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Stacking Ensemble Learning for Non-Line-of-Sight
Detection of Global Navigation Satellite System

Yuan Sun and Li Fu

Abstract— While the global navigation satellite system (GNSS)
has been widely used to provide high-precision location services
in many applications, it usually suffers from performance degra-
dation due to non-line-of-sight (NLOS) reception. As the received
NLOS signals might have great measurement errors especially
in urban canyons, they should be detected to mitigate the errors
contaminating the positioning systems. However, the NLOS detec-
tion is quite challenging as the accuracy rate is usually highly
related to the surrounding environment the receiver is located
in. To address this problem, we propose a stacking ensemble
learning (SEL) method for the NLOS detection of GNSS. First,
satellite measurement features are extracted from the GNSS raw
measurements via a designed data processing module. Then,
they are input to the SEL module consisting of two levels of
machine learning models. In the first level, a support vector
machine (SVM) and an extreme gradient boosting (XGBoost)
are adopted in parallel, and the outputs of the fist-level models
are input to the second-level logistic regression (LR) to obtain
NLOS predictions. The proposed SEL module combines the views
of different models to the measurement features to address the
shortcomings of each single model and improve the model’s
generalization. Experimental results on real GNSS observations
in urban canyons show that the proposed method outperforms
the baseline machine learning methods with obvious detection
accuracy improvements.

Index Terms— Ensemble learning, global navigation satellite
system (GNSS), machine learning, non-line-of-sight (NLOS).

I. INTRODUCTION

RECENTLY, the global navigation satellite system
(GNSS) is playing an increasingly important role in

a wide range of applications, such as intelligent transporta-
tion system (ITS) [1], [2], location-based service (LBS) [3],
and artificial intelligence of things (AIoT) [4]. Nevertheless,
the GNSS positioning could exhibit a serious error caused
by the notorious non-line-of-sight (NLOS) reception [5]–[7],
especially in urban environments—the direct line-of-sight
(LOS) signal is blocked while the signal is received only
via reflections. As the reflected GNSS signal is propagated
through an extra path than the corresponding direct LOS signal
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that the user does not receive, it will introduce a bias in
the GNSS pseudorange measurement and cause a significant
performance degradation [8]. Thus, to improve the accuracy
of GNSS receivers, NLOS signals should be countered for the
positioning system.

To address this issue, a natural idea is to detect NLOS from
all GNSS signals and then eliminate it prior to the position
calculation. However, the NLOS detection of GNSS is always
a challenge problem, due to it being closely related to the
environment surroundings of the user [9]. On the one hand, the
environment might be complicated with different structures of
buildings or trees, while NLOS signals might vary in different
environments and can be difficult to model for detection.
On the other hand, different from the multipath effect [10] that
the GNSS user receives both reflected and direct signals at the
same time, the user in NLOS reception phenomena does not
receive the direct LOS signal of a satellite but only receives
its reflected pattern. Thus, it is challenging to detect NLOS
without a reference of the corresponding LOS signal.

A variety of studies on the NLOS detection of GNSS have
been conducted in the navigation domain. Typically, GNSS
measurement features [11] that consist of raw measurements
and/or the quantities calculated from the measurements are
used for NLOS detection. Related work can be divided into
three categories according to how to use measurement features.

1) Single measurement feature of GNSS signals is used to
detect NLOS.

2) A combination of multiple measurement features of
GNSS signals are used to detect NLOS.

3) A combination of multiple measurement features of
GNSS signals and other sensors are used to detect
NLOS.

As for the first category, simple satellite measurements are
usually adopted to directly detect NLOS signals via compar-
ison with an empirical threshold. The measurements include
carrier-to-noise ratio C/N0 and satellite elevation angle [12].
However, the strategies based on the simple measurements
would not work as the NLOS signals might not follow the
expected behavior. For example, the strong reflection of GNSS
signals with high C/N0 will result in detection missing, and
the satellites with low elevation angles might not be blocked
by surrounding buildings [13].

