset, which consists of the mapping between

input angles of the two rotation mirrors and the laser beams.

We represent the latter by six coordinates that together form

the so called Plücker coordinates of a straight line. A short

introduction on this is given in section C. First, we observe that

the input space is not Euclidean, but topologically a manifold

that is a torus. This leads us to propose a periodic kernel
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in which we separate the two input dimensions (i.e. the two

mirror rotations). Second, we argue that straight lines can be

described by points in a five-dimensional projective space P
5

that live on a four-dimensional manifold M4
2 . This is a quadric,

which means its points satisfy a quadratic equation. To enforce

this quadratic constraint on the predictions of our model, we

propose two different approaches:

1) Reformulate the constraint as a linear differential equa-

tion

2) Reparametrize the quadratic constraint and solve a ma-

trix factorization

Both approaches are achieved by rewriting the covariance

function of the underlying GPs.

We propose two models, in which we incorporate prior

knowledge about the data in the kernels. By doing so, we

enforce constraints on the predictions that improve their qual-

ity. We compare these models to the mathematical model of

[7], the data-driven model proposed in [14], [15] and the semi

data-driven approach by [16]. All models are validated on real

world data gathered with a scanning laser Doppler vibrometer

(type: Polytec PSV-QTec).

The rest of this paper is structured as follows. In the next

section we explain how we gathered the data and give some

theoretical background on Gaussian processes and Plücker

coordinates used to describe straight lines. The third section

describes the models we investigate. In a fourth section we

present the results. In Section V we discuss these findings.

Finally, conclusions are provided.

II. MATERIALS AND METHODS

A. Gathering experimental data

To compose a dataset consisting of straight lines, we used

a Polytec PSV-QTec scanning laser vibrometer with built-in

range detection. Its laser beam is controlled by two rotating

mirrors. As described in the manufacturer’s device manual

[21], we first performed a 2D and 3D alignment to establish a

reference coordinate system. We aimed the beam at a detection

plane, on which we assigned a point that serves as the origin

of the coordinate system. The Z-axis points from the origin

towards the device horizontally. The Y-axis points upwards

and the X-axis from left to right from the perspective of the

device. Then we moved the plane in thirteen different positions

and orientations. The 3D-coordinate of the intersection point

of the laser with each detection plane was calculated by the

built-in 3D scanning capabilities of the vibrometer. From the

thirteen planes, we kept four aside as validation planes. Points

on these planes were not used to train the models. A schematic

overview of the setup is provided in Fig. 1.

The data includes 11 values for the first mirror rotation

angles and 21 for the second. This results in 231 laser beams.

Collinear points, generated by a particular pair of mirror

rotations and thus a single laser beam, were filtered via

RANSAC [22]. Straight lines are fitted on the inlier points

using the least squares method described in [23]. Points on

any of the validation planes were not included. A plot of the

detected points can be seen in Fig. 2.
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Fig. 1. Overview of the galvanometric setup. The laser beam is controlled
by two rotating mirrors. The 3D-coordinate of the intersection point on the
detection plane is measured by a range detector and camera.

Fig. 2. Points where the laser beam hit the detection plane, which was moved
to thirteen different positions. Blue crosses are points that are used in the best
fit approach to construct a dataset of lines. Green circles are points on the
four validation planes. Red circles are outlier points that are removed from
the planes.

Furthermore, we took the same RANSAC and best fit

approach to find the homogenous coordinates of the planes

themselves. We calculate the intersection point of the found

plane and every best fit line. These intersection points are

considered the corrected versions of the measured points and

are used in the validation of models that have the assumption

of straight lines. For the data-driven approach, which does not

make such an assumption, this correction was not used.

Since the main contribution of this paper is to improve

the calibration procedure of a galvanometric setup, we only

work with this real world generated data. No synthetically data

was used throughout. In the following sections we explain
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how these measured intersection points of the laser with

each detection plane can be exploited in a semi-data driven

calibration method.

