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Abstract—The fusion between an inertial navigation system
and global navigation satellite systems is regularly used in many
platforms such as drones, land vehicles, and marine vessels.
The fusion is commonly carried out in a model-based extended
Kalman filter framework. One of the critical parameters of the
filter is the process noise covariance. It is responsible for the
real-time solution accuracy, as it considers both vehicle dynamics
uncertainty and the inertial sensors quality. In most situations,
the process noise covariance is assumed to be constant. Yet, due to
vehicle dynamics and sensor measurement variations throughout
the trajectory, the process noise covariance is subject to change.
To cope with such situations, several adaptive model-based
Kalman filters were suggested in the literature. In this paper, we
propose a hybrid model and learning-based adaptive navigation
filter. We rely on the model-based Kalman filter and design
a deep neural network model to tune the momentary system
noise covariance, based only on the inertial sensor readings.
Once the process noise covariance is learned, it is plugged into
the well-established model-based Kalman filter. After deriving
the proposed hybrid framework, field experiment results using
a quadrotor are presented and a comparison to model-based
adaptive approaches is given. We show that the proposed method
obtained an improvement of 25% in the position error. Further-
more, the proposed hybrid learning method can be used in any
navigation filter and also in any relevant estimation problem.

Index Terms—Adaptive Algorithm, Deep Neural Network,
Global Navigation Satellite System, Inertial Measurement Unit,
Inertial Navigation System, Kalman Filter, Machine Learning,
Quadcopter, Supervised Learning, Unmanned Autonomous Ve-
hicles, Vehicle Tracking.

I. INTRODUCTION

AUTONOMOUS vehicles, such as autonomous under-
water vehicles (AUV) or quadrotors, are commonly
equipped with an inertial navigation system (INS) and other
sensors [[1] to provide real-time information about their posi-
tion, velocity, and orientation [2]—[7]]. The INS has two types
of inertial sensors; namely, gyroscopes and accelerometers.
The former measures the angular velocity vector, and the latter
measures the specific force vector. The inertial sensors are
combined in an inertial measurement unit (IMU). Their use for
navigation is challenging due to their high noise levels, which
eventually accumulate, leading to a navigation solution drift
over time. To solve this problem, an external aiding sensor,
such as the global navigation satellite system (GNSS) receiver,
is regularly used in a navigation filter [2], [3], [6]. Such
fusion is carried out using a nonlinear filter, where the error
state implementation of the extended Kalman filter (es-EKF)
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is usually employed [1]], [8]. In the filter, the process noise
covariance matrix is based on the IMU measurements char-
acteristics and/or vehicle dynamics while the external aiding
measurements specification determines the measurement noise
covariance matrix. Those two covariances matrices have a
major influence on the filter performance. A common practice
is to assume that both covariances are fixed during the vehicle
operation. However, as the sensor characteristics are subject to
change during operation and physical constraints do not allow
capturing the vehicle dynamic optimally, those covariances
should vary over time as the amount of uncertainty varies and
is unknown. Thus, tuning the process or measurement noise
covariances optimally can lead to a significant improvement
in the filter performance [8]].

To cope with this problem, several model-based attempts
have been made in the literature to develop optimal adaptive
filters [9]—[15]. The most common among them is based on
the filter innovation process [[16], where a measure of the
new information is calculated at every iteration, leading to
an update of the process noise covariance matrix. Still, the
question of the optimal approach to tune the system noise
covariance matrix is considered open and is addressed in detail
in [17].

Recently, deep neural network (DNN) approaches were
integrated in model based pedestrian dead-reckoning (PDR)
algorithms. One of the initial works in the field is the robust
IMU double integration, RIDI approach [18]], where neural
networks were trained to regress linear velocities from inertial
sensors to constrain the accelerometer readings. Although it
was the first work in the field, double integration is still
needed and the error accumulates rapidly. In [19], the device
orientation, in addition to the accelerometers and gyroscopes
readings, was also used as input to a DNN architecture to
regress the user velocity in 2D. The velocity is then integrated
to obtain the user position. Later, PDRNet [20], utilizes a
smartphone location recognition classification network fol-
lowed by a change of heading and distance regression network
to estimate the used 2D position. One of the main challenges
in model or learning based PDR is the estimation of the user
walking direction as the device is not always aligned with
the user motion. To cope with that, in [21] a novel DNN
structure was designed for extracting the motion vector in
the device coordinates, using accelerometer readings. More
pedestrian inertial navigation examples are described by [22]
where recent databases, methods and real-time inferences can
be found.