To address the shortage of single measurement, the sec-
ond category of studies focuses on using multiple satellite
measurements to better distinguish NLOS and LOS signals.
Considering the excellent performance of machine learning
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in detection and classification tasks, more work about how
to use machine learning to improve the detection perfor-
mance of NLOS has been proposed. Hsu [14] adopted a
support vector machine (SVM) to an LOS/NLOS classifica-
tion task based on multiple measurement features, including
the difference between delta pseudorange and pseudorange
rate. Sun et al. [15] used the three measurement features of
C/N0, pseudorange residuals, and satellite elevation angle
with a gradient boosting decision tree (GBDT)-based clas-
sification algorithm and achieved significant improvement in
NLOS detection rate. Zhang et al. [16] compared different
machine learning methods, including SVM, K-nearest neigh-
bors (KNN), neural network (NN), and decision tree (DT)
on NLOS detection. In their work, the experimental results
showed that the SVM outperformed other methods in different
urban scenarios. Xu et al. [11] also extended the measurement
features for SVM using signal-to-noise ratio (SNR), pseudor-
ange, elevation angle, and so on.

Regarding the methods of the third category, extra sensors
are applied as aids to improve the performance of GNSS
NLOS detection. For example, a fish-eye camera was applied
to detect the borderline between the sky and the obstacles from
the colored fish-eye image to exclude NLOS satellites [17].
A fish-eye camera was also adopted to generate a visibility
mask to improve the detection of NLOS [18]. Another method
is using the 3-D light detection and ranging (LiDAR) to
provide surrounding environment obstacles to the user and
detect the NLOS signal [19], [20]. However, performance of
these methods relies on the image processing, which might be
unstable to illumination conditions or weather conditions.

Besides the detection scheme, NLOS mitigation is another
widely studied solution, which aims to directly reduce the
GNSS positioning errors caused by NLOS reception. The
existing mitigation methods for GNSS signals can be divided
into hardware-based methods and methods based on data
processing [5]. First, as for the hardware-based methods, the
choke-ring antenna-based method is usually used to give low
gains to low elevation satellites and mitigate the effect of
reflected GNSS signals [21]. However, as referred in [22],
the method exhibits little protection against reflected signals
with higher elevation. Receiver-based methods also belong
to the hardware-based methods, such as delay lock loop
[23], [24], which separates LOS and reflected signals via
feedback loop. Nevertheless, the method might suffer from
performance degradation when the direct LOS is blocked in
NLOS reception phenomena. Second, considering the high
cost and inconvenience of hardware updating, NLOS mitiga-
tion methods based on data processing attract more attention
in the navigation domain. For example, the measurements of
C/N0 and elevation angle were used for weighting adjust-
ment positioning via downweighting the effect of NLOS
signals [25], [26]. However, as mentioned in the first category
of the detection methods, the performance might be unstable,
because the two measurements of NLOS vary greatly in
different environments. Alternatively, based on the assumption
that NLOS measurements produce a less consistent pseudo-
range residual or navigation solution, consistency checking
techniques were explored for NLOS mitigation [27]–[29].

However, the performance of consistency checking will meet
challenges when a large proportion of the signals are NLOS
or multipath contaminated [22].

By comparing with the mitigation and detection methods
for GNSS NLOS mentioned earlier, the main advantage of
detection methods is that they could eliminate the contami-
nated measurements prior to the position calculation. Ideally,
with a much larger choice of signals from multi-constellation
GNSS, optimal position results might be obtained by selecting
only those signals least contaminated by NLOS and excluding
the rest [25].

However, in the existing works of NLOS detection, more
effort is paid on measurement feature selection in GNSS sig-
nals or other sensors, and the machine learning model adopted
to detect NLOS is usually a simple version. In practice, these
existing methods using a single model may fall into a local
optimal solution [30]. As the NLOS detection of GNSS is
highly dependent on the surroundings, the existing machine
learning models might not have a good generalization to the
environment. To alleviate this problem, stacking ensemble
learning (SEL) has shown great potential via blending different
and heterogeneous base models with particular parameters
to reduce the bias of each single model and decrease the
generalization error [31]. In this article, we proposed an
SEL for the NLOS detection of GNSS to further improve
the performance of GNSS positioning. The proposed SEL
consists of two levels of different machine learning models.
It comprehensively considers the processing results of different
first-level machine learning models on all of these features and
makes the final decision of NLOS detection via a second-level
machine learning model. The main advantage of SEL is that
it combines different machine learning methods from different
views to address the shortcomings of each single model.
Experimentally, as for NLOS detection tasks of GNSS, the
proposed SEL significantly improves the detection accuracy
in comparison with the baseline machine learning methods.
The main contributions of our work are shown as follows.