B. Gaussian processes

As thoroughly explained in [24], a Gaussian process (GP)

is defined as a continuous collection of random variables, any

finite subset of which is normally distributed as a multivariate

distribution. We focus on Gaussian processes, as they are

a flexible regression tool that provide a built-in mechanism

against overfitting. Furthermore, they follow a non-parametric

Bayesian paradigm, in which the data speaks for itself.

Formally, let {(xi, yi)}ni=1 be a dataset of n observations,

where x is an input vector of dimension d and y is a scalar-

valued observation. We want to find a mapping f : Rd → R,

y = f(x) + ǫ, ǫ ∼ N (0, σ2
ǫ ), (1)

with ǫ being identically distributed observation noise. This

map can be found by sampling a Gaussian process, which

is fully defined by its mean m(x) and covariance function, or

kernel, k(x,x′). It is generally denoted as

f(x) ∼ GP(m(x), k(x,x′)). (2)

The de-facto default kernel for a GP is the squared expo-

nential kernel (SE), also called the radial basis function kernel,

the Gaussian kernel or exponentiated quadratic kernel. It has

the form

kSE(x,x
′) = σ2

f exp

(

−‖x− x′‖2
2l2

)

, (3)

in which σ2
f is a height-scale factor and l the length-scale

that determines the radius of influence of the training points.

In [15] the usage of different kernels in this context were

investigated.

In our previous work [16], we included a different length-

scale l for both input arguments. In this case, these are the two

mirror rotations. This technique is called automatic relevance

determination (ARD) [25]. In general, for x ∈ R
d the kernel

has the form

kSEARD(x,x′) = σ2
f exp



−1

2

d
∑

j=1

(‖x− x′‖
lj

)2


 . (4)

A covariance function is parametrized by a vector of hy-

perparameters θ. For the SE these are the length-scale and

the height-scale. Their values are learned through a gradient

based optimization algorithm that maximizes the log marginal

likelihood. In our experiments we use the quasi-Newton

method from the Matlab 2020 implementation of Gaussian

processes [26]. In this process, a complexity term is involved

that penalizes over-complex models, which reduces overfitting

[24]. For a comprehensive discussion on various covariance

functions, we refer to [25].

C. Plücker coordinates

In projective three-dimensional space P
3, a straight line

L can be represented by six homogenous coordinates (l1 :
l2 : l3 : l4 : l5 : l6). In the Euclidean setting, these can

be interpreted as a normalized direction l = (l1, l2, l3) and a

moment l̄ = (l4, l5, l6) with respect to the origin. This moment

can be found by a point p the line passes through via

l̄ = p× l. (5)

These six coordinates are called the Plücker coordinates or

the homogeneous line coordinates of the line L [27]. They are

independent of the choice of p. Since we are not concerned

about the orientation, (l, l̄) and (−l,−l̄) describe the same

line.

Only six-tuples that obey the following two conditions are

straight lines:

‖l‖ = 1, (6)

l · l̄ = 0. (7)

The latter is called the Grassmann-Plücker relation. Plücker

coordinates can also be interpreted as points in P
5, which lie

on the Klein quadric M4
2 described by

l1l4 + l2l5 + l3l6 = 0. (8)

In general, a screw centre C ∈ R
6 can be written as (c, c̄).

The pitch of C is defined as

ρ =
c · c̄
‖c‖2

. (9)

This quantity serves as a measure of the deviation of C being

a straight line. This only holds for c not being the zero vector,

in which case C would be a line at infinity. A more in depth

explanation of line geometry can be found in [28].

III. MODELS

The objective of the calibration of the galvanometric setup,

is to find a mapping from the input parameters to the set

of straight lines. In our case the input parameters are the

rotation angles of the two mirrors. We will label them α

for the first mirror and β for the second mirror. As stated

in the previous section, straight lines can be described by

a six-tuple of numbers. Thus the mapping has the form

f : (α, β) → (l1, l2, l3, l4, l5, l6). Since the aim is to find

straight lines in Euclidean 3D-space, we want these six-tuples

to satisfy Eq. 6 and Eq. 7. In other words, the output of the

prediction should be a point on the manifold M4
2 . These are the

constraints we impose on the outputs of the GPs. We propose

two models that incorporate these constraints and compare

them to a mathematical and data-driven models.