In AUV navigation, an end-to-end DNN approach was
proposed to regress missing Doppler velocity log (DVL) beam
measurements to provide the AUV velocity vector, only when
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a single beam is missing [23]. Later, [24], a DNN approach
was used to address with a DVL failure scenarios to predict
the DVL output.

For land vehicle navigation a DNN model was presented to
overcome the inaccurate dynamics and observation models of
wheel odometry for localization, named RINS-W [25]]. Their
novel approach exploited DNNSs to identify patterns in wheeled
vehicle motions using the IMU sensor only. To overcome the
navigation solution drift in pure inertial quadrotor navigation,
QuadNet, a hybrid framework to estimate the quadrotor’s
three-dimensional position vector at any user-defined time rate
was proposed [26].

Focusing on the estimation process, a self-learning square
root-cubature Kalman filter was proposed [27]]. This hybrid
navigation filter enhanced the navigation accuracy by provid-
ing observation continuously, even in GNSS denied environ-
ments, by learning transfer rules of internal signals in the
filter. In [28]], recurrent neural networks are employed to learn
the vehicle’s geometrical and kinematic features to regress the
process noise covariance in a linear Kalman filer framework. In
[29]], DNN based multi models (triggered by traffic conditions
classification) together with an EKF was proposed to cope
with GNSS outages.

Recently, a DNN model was proposed to solve the GNSS
outages, mainly for unmanned air vehicles (UAV). In [30], a
convolutional neural network model was used for noise-free
gyro measurements in open loop attitude estimation. They
obtained state-of-the-art navigation performance in terms of
attitude estimation where they compensated for gyro mea-
surement errors as part of a strapdown integration approach.
This trend of integrating learning approaches in various fields
and applications also raises the motivation to adopt such
approaches in the described problem.

In this paper, we propose a hybrid model and learning-
based adaptive navigation filter. We rely on the model-based;
yet, instead of using model-based adaptive process noise
tuning, we design a DNN to tune the momentary system noise
covariance matrix, based only on the inertial sensor readings.
Once, the process noise covariance is learned, it is plugged
into the well-established, model-based es-EKF. To that end,
we simulated many vehicle trajectories based on six baseline
trajectories to create a rich dataset. This dataset contains rich
dynamic scenarios with many motion patterns and different
IMU noise covariances. This rich dataset was created to enable
robustness to motion dynamics and IMU noise characteristics.
Based on this dataset, we adopt a supervised learning (SL)
approach to regress the process noise covariance.

The main contributions of this paper are:

1) Derivation of an adaptive hybrid learning algorithm to
momentary determine the process noise covariance matrix
as a function of the IMU measurements. That is, instead
of using model-based approaches (as been done in the
last 50 years), to the best of our knowledge, we are the
first to propose an adaptive hybrid learning algorithm.

2) Online integration of the proposed hybrid learning al-
gorithm with es-EKF implementation of the navigation
filter. In that manner, the proposed approach can be used
with any external sensor aiding the INS.

3) The proposed approach principles can be further applied
to any estimation problem that requires adaptive tuning
of the process noise covariance.

The advantages of the proposed approach lies in its hybrid
fusion of the well celebrated es-EKF and applying learning
approaches on the es-EKF soft spot, the adaptive determination
of the process noise covariance. By using learning approaches
we leverage from their ability to generalization of intrinsic
properties appearing in sequential datasets and, therefore,
better cope with varying conditions affecting the process noise
values.

After deriving and validating the proposed framework using
the stimulative dataset, field experiments using a quadrotor
are done to evaluate the robustness and performance of the
proposed approach testing phase and compare it to other adap-
tive model-based approaches. The recordings from the field
experiment are used as a test dataset and also to examine our
network capability for generalization. In our setup, we used
GNSS position measurements to update the INS; however, the
proposed approach is suitable for any aiding sensor and for
any platform.