1) To the best of our knowledge, this is the first work using
SEL for the NLOS detection of GNSS.

2) We propose a new SEL method for the NLOS detec-
tion of GNSS to fuse different models’ advantages on
detection tasks.

3) We evaluate the effectiveness of our method with real
GNSS observation data, and our method significantly
outperforms the baseline machine learning methods with
obvious detection accuracy improvements.

The remainder of this article is organized as follows.
Section II is the details of the proposed SEL for NLOS
detection of GNSS, including the descriptions of measure-
ment features used for detection and the proposed SEL
method. Section III shows the experimental results and dis-
cussion. Finally, the conclusions and future work are given in
Section IV.

II. PROPOSED METHOD

In this section, the proposed SEL for NLOS detection of
GNSS is explained in detail. First, the system architecture
of the proposed method is presented. Then, the data process
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Fig. 1. System architecture of the proposed SEL for NLOS detection of GNSS, which mainly consists of the data processing and SEL.

of measurement feature extraction is designed for machine
learning. Finally, the ensemble learning method is proposed
for GNSS NLOS detection.

A. System Architecture

The goal of this article is to develop an NLOS detection
method for GNSS measurements of a receiver. To achieve
this, a method based on SEL is proposed, which combines
different machine learners to improve the prediction results
than each individual model. The system architecture of the
proposed SEL for NLOS detection of GNSS is shown in Fig. 1,
which mainly consists of two modules, i.e., data processing
and SEL, as follows.

First, the received GNSS raw measurements {xi |i ∈ N} of
a receiver are input to the data processing module, with N
the number of received GNSS satellites at a sampling time.
In this article, the extracted measurement features f ∈ R9 of a
observed satellite are a 9-D vector, which consists of pseudo-
range p ∈ R, SNR sn ∈ R, elevation angle e ∈ R, azimuth
angle a ∈ R, pseudorange residual pr ∈ R, pseudorange rate
consistency prc ∈ R, and satellite positions s ∈ R3. More of
other features will be further researched in our future work.

Then, the measurement features of each satellite are input
to the proposed SEL module, which consists of two levels
of different machine learning models. In practice, there are
many individual models that can be adopted into the first
and second levels of the SEL framework.1 Empirically, in the
first level, we consider three state-of-the-art machine learning
models, i.e., SVM, extreme gradient boosting (XGBoost), and
random forest (RF) [32]. All of these models are widely
and successfully used in many real applications. As for the
second level, we experiment with the widely used logistic
regression (LR) and XGBoost to ensemble the prediction
outputs of the first level. To make a balance between the
final accuracy and the computational cost, in our method,
there are two individual first-level machine learning models,
i.e., SVM [33] and XGBoost [34]. Then, the prediction results
of these first-level models are concatenated and input to the

1The individual models in ensemble learning can also be ensemble learners.

TABLE I

EXTRACTED MEASUREMENT FEATURES OF A VISIBLE SATELLITE FOR

GNSS NLOS DETECTION, WHICH CONSIST OF THE GNSS RAW

MEASUREMENTS (R) AND MEASUREMENT FEATURES
VIA DATA PROCESSING (P)

second-level LR [35]. The choice of these machine learning
models will be tested in Section III. Note that these models
of the proposed method are trained on a training dataset.
By combining the outputs of different models, the SEL module
outputs the final NLOS predictions of each received satellite.

B. Data Processing

Measurement feature is an important premise in determining
the machine learning performance. In this section, our purpose
is to design a data processing modular to obtain measurement
features input to the followed SEL modular and improve
the NLOS detection accuracy. The selected measurement fea-
tures f consist of the GNSS raw measurements and its simple
processing, as shown in Table I. The raw GNSS measure-
ments include SNR sn , pseudorange p, and satellite positions
s = {s1, s2, s3}, where s1, s2, and s3 are the three dimension
positions of a visible satellite in the Earth-centered Earth-
fixed (ECEF) coordinate system, respectively. Nevertheless,
empirically, the relation between such raw measurements and
NLOS can be hard to model [36]. Thus, based on the raw
measurement, we add some measurement features that may
be more relevant to NLOS by performing some simple data
processing methods. These features include elevation angle e,
azimuth angle a, pseudorange residual pr , and pseudorange
rate consistency prc. Overall, the 9-D measurement feature
vector can be obtained for each satellite signal at a sampling
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time. The calculation details for these quantities via data
processing are shown as follows.