A. Mathematical model

In [7] a mathematical model was proposed to calibrate the

galvanometric setup. This model consists of parameters that

describe the distance between the mirrors, their position, the

tilt angle between them, the position of the origin of the laser

beam, the initial direction of the laser beam and the conversion
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parameters between the inputs and the actual angles of the

mirrors. These values are found by minimizing the difference

between a set of lines generated by these parameter values and

the set of measured lines. We followed the procedure described

in the paper and will refer to this model as Mathematical. The

initial guess for the parameters were based on measurements

on the device itself.

B. Data-driven

We implemented a purely data-driven approach as explained

in [15], by defining three GPs for every detection plane. Each

GP was trained on either the x-, y- or z-component of the 3D-

coordinates of the intersection points of the laser beam and

the plane. The covariance matrices were constructed with the

SE ARD kernel described in Eq. 4.

C. Six Gaussian processes

To learn the Plücker coordinates directly, we implement 6

distinct Gaussian processes, i.e. one for each output component

in (l1, l2, l3, l4, l5, l6). The kernel used, is the SE with ARD

as described in Eq. 4. To calculate the similarity between two

pairs of input parameter values x = (α, β) and x′ = (α′, β′),
the Euclidean distance is used.

D. Six Gaussian processes with periodic kernel

The usage of Euclidean distances in the kernel is subop-

timal, as x and x′ are not points in E
2. They are pairs of

rotation angles. Both inputs components live in a space that is

periodically curved on itself. From a topological point of view,

the input space can be interpreted as a Cartesian product of two

circles S
1 × S

1, which is known as a manifold called a torus

T
2. As a first improvement on the kernel from the previous

model, we implement a periodic kernel (PER), proposed by

[29], which extended with ARD and a period of 2π for both

α and β, has the from

kPER(x,x
′) = σ2

f exp

(

− 2

l2α
sin2

( |α− α′|
2

))

· exp
(

− 2

l2β
sin2

( |β − β′|
2

)

)

,

(10)

in which σ2
f is the height-scale and l2α and l2β are the length-

scales for each input dimension. In this kernel, the inputs are

periodic and the dimensions are separated from each other.

E. Direction and point on a plane

As described in [16], the Grassmann-Plücker relation can be

enforced by construction. Instead of training a GP on each of

the six components of the Plücker coordinates, we train on the

directions of the straight lines and on the intersection points

of those lines with a known plane parallel to the XY-plane.

From these intersection points and the directions, the moments

of the lines can be calculated via Eq. 5. This ensures zero-pitch

lines according to Eq. 9, since the calculated moment is always

perpendicular to the direction. For this approach three GPs are

needed for the three components of the direction vectors and

two GPs for the 3D-coordinates of the intersection with the

plane (the z-component is fixed). We refer to this model as

Dir IPP.

F. Linear constraint on the direction

The three GPs in the model proposed above, whose predic-

tions together form the direction vectors for the straight lines,

must follow Eq. 6, i.e. their norms must equal one. To put this

another way, all these direction vectors can be seen as points

on a unit sphere S
2. This allows for the implementation of a

constraint: the predicted output (a three-vector) should always

lie on a unit sphere. To achieve this constraint, we perform

two steps:

First, we incorporate the number of the three output di-

mensions as an extra input. This strategy is explained in

[17]. Another elaborate explanation on multi-output Gaussian

processes can be found in [30]. The input of the GP can be

written as x = (α, β, d), in which d is the number of the output

dimension. In our case, this is either one, two or three. This

results in three times as many data points. The output of the

GP is still a scalar, but we can combine three GP-predictions,

each for a different number of output dimension, in such a

way that we get a three-vector. The kernel in this model is

extended to take in an extra input. For independent outputs,

the covariances for inputs that do not have the same number

for their output dimension, are zero. When inputs are of the

same output dimension, the kernel kPER in Eq. 10 is used.