The rest of the paper is organized as follows: Section II
presents the problem formulation for the INS/GNSS fusion in
an es-EKF implementation with constant and adaptive process
noise covariance. Section III presents our proposed hybrid
adaptive es-EKF. Section IV gives the results, and Section V
presents the conclusions of this study.

II. ADAPTIVE NAVIGATION FILTER

The nonlinear nature of the INS equations requires a nonlin-
ear filter. The most common filter for fusing INS with external
aiding sensors is the es-EKF [1]], and in particular, with a 15
error states implementation:

sx=[ 6p" v " b, b, T eR5L (1)

where 6p" € R3*! is the position vector error states expressed
in the navigation frame, dv* € R3*! is the velocity vector
error states expressed in the navigation frame, 6c" € R3*!
is the misalignment vector state expressed in the navigation
frame, b, € R3*! is the accelerometer bias residuals vector
state expressed in the body frame, and b, € R3*! is the
gyro bias residuals vector state expressed in the body frame.
The navigation frame is denoted by n and the body frame is
denoted by b. The navigation frame center is located at the
body center of mass, where the z-axis points to the geodetic
north, z-axis points down parallel to local vertical, and y-axis
completes a right-handed orthogonal frame. The body frame
center is located at the center of mass, x-axis is parallel to the
longitudinal axis of symmetry of the vehicle pointing forwards,
the y-axis points right, and the z-axis points down such that it
forms a right-handed orthogonal frame. The linearized, error-
state, continuous-time model is

5% = Féx + Gow, )

where F € RY*15 ig the system matrix, G € RY*12 jg
. . T
the shaping matrix, and dw = [ We Wy Wg Wg ] €
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R12x1 is the system noise vector consisting of the accelerom-
eter, gyro, and their biases random walk noises, respectively
[8]. The system matrix, F', is given by

Fpp va Fps 03 X3 03 X3
F’Up Fvv Fvs —T;f 03><3
F= Fap Fav FEE 03 x3 TIT;L P (3)
O3x3 O3x3 Osx3 O3x3 Osx3
O3x3 Osxs Osxs Osx3 Osxs

where T} is the transformation matrix between body and
navigation frame and F;; € R3*3 can be found explicitly
in the literature (see [[1], [31], [32]). The shaping matrix is
given by

T, 0343 0343 0343
03x3 —T} 03x3 0343
G = | 0343 O03x3 O3x3 0343 |, 4
03x3 03x3 Isx3 Osx3
O3x3 O3x3 03x3 I3z

where I35 is an identity matrix.
The corresponding discrete version of the navigation model
(for small step sizes), as given in (2), is

(5Xk+1 = @kéxk + Gk(SWk (5)

The transition matrix, ®y, is defined by a first order approxi-
mation as

&, 21+ FAL (6)

where k is a time index, At is the time step size, F is the
system matrix (obtained using (3) with the estimated state
vector at time k), and dwy is a zero mean white Gaussian
noise vector. The discretized process noise is given by

Q) = GQ°GTAt, ©)

where G is defined in (4) (using the current estimated state
vector at time k), and Q€ is the continuous process noise
matrix.

The discrete es-EKF, as described here, is used in the fusion
process between the INS and the external measurements.
Equations (8) — (12) summarize the navigation filter equations
(1, (311

6%, =0 (8)

P, =%, 1P 1® 1" +Qf_, ©)
Ky = Py H, [HyP H,T + Ry - (10)
0%y, = K0z (11D

P, = [I-K,H,]P,, (12)

where 6%, is the prior estimate of the error state and %
is the posterior estimate, with their corresponding covariance
matrices P, (9) and P, (12), respectively, K (10) is the
Kalman gain, dz; is the k£ measurement residual, Hj is
the measurement matrix, and Rj, is the measurement noise
covariance matrix, assumed known and constant.

A. Measurement Model

The GNSS position measurements are available in a con-
stant and lower frequency then that of the IMU. After pro-
cessing, the GNSS receiver outputs the vehicle position vector
in the navigation frame, where it is used as an update in
the navigation filter. Hence, the corresponding time-invariant
GNSS measurement matrix is given by

Honss = [ Isxz Osxiz | € R, (13)
The corresponding measurement residual is given by
0Zgnss.s = HaNss0Xj + Sonss.i (14)

where ¢ .q; ~ N (0,R%nss) € R¥*! is an additive,
discretized, zero mean white Gaussian noise. It is assumed
that ¢; and dw; are uncorrelated.