1) Elevation Angle: The satellite elevation angle e can be
estimated by e = sin−1(̂rU /�̂r�), where r̂ ∈ R3 is the
estimated satellite position in the east-north-up (ENU)
coordinate system with respect to the receiver’s position,
with r̂E , r̂N , and r̂U the “East,” “North,” and “Up”
components, respectively. As the receiver’s positioning
error is negligible compared with the distance between
the satellite and the receiver, the satellite elevation angle
can be estimated with an acceptable accuracy using the
estimated measurements [15].

2) Azimuth Angle: Similar to the calculation of the elevation
angle, the satellite’s azimuth angle a can be calculated
by a = tan−1(̂rE /̂rN ).

3) Pseudorange Residual: The pseudorange residual pr

is the satellite’s corresponding item of the esti-
mated pseudorange residual vector � = �ρ −
H(HT H)−1HT � ρ, where �ρ ∈ RN is the difference
between the pseudorange measurements and the geomet-
ric distances from the estimated receiver position to the
satellites; H is the satellite geometry matrix [11].

4) Pseudorange Rate Consistency: The pseudorange rate
consistency prc can be estimated by prc = pD − pp,
where pp is the difference between the pseudor-
ange measurements of two adjacent epoches, and
pD = −λ fD � t is the pseudorange rate from Doppler
shift with λ the carrier wavelength, fD the Doppler shift
measurement of the satellite, and �t the interval of two
adjacent epoches.

C. SEL Method

As discussed in Section I, ensemble learning is adopted
to combine several individual models to obtain better per-
formance of NLOS detection under different environments.
In general, the models of the proposed method are trained
and evaluated on the training dataset Dt and the evaluation
dataset De, respectively.

Given the training dataset Dt consists of feature-label pairs
{ft , yt}, with yt ∈ {0, 1} the label of the measurement feature
sample ft , the proposed SEL method is to train a model
that can classify the NLOS (yt = 1) and LOS (yt = 0) of
GNSS signals with a high accuracy. Similarly, the feature-label
pairs of the evaluation dataset De can be denoted as {fe, ye}.
In particular, a two-level SEL method is proposed to combine
heterogeneous weak models to produce a strong model that is
less biased than its component weak models. In the first level,
several models are combined in parallel to output different
weak model predictions from different views. In the second
level, there is a machine learning model, which is trained to
output the final prediction based on the predictions of the first
level.

Various combination strategies of basic machine learn-
ers can be selected to the SEL method, while the method
needs to make a balance between the final accuracy and
the computational cost. In the proposed SEL method for
GNSS NLOS detection, the first-level models are two state-
of-the-art machine learning methods, including SVM [11] and

XGBoost [34]. Then, the predictions of these first-level models
are concatenated and input to the second-level LR. A brief
introduction to the principles of the selected machine learning
models is provided as follows.

First-Level Model ①—SVM: The SVM performs structural
risk minimization instead of minimizing the absolute value of
an error, which addresses the overfitting issues by balancing
the model’s complexity against its success at fitting the training
data. It has also been proved to be better than other base
learners in the GNSS NLOS detection tasks [11]. In par-
ticular, similar to [11], we adopt the linear SVM classifier,
which is trained to find the optimal separating hyperplane
to classify inputs into two different categories. Given the
training dataset Dt , the SVM model can be trained to solve
the following optimization problem:

min
w,b

1

2
�w�2 (1)

s.t. (2yt − 1)((ft/σ)T w + b) ≥ 1 (2)

where parameters σ ∈ R, w ∈ R9, and b ∈ R are the kernel
scale, the vector of fit linear coefficients, and the bias of the
linear SVM classification, respectively.