This leads to a 3 × 3 block covariance matrix. The altered

kernel now has the form

kPER3D(x,x′) =

{

kPER([α, β], [α
′, β′]), for d = d′

0, for d 6= d′.

(11)

Second, we adjust the kernel following a method described

in [18]. The authors describe a way to have linear constraints

be built in the kernel function itself. An example of those

would be a linear differential equation. We refer to their

supplementary material for a full description. Here, we explain

how this can be implemented in our context. Even though our

constraint itself is quadratic in nature (outputs of the GPs de-

scribe points on the surface of a unit sphere x2+y2+z2 = 1),

we can rewrite this as a linear differential equation. After a

reparametrization from two input angles to three Cartesian

coordinates

f1 : x = cos(α) sin(β), (12)

f2 : y = sin(α) sin(β), (13)

f3 : z = cos(β), (14)

we can formulate the following linear constraint

f1 −
∂f2

∂α
+

∂f3

∂α
= 0. (15)

This can be written more compactly as

Fx[f(x)] = 0, (16)

in which x = [x, y, z]T , f = [f1, f2, f3]
T and Fx is a linear

operator mapping the function f(x) to another function g(x).
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We can also relate f(x) and g(x) via another linear operator

Gx such that

Gx[g(x)] = f(x). (17)

The constraint in Eq. 15 can now be written as

Fx[Gx[g(x)] = 0. (18)

Reformulating the linear operators as matrix-vector multipli-

cations yields

FxGx = 0. (19)

This reformulation allows us to impose the constraint om the

operator Gx instead on the GP for f(x). With g(x) sampled

from a GP with mean µg(x) and covariance Kg(x,x
′), this

means that

f(x) = Gxg ∼ GP(Gxµg,GxKgG
T
x′). (20)

A complete explanation on how to find Gx for any given Fx

using the nullspace of the latter, can be found in [18]. In our

case, we find

Fx =

[

1,− ∂

∂α
,
∂

∂α

]

, (21)

Gx =

[

∂

∂α
, 1, 0

]T

, (22)

which leads to

GxG
T
x′ =







∂2

∂α∂
α
′

∂
∂α

0
∂

∂
α
′

1 0

0 0 0






. (23)

Operator GxG T
x′ can only be applied on functions that are at

least twice differentiable. To that end, we need to combine the

two cases in the covariance function in Eq. 11. Furthermore,

the absolute value signs can be dropped, since the sine function

is an odd function which is then squared: sin2(−θ) = sin2(θ).
We propose the formulation

kCOM (x,x′) = σ2
f exp

(

− 2

l2α
sin2

(

α− α′

2

))

· exp
(

− 2

l2β
sin2

(

β − β′

2

)

)

· exp
(

− (d− d′)2

ǫ2

)

,

(24)

in which ǫ is an arbitrary small value. This results in the last

factor to be either one for equal dimension number d or (very

close to) zero for different dimensions. Applying Eq. 23 on

Eq. 24 yields a covariance function

kDIF = GxkCOMG
T
x′ =





A B 0
C 1 0
0 0 0



 kCOM , (25)

in which, with γ = α−α′

2 (for brevity in notation),

A = − sin2(γ) cos2(γ)
l4
α

+ cos2(γ)
l2
α

− sin2(γ)
l2
α

, (26)

B = − 2
l2
α

sin(γ) cos(γ), (27)

C = 2
l2
α

sin(γ) cos(γ). (28)

This describes a covariance function that imposes the

quadratic constraint, written as a linear differential equation,

which states that the norm of the 3D vector predicted by the

GP should always be equal to one. We apply this for the

prediction of the direction of the line. We refer to this model

as DirCon IPP.