When the SVM model is trained to convergence, we can
obtain the model parameters w̃ ∈ R9 and b̃ ∈ R. Then, given
an input measurement feature vector fe for evaluation, the
score of the linear SVM classification is calculated by

SSVM(fe) = (fe/σ)T w̃ + b̃. (3)

The value range of the score in (3) is {−∞,∞}, while the
prediction results of other base classifiers in the proposed SEL
could be positive probabilities. To make the prediction results
of different base learners to be consistent, the probabilities that
over NLOS of the SVM classification are handled by sigmoid
normalizing, that is,

pSVM(fe) = eSSVM(fe)

1 + eSSVM(fe)
. (4)

With (4), the score of the linear SVM classification is
normalized to {0, 1}. In our experiments, we find that the
normalization of SVM score is required for training.

First-Level Model ②—XGBoost: The boosting method
GBDT [15] or its improved version XGBoost [34] has proved
to be a fast and accurate way in GNSS NLOS detection and
achieved the state-of-the-art results on various classification
tasks. It is an ensemble of tree-based methods that applies
the principle of boosting weak learners to improve the final
prediction accuracy. The boosting method is an ensemble
model by itself but it can still benefit if it is ensemble with
other models [32]. In the proposed SEL method, we adopt
XGBoost as a base learner to obtain a stronger model for
GNSS NLOS detection.

The XGBoost method applies several base models,
e.g., classification and regression trees (CARTs), as weak
learners and then creates ensemble trees to boost the perfor-
mance via optimizing a regularized objective function [34].
It is trained in an additive way: the ensemble sequentially
adds weak learners that learn from the residual of the pre-
vious ensemble. Given the training dataset Dt consists of
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Fig. 2. Eight static locations (in orange) and one moving trajectory (in
yellow) for GNSS data collection in Hong Kong urban canyon (around latitude
22.299◦ and longitude 114.177◦).

feature-label pairs {ft , yt }, the i th regularized objective func-
tion of the additive training method can be denoted as

Li =
∑

{ft ,yt }∈Dt

l(yt , Gi−1(ft) + gi(ft )) + �(gi) (5)

where gi(·) is the weak learners at the i th boosting round,
Gi−1(·) = ∑i

k=0 gk(·) is the ensemble at the (i -1)th boosting
round, l(·) is the log-likelihood loss function between the
label yt and the models’ prediction output, and �(·) is
the regularization function to penalize model complexity of
the weak learners gi of XGBoost.

After the additive training is terminated, output G I (·) as
the final classifier, where I is the number of boosting rounds.
Given an input measurement feature vector fe for evaluation,
the probabilities of NLOS of the XGBoost classification can
be obtained as

pXGBoost(fe) = G I (fe). (6)

Second-Level Model—LR: The LR method is a simple but
effective classifier, which is usually adopted to the ensemble
learning framework. It is trained to improve the system’s final
decision based on the prediction of each individual model in
the first level. The objective function for training is the log-
likelihood function

LLR =
∑

{ot ,yt }∈Dt

[
yt(oT

t u + v) − log(1 + eoT
t u+v )

]
(7)

where ot = [pSVM(ft), pXGBoost(ft)] ∈ R2 is the concatenated
predictions of the individual models in the first level associated
with the training features ft , and u ∈ R2 and k ∈ R are the
weight and the bias of the LR method to be trained.

In the process of evaluation, the probabilities of NLOS of
the LR method are obtained as

pLR(oe) = eoe
T ũ+ṽ

1 + eoe
T ũ+ṽ

(8)

where oe = [pSVM(fe), pXGBoost(fe)] ∈ R2 is the concatenated
predictions of the individual models in the first level associated

Fig. 3. Sky plot of the start point and endpoint in the moving trajectory with
the satellite visibility labeled from ground truth.

with the evaluation features fe, and ũ ∈ R2 and ṽ ∈ R are the
weight and the bias of the LR model that has already been
trained.

Finally, the predicted probabilities of NLOS pLR(oe) need
to be rounded to the closest value of 1 or 0 to output the
NLOS predictions.

III. RESULTS AND DISCUSSION

In this section, three separate experiments on real GNSS
data derived from urban canyons are designed to test the
effectiveness of the proposed SEL method for GNSS NLOS
detection. The first experiment is to compare different choices
of the individual models in the proposed SEL method. The sec-
ond one is to evaluate the performance of the proposed method
compared with the baseline methods in an in-domain scenario
associated with evenly random sampling. The final experiment
is to test the generalization performance of the proposed
method compared with the existing methods in out-domain
scenarios associated with different reception locations and
states of motion, respectively.