G. One Gaussian proces with quadratic constraints

In this section we derive an alternative kernel to the one

proposed above. The aim is to impose the constraints in Eq. 6

and Eq. 7 simultaneously. We follow the method described in

[19] by applying the following steps.

First, let z = (l1, l2, l3, l4, l5, l6) and Q = zT z, which

encodes all the quadratic terms. This is a 6 × 6 symmetric

matrix and thus it is fully determined by its upper triangular

part. We now formulate a training point y ∈ R
21 as the

concatenation of those upper triangular elements

y = [Q11, ...,Qij , ...,Q66]
T ,with i ≤ j. (29)

Second, by incorporating the number of the output dimen-

sion as an input, we apply the same method as explained above

to construct a multi-output GP. Again, the input of the GP can

be written as x = (α, β, d), in which d is the number of the

output dimension. Here d ranges from 1 to 21 and thus the

dataset is twenty-one times larger. The covariance function for

this model is given by Eq. 11.

As stated and proved in [19], a set of training examples

{y1, ...,yn} that satisfy the linear constraints Ayi = b will

result in a GP for which the mean prediction µ(x∗) also

satisfies Aµ(x∗) = b. The authors demonstrate their findings

on a similar challenge, namely a rotation (quaternion) of unit

norm. In our case, A is a 2× 21 matrix and b = [1, 0]T .

However, we are interested in predictions in the form of

the six dimensional z∗ and not the twenty-one dimensional

y∗. Generally, this is achieved by casting this problem to a

matrix factorization problem and minimizing the Frobenius

norm between the factorization and the output of the GP. The

solution can be obtained in closed form as follows. For our

case, we first compose the matrix

Q∗ =











y∗1 y∗2 · · · y∗6
y∗2 y∗7 · · · y∗11

...
...

...
...

y∗6 y∗11 · · · y∗21











= VΣVT , (30)

in which V is a one column matrix and Σ is just a scalar. We

then calculate

z∗ =
√
ΣVT . (31)

The solution to the factorization is not unique. There is a

sign ambiguity that arises when taking the square root. As

proposed in [19], this can be solved by taking into account

information from the context. In our, case we know that the

z-component of the direction vector of the predicted lines

should be negative. If this is not the case, the line points

in the opposite direction and the Plücker coordinate can be

multiplied by -1 to reverse the signs of its six components.
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IV. RESULTS

We compare all models via 5-fold cross-validation (CV).

The data described above is split into five blocks. The models

are trained on four of them. Predictions are made on the inputs

from the remaining block and validated against the blocks

used for training. This process is repeated five times, at every

iteration with a different block for validation. This ensures that

every block is included in the validation set exactly once. We

trained all models on four different sizes for the dataset: 50,

100, 150 and 200 lines. We reran the training ten times for

each size. To assess the quality of the models, four evaluation

methods are considered.

First, for every input pair, we predict points on the validation

planes. The data-driven model predicts those via three GPs

(one for each 3D-coordinate component), while the other

models calculate an intersection point between a predicted

line and each validation plane. To assess the models, the root

mean squared error (RMSE) of the Euclidean distance between

the predicted points and the measured points (after correction

as described in the Gathering data section) is calculated. An

overview can be found in Table I. This validation method

assesses the practical validity of our models. In a real world

scenario, one would be interested in where the laser beam

exactly hits an object under inspection. Working with a correct

set of predefined inputs (the mirror rotations) is of utmost

importance when accuracy is being pursued.

Second, for the line-based models, the distance between the

predicted line and the measured line is calculated as described

in [28]. We do not consider the line itself, but only a finite

oriented line segment with boundaries in a region of interest,

i.e. values that are appropriate to the measured points of the

dataset. Let p1 and p2 be the intersection points of lines L1

and L2 with the xy-plane. These lines also intersect another

plane, parallel to the xy-plane, at points q1 and q2. The

distance d between the line segments is defined as

d2 = (p1−p2)
2+(q1−q2)

2+(p1−p2) · (q1−q2). (32)

This distance serves as the error in the RMSE of the line

segment distances in Table II.

Third, we record the total time it takes to train a model for

all cross-validation iterations and all reruns. The results can

be found in Table III. Finally, in a fourth evaluation method,

we consider the pitch of the predicted line for the line-based

models. These findings are summarized in Table IV.

TABLE I
RMSE PREDICTED POINTS ON VALIDATION PLANES

Methods n = 50 n = 100 n = 150 n = 200

Mathematical 21221.57 19410.13 19037.90 17599.49
Data-driven 12538.62 12585.36 10733.94 6078.32
6 GP 35.09 22.38 117.95 27.25
6 GP PER 8.79 1.22 0.46 0.26
Dir IPP 6.71 1.68 1.47 0.61
DirCon IPP 5.36 1.68 1.37 0.62
QCon 15.84 1.17 0.42 0.27

The RMSE in [µm] of the distances calculated between points on
the validation planes and the predictions made by the models.

TABLE II
RMSE LINE SEGMENT DISTANCES

Methods n = 50 n = 100 n = 150 n = 200

Mathematical 35207.23 32456.77 31800.85 29527.41
Data-driven NA NA NA NA
6 GP 51.46 86.04 284.63 51.00
6 GP PER 13.00 2.21 0.82 0.44
Dir IPP 11.33 2.85 0.87 1.01
DirCon IPP 8.93 2.82 0.83 1.00
QCon 22.34 1.96 0.70 0.43

The RMSE in [µm] of the line segment distances between the
measured lines and the lines predicted by the models. The data-driven
model does not produce lines.

TABLE III
TRAINING TIMES

Methods n = 50 n = 100 n = 150 n = 200

Mathematical 566.52 1193.43 1713.65 2351.08
Data-driven 66.50 91.43 174.89 265.00
6 GP 108.59 191.22 303.26 529.85
6 GP PER 14.35 41.73 93.16 160.16
Dir IPP 10.89 29.86 68.59 122.64
DirCon IPP 29.69 104.68 214.90 370.89
QCon 642.56 2652.05 3612.35 3744.28

The time in [s] it took to train each model. These are the cumulations
of the times for each cross validation iteration and each rerun.

V. DISCUSSION

As thoroughly discussed in [15], the mathematical model is

based on a hard to solve non-convex high-dimensional opti-

mization problem. The procedure requires a qualitative initial

guess. Moreover, several time-consuming reruns are needed to

find an optimal solution. The amount of training time highly

depends on the stopping criteria for the optimization process.

For every laser beam, this model calculates its intersection

point with the second mirror and a direction. As such, the

pitch of the generated line is always zero, even though this

does not result in more accurate predictions.

The data-driven approach is free from the optimization

problem of the mathematical model, as the model is bypassed

completely. However, removing all assumptions about the

underlying truth was shown to be too restrictive in [16]. The

semi data-driven 6 GP model, in which six fully independent

GPs are implemented, performs better than the mathematical

or data-driven approach. However, training six GPs instead of

three takes twice as long.

The most notable improvement is the introduction of a

kernel in the 6 GP PER model that takes into account that the

inputs are not points in Euclidean space, but live on a torus.

Even though the kernel is slightly more complex, the actual

training time for this model is lower. The training of a GP

implies finding a set of hyperparameters that maximizes the

log marginal likelihood [24]. This process converges sooner

for a kernel that describes the underlying reality or dataset

better. Furthermore, we exploit the fact that the period for

both dimensions is exactly 2π. These hyperparameters do not

have to be learned during the training of the GPs.
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TABLE IV
RMSE PITCHES

Methods n = 50 n = 100 n = 150 n = 200

Mathematical 0 0 0 0
Data-driven NA NA NA NA
6 GP 5.23 34.49 58.02 5.17
6 GP PER 0.89 0.26 0.13 0.05
Dir IPP 0 0 0 0
DirCon IPP 0 0 0 0
QCon 0.53 0.05 0.02 0.01

The RMSE in [µm] of the pitches of the lines predicted by the mod-
els. The data-driven model does not produce lines. The mathematical
model, the Dir IPP and DirCon IPP model produce lines with a pitch
that is exactly zero, apart from machine accuracy.