A. Experimental Setup

1) Data Preparation: In our experiments, two public real
datasets2 of GNSS receivers in urban canyons are used (see
Fig. 2): 1) static data—dataset collected at eight different static
locations via a UBLOX NEO M8T receiver at different time in
June 2018 [11] and 2) dynamic data—dataset collected over
a trajectory (about 500 meters) via the moving receiver in
May 2021 [37]. With 1-Hz sampling rate, the time duration
of each static point is about 20 min and is about 90 s for the
dynamic data. In particular, the ground truth location and the
surrounding 3-D building model of each sample are processed
to obtain the NLOS or LOS label for the datasets [11].
The examples of the sky plot of the dynamic and static
data are shown in Figs. 3 and 4, respectively. As the GNSS
observations vary over time, the sky plot of each static receiver
is plotted based on the last epoch, and the sky plot of the start
and end epoches for the moving receiver is plotted. Also, the
proportions of NLOS and LOS signals in each dataset are
counted (see Figs. 5 and 6). The sky plots and NLOS/LOS
proportions show that the reception environments are quite

2The datasets are downloaded from the website of Intelligent Positioning
and Navigation Laboratory (IPNL): https://www.polyu-ipn-lab.com/
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Fig. 4. Sky plot of different static locations with the satellite visibility labeled from ground truth.

Fig. 5. SNR distributions and NLOS/LOS proportions in different static locations.

Fig. 6. SNR distributions and NLOS/LOS proportions in the moving
trajectory.

different for the datasets. The data at each sampling time are
pre-processed to obtain the measurement features in Table I.

To evaluate the performance of the proposed method in
different settings, the GNSS data are split into training datasets

and evaluation datasets in two manners. First, we randomly
select a subset of the collected data samples as the training
set and use the remaining samples as the test set to obtain
optimal first/second-level models. Second, considering the
performance of NLOS detection is usually highly related to
the surrounding environment, we also test the generalization
of our proposed method in environments that are unseen to the
model during training. In particular, we split the dataset into
training datasets and evaluation datasets derived from different
locations and states of motion, respectively. The details about
the experimental scenarios are listed as follows.

1) In-Domain Scenario I: All of the data samples, collected
at the eight static locations, are mixed together. Then,
90% of the samples are randomly selected for model
training, and the 10% remaining are used for evaluation.

2) Out-Domain Static Scenario: Among the data samples
collected at the eight static locations, we select the
samples of the arbitrary seven locations out of the eight
locations for model training and then use the remain-
ing one location for model evaluation. Thus, we can
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TABLE II

ACCURACY RATES AND COMPUTATIONAL COSTS OF DIFFERENT STRATEGIES FOR MODEL SELECTION ON THE IN-DOMAIN SCENARIO I , THE MEAN
VALUE OF THE STATIC OUT-DOMAIN SCENARIO O∗ , AND THE OUT-DOMAIN DYNAMIC SCENARIO D, WITH “�”

THE MODEL SELECTION AND “×” THE MODEL IS NOT USED

obtain eight experimental scenarios denoted as Oi , with
i ∈ {1, . . . , 8}.

3) Out-Domain Dynamic Scenario D: All samples col-
lected at the eight static locations are mixed for model
training, and the dynamic data are used as the testing
set.

2) Methods and Implementation: We compare the proposed
SEL method with state-of-the-art NLOS detection methods
based on machine learning, including SVM [11], GBDT [15],
and RF [38]. We also consider the conventional SNR clas-
sification method [12] as a comparison. Similar to [11], the
threshold of the SNR classification is set to 35 dB. The SNR
distributions of LOS and NLOS in different static locations and
the moving trajectory are shown in Figs. 5 and 6, respectively.
Note that the measurements of NLOS signals are significantly
smaller than that of LOS signals, while the SNR distributions
for NLOS and LOS signals are quite different for different
datasets. In our experiments, each machine learning model in
the proposed SEL method is conducted using default model
hyperparameters in scikit-learn [39].

3) Software/Hardware: All of our experiments were con-
ducted using PyCharm software on a PC with a Core i7 CPU
(2.93-GHz with 8-GB memory).