In contrast to the data-driven, the 6 GP and the 6 GP PER

model, the Dir IPP model produces lines that do fulfil the

Grassmann-Plücker. This is achieved by construction. For the

smallest dataset, this approach resulted in better predictions.

For larger datasets, the gain in accuracy in comparison to the

other models vanishes. Furthermore, this model requires only

five GPs, which take less time to train than the six GPs of the

6 GP PER model.

The model with the linear differential equation constraint,

also always produces lines with a pitch of zero. Moreover, the

constraint on the norm of the direction of the line, as described

in Eq. 6, yields predictions that are slightly better than those of

the models without the constraint. This effect diminishes as the

datasets grow. Since these datasets have lines with a unit norm

for their direction vectors, the models all produce lines with a

direction vector with a norm close to one. This constraint only

has an effect on a minor defect in the prediction. Thus making

the overall gain from this constraint minimal. Only when the

dataset is relatively small, and the predicted directions tend

to deviate from points on the unit sphere does this model

outperform the other ones.

The model with the quadratic reparametrization is trained

on both constraints simultaneously. Therefore, it finds an

optimum that satisfies both. This results in sacrificing one

constraint in favour of the other one. When trained on the

smallest dataset, it is outperformed by the other models. When

trained on bigger datasets, it outperforms the other models

significantly.

In order to construct multi-output GPs, the number of the

output dimension is transformed into an input variable. The

new set of outputs are the components of the original dataset

stacked in a single column of scalers. For the model DirCon

IPP, which is based on the differential equation, this yields

a dataset that has three times as many entries. The dataset

for the model QCon, with the quadratic reparametrization,

is composed of twenty-one times more entries. This is an

important point of concern. With n the number of data points

in a dataset, the standard complexity of the Gaussian process

is O(n3) for computation and O(n2) for storage [31]. Herein

lies the biggest trade-off of the models proposed. There is a

gain in quality of the predictions, but at a significant time

penalty.

In the last two decades, several approaches have been

proposed to overcome the hurdle of large datasets for Gaussian

processes. An overview can be found in [31]. This would be a

fruitful area for further work, especially for the QCon model.

Furthermore, in this work, we made no assumption about

the relationship between the straight lines. The implemented

covariance functions assume smoothness in the Plücker co-

ordinates when varying the rotation angles of the mirrors.

However, this is still a naive approach that can be taken further

by incorporating the relationship between the straight lines

into the model. Although, when doing so, the model becomes

more complex and less data-driven, which was one of the

strong shoots of the approach taken. More research is needed

to assess where the optimum lies of the hybrid mix between

fully data-driven and purely mathematical models.

VI. CONCLUSION

We presented two constrained models that, given a pair of

rotation angles for the mirrors of a galvanometric setup, predict

a straight line. Improving the kernel to take into account the

manifolds on which the inputs and outputs live, leads to better

predictions. This is of great importance for everyone who

works with setups that require an accurate calibration to guide

a laser beam.

However, this comes with a considerable extra computa-

tional time for the training of the GP(s), as the kernels become

more complex and the datasets are re-parametrized into larger

volumes. Even though this increase in training time is only an

issue during the calibration process itself. It is not an issue at

inference time when predictions are being made.

By means of cross-validation, we investigated our models

on real world data in order to improve the calibration of a

Polytec PSV-QTec scanning laser Doppler vibrometer. After

calibration, we investigated the accuracy of the predicted laser

beams and points those beams hit in a real world scenario.

ACKNOWLEDGMENT

This research has been funded by the University of Antwerp

(BOF FFB200259, Antigoon ID 42339).