B. Models of SEL

The performance of different model selection strategies on
GNSS NLOS detection is shown in Table II. Experimental
results show that the accuracy rates of strategy 5 (first level:
SVM + XGBoost, second level: LR) and strategy 7 (first level:
SVM + XGBoost + RF, second level: LR) are similar, which
largely outperform other strategies in the in-domain scenario,
the out-domain static scenarios, and the out-domain dynamic
scenario.

In the results, the more individual models used in the
first level, the higher the accuracy rate. The possible reason
would be that the SEL method combines various views to the
features from different heterogeneous models and improves
the NLOS detection performance. However, one can also
find that simply increasing the number of models in the first
level may sometimes not improve significantly. For example,
compared with strategy 5, strategy 7 adds RF in the first level.
The average accuracy of the scenarios is only improved by

TABLE III

ACCURACY RATES OF DIFFERENT GNSS NLOS DETECTION

METHODS ON THE IN-DOMAIN SCENARIO

0.42%, but the computational cost of each sample for testing
is relatively increased by 33.3%.

Moreover, the importance of each model’s impact on the
results varies widely. In the first level, the importance of
these three candidate models is SVM, XGBoost, and RF
from high to low. Numerically, compared with strategy 7,
strategy 1 (strategy 3 or strategy 5) removes SVM (XGBoost
or RF), while the average accuracy rate decreases 8.60%
(2.82% or 0.42%). In the second level, the performance of
LR consistently outperforms XGBoost in terms of accuracy
rate and computational cost. Compared with XGBoost, LR is
more simple and efficient in the second level. Moreover, the
properties of LR and the first layer models are more hetero-
geneous, which might help the model learn from ensemble
features.

In summary, to make a balance between the accuracy rate
and the computational cost, we select strategy 5 as the models
of the proposed SEL method.

C. Results of the In-Domain Scenario

To evaluate the performance of model training, we design
the in-domain scenario and use the pre-split training dataset for
model optimization. Then, we test the models’ performance on
the test dataset. The accuracy rate and the confusion matrix
on the in-domain scenario are shown in Tables III and IV,
respectively.

In Table III, our experimental results of the in-domain
scenario show that the proposed SEL method achieves a
very significant performance improvement compared with the
baseline methods. The existing methods based on machine
learning [11], [15], [38] outperform the traditional SNR
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TABLE IV

CONFUSION MATRIX OF DIFFERENT GNSS NLOS DETECTION METHODS ON THE IN-DOMAIN SCENARIO

TABLE V

ACCURACY RATES OF DIFFERENT GNSS NLOS DETECTION METHODS ON THE OUT-DOMAIN SCENARIOS

method [12], while the SVM method is the best one.
Xu et al. [11] and Zhang et al. [16] also found the same
results. Although the GBDT method or the RF method is
weaker than the SVM method when used alone in NLOS
detection tasks, it can still benefit the SEL methods when
combining these individuals together. In the experiments, the
proposed SEL method consists of the SVM model and the
XGBoost model (a type of improved GBDT) in the first level
and the LR model in the second level. Compared with the
baseline method that adopts SVM [11], GBDT [15], or RF [38]
alone, the proposed SEL method improves the accuracy rate
of GNSS NLOS detection by 3.92%, 5.69%, and 8.59%,
respectively. Moreover, the values of the confusion matrix also
show that the proposed SEL method consistently outperforms
the baseline machine learning methods in the GNSS NLOS
detection tasks (see Table IV).

D. Results of the Out-Domain Scenarios

To evaluate the generalization of the proposed SEL method,
two kinds of out-domain scenarios are designed to test the
performance on the environment that the model does not see
during training. The accuracy rate and the confusion matrix
on the out-domain static scenario and out-domain dynamic
scenario (see Tables V and VI, respectively) are discussed as
follows.

1) Out-Domain Static Scenario: As shown in Table V, the
proposed SEL method shows a strong performance compared
with the baseline methods on the out-domain static scenarios.
In particular, the proposed SEL achieves the highest accuracy
rates in seven (Oi , with i ∈ {2, . . . , 8}) of the eight experi-
mental settings, while the performance on O1 is comparable
with the best result of SVM [11]. On average of the accuracy
rates in the out-domain static scenarios (i.e., O∗), the proposed
SEL method significantly outperforms the baseline methods,
including the SNR method [12], SVM [11], GBDT [15], and
RF [38] by 8.99%, 2.86%, 5.04%, and 7.47%, respectively.
Also, the confusion matrix in Table VI shows that the pro-
posed SEL method has a good generalization performance for
different environments, with high detection accuracy and low
false detection.

2) Out-Domain Dynamic Scenario: Merely for brevity, the
results of our method on the out-domain dynamic scenario
are presented in the last column of Tables V and VI. The
results indicate that the proposed SEL method achieves the
best accuracy rate when compared with the existing meth-
ods. Numerically, it outperforms the methods of SNR [12],
SVM [11], GBDT [15], and RF [38] by 10.64%, 2.86%,
5.45%, and 9.74%, respectively. Although trained on static
data completely, our SEL method does not suffer from large
performance degradation when evaluated on the dynamic
dataset. A possible reason is that our method is conducted
on the measurement features of each epoch, which is not very
sensitive to the dynamic features caused by receiver moving.
In our future work, more dynamic dataset will be collected
for model training to improve the performance on realistic
applications.

E. Qualitative Analysis

To further evaluate the effectiveness of our method, we ana-
lyze the results from the following two perspectives.

First, the time series of accuracy rates for our SEL method
is plotted to qualitatively assess the performance stability
(see Fig. 7 for the out-domain static scenarios, and Fig. 8
for the out-domain dynamic scenario). The results of each
experimental scenario show that the performance of SEL over
different epochs varies within a certain range. Numerically,
the standard deviation of the accuracy rate ranges from
5.53 to 13.58 points in the experimental scenarios. A possible
reason for the larger variances is the surrounding environ-
ment the receiver is located in. For example, O4 exhibits
the largest standard deviation (13.58 points) and the lowest
average accuracy (75.45%) than other experimental scenar-
ios. It might be caused by the highest NLOS proportion in
O4 (88%, see Fig. 5), which indicates a much challenging
reception environment to the receiver. Conversely, O1 and
O8 achieve the smallest two standard deviations (5.53 and
8.19 points) and the highest two accuracy rates (94.23%
and 90.75%). The reason might be that the two scenarios are
simple for NLOS detection tasks with low NLOS proportions
(43% and 19%) or easily distinguishable SNR measurements
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TABLE VI

CONFUSION MATRIX OF THE PROPOSED SEL METHOD ON THE OUT-DOMAIN SCENARIOS

Fig. 7. Number of visible LOS and NLOS, and accuracy rates in time series for the out-domain static scenarios.

Fig. 8. Number of visible LOS and NLOS, and accuracy rates in time series
for the out-domain dynamic scenario.

(see Fig. 5). Regarding the time series of performance on the
dynamic data, our SEL method still achieves relatively stable
accurate rates even for a moving receiver in urban canyons
(see Fig. 8).

Besides the time series analysis on each epoch with only
about ten observed satellites (might cause statistical error),
we also analyze how the performance of our method changes
as the proportions of NLOS signals in different static locations
increase. Combining the results from Fig. 5 and Table V,
the proportion of NLOS signals is negatively correlated with
the accuracy rate of our SEL method. For example, among

the top five (O1, O3, O4, O5, and O6) of the eight static
datasets in terms of NLOS proportion, the accuracy rates for
the four datasets (O3, O4, O5, and O6) are significantly below
the average performance (O∗). Numerically, the correlation
between the NLOS proportion for each location and accuracy
rate is −0.694, which shows a strong negative correlation.
We infer that as a larger proportion of NLOS signals usually
indicates a more complex reception environment, the method
may suffer from issues of performance degradation for a large
NLOS proportion.

IV. CONCLUSION

In this article, a novel stacking-based ensemble learning
method has been proposed for the NLOS detection of GNSS.
It combines different machine learning methods from different
views to address the shortcomings of each single model. The
proposed method effectively leveraged the existing individ-
ual machine learning models to enhance NLOS detection
for GNSS applications, and significantly improved the per-
formance on real GNSS data compared with the baseline
methods.

In the future, features of other sensors, such as fish-eye
cameras and LiDARs, will be included in the proposed SEL
method. Also, ensemble deep learning will be researched
for GNSS NLOS detection to obtain better generalization
performance.
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