REFERENCES

[1] X. Sun, B. Zhou, W. Xie, and Y. Zhang, “The design of laser
scanning galvanometer system,” in The International Conference on

Photonics and Optical Engineering (icPOE 2014), A. Tian, A. Asundi,
W. Liu, and C. Zhang, Eds., vol. 9449, International Society for Optics
and Photonics. SPIE, 2015, pp. 676 – 684. [Online]. Available:
https://doi.org/10.1117/12.2082774

[2] P. Castellini, G. M. Revel, and E. P. Tomasini, “Laser doppler vibrom-
etry,” in An Introduction to Optoelectronic Sensors. World Scientific,
2009, pp. 216–229.

[3] H. El-Din Fawzy, “3d laser scanning and close-range photogrammetry
for buildings documentation: A hybrid technique towards a better
accuracy,” Alexandria Engineering Journal, vol. 58, no. 4, pp.
1191–1204, 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1110016819301061

[4] H.-K. Park, J.-W. Chung, and H.-S. Kho, “Use of hand-held
laser scanning in the assessment of craniometry,” Forensic Science

International, vol. 160, no. 2, pp. 200–206, 2006. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0379073805005773

[5] T. Fersch, R. Weigel, and A. Koelpin, “Challenges in miniaturized
automotive long-range lidar system design,” in Three-Dimensional

Imaging, Visualization, and Display 2017, B. Javidi, J.-Y. Son,
and O. Matoba, Eds., vol. 10219, International Society for Optics
and Photonics. SPIE, 2017, pp. 160 – 171. [Online]. Available:
https://doi.org/10.1117/12.2260894



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 71?, NO. ?, AUGUST 2021? 8

[6] Y. Zhang, L. Wang, X. Jiang, Y. Zeng, and Y. Dai, “An efficient lidar-
based localization method for self-driving cars in dynamic environ-
ments,” Robotica, p. 1–18, 2021.

[7] A. Manakov, H.-P. Seidel, and I. Ihrke, “A Mathematical Model and
Calibration Procedure for Galvanometric Laser Scanning Systems,” in
Vision, Modeling, and Visualization (2011), P. Eisert, J. Hornegger, and
K. Polthier, Eds. The Eurographics Association, 2011.

[8] X. Meng, G. Cao, X. Li, and Q. Lv, “2-d scanning galvanometer
error analysis and its correction,” Journal of Physics: Conference

Series, vol. 1345, p. 022068, nov 2019. [Online]. Available:
https://doi.org/10.1088/1742-6596/1345/2/022068

[9] J. R. Long, V. G. Gregoriou, and P. J. Gemperline, “Spectroscopic
calibration and quantitation using artificial neural networks,” Analytical

Chemistry, vol. 62, no. 17, pp. 1791–1797, 1990. [Online]. Available:
https://doi.org/10.1021/ac00216a013

[10] P. J. Gemperline, J. R. Long, and V. G. Gregoriou, “Nonlinear
multivariate calibration using principal components regression and
artificial neural networks,” Analytical Chemistry, vol. 63, no. 20,
pp. 2313–2323, 1991. [Online]. Available: https://doi.org/10.1021/
ac00020a022

[11] T. Næs, K. Kvaal, T. Isaksson, and C. Miller, “Artificial neural
networks in multivariate calibration,” Journal of Near Infrared

Spectroscopy, vol. 1, no. 1, pp. 1–11, 1993. [Online]. Available:
https://doi.org/10.1255/jnirs.1

[12] D.-M. Woo and D.-C. Park, “Implicit camera calibration using an
artificial neural network,” in Neural Information Processing, I. King,
J. Wang, L.-W. Chan, and D. Wang, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 641–650.

[13] J. Shi, Z. Zhu, J. Zhang, R. Liu, Z. Wang, S. Chen, and H. Liu, “Cal-
ibrcnn: Calibrating camera and lidar by recurrent convolutional neural
network and geometric constraints,” in 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2020, pp. 10 197–
10 202.
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