B. Model Based-Adaptive Noise Covariance

The es-EKF minimizes the tracking error without changing
Q matrix online; that is, the process noise covariance is con-
stant throughout the operation. As shown in the literature, [|17]]
and the references therein, tuning Q online greatly improves
the navigation filter performance.

For simplicity, we assume QZ is a diagonal matrix, thus no
correlation exists between the noise terms.

The optimal diagonal QQ matrix at time step k is defined by

A . - GT||?
Qj. = arg oniny %5 (Qr) —x¢ |15 (15)
where Q is the admissible set of Qy at time index k, ng is
the ground truth (GT) state at time index k, and ||-||, is the
second Euclidean norm.

The most common approach to estimate QQ in an adaptive es-
EKF framework was suggested in [[16], [17], and is based on
the innovation matrix for a window of size &:

(16)

where Cj, is the innovation matrix and the innovation vector
is defined by

vy 2z, — HX;, (17)

The innovation matrix, (16), is used together with the Kalman
gain, K, to adapt Q, as follows:

Q. = K C.K}. (18)

III. A HYBRID ADAPTIVE NAVIGATION FILTER

We rely on the well established, model-based es-EKF, yet
instead of a model-based adaptive approach, a data-driven
approach is used to regress the momentary process noise
covariance, and, as a result, creates a hybrid adaptive es-EKF.
To this end, the navigation filter equations (8)-(12) are used,
but instead of using a constant process noise (7) or a model-
based adaptive process noise (18), we derive a data-driven
approach to estimate the time-varying continuous process
noise covariance matrix Q€. Our proposed hybrid adaptive
es-EKF framework, suitable for any aided INS scenario, is
presented in Fig. [1]
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Fig. 1. A hybrid adaptive navigation filter framework with online tuning of
the process noise covariance matrix.

A. Data-Driven Based Adaptive Noise Covariance

It is assumed that the continuous process noise covariance
matrix, Qf, at time k, is a diagonal matrix with the following
structure:

Q= 19

diag{a,af" ai" i a0 e Tue }, € R0, ()
where the variance for each of the accelerometer axes is given
by q}* and for the gyroscope by ¢'* (i € z,v,2). The biases
are modeled by random walk processes, and their variances are
set to € = 0.001. By taking this approach, our goal is to ease
a machine learning (ML) algorithm for accurately regressing
the six unknown variances in (19) and thereby claim that these
are the dominant variances needed in an adaptive framework.

We define a general one-dimensional series of length N of
the inertial sensor (accelerometer or gyroscope) readings in a
single axis by

Sk ={si}iop_n - (20)
The discussed optimization problem is to find ¢ such that
the position error is minimized. By doing that for all six IMU
channels, the es-EKF considers an optimal system noise co-
variance matrix and provides improved tracking performance.
The power of ML increases the ability to solve many difficult
and non-conventional tasks. To determine Qj in (I3), the
problem is formulated as a SL problem. Formally, we search
for a model to relate an instance space, &', and a label space,
Y. We assume that there exists a target function, F, such that
y=F(X).
Thus, the SL task for adaptive determination of the process
noise covariance is to find F, given a finite set of labeled
examples, inertial sensor readings, and corresponding process
noise variance values:

{Skr @i by 1)
The SL approach aims to find a function F that best estimates
F. To that end, for the training process, a loss function, I, is
defined to quantify the quality of F with respect to F. The
loss function is given by

M
L(PI@) 23 1) (22)
m=1

where M is the number of examples, and m is the example
index. Minimizing £ in a training/test procedure leads to the
target function. In our problem, the loss function is given by

L 2 (qf, — Gm), (23)

where §,, is the estimated term obtained by the learning model
during the training process.

In this work, the train dataset used to find the function F given
the labeled examples @ as described in the next section.

B. Dataset Generation

There are several existing inertial datasets as were recently
summarized in [33]. Yet, none of those datasets fits our
problem as they do not provide enough IMU readings with
different noise characteristics. As a consequence, we generated
are own dataset using a simulation (detailed in Appendix [B).

To generate the dataset six different baseline trajectories
were simulated as presented in Fig. J{a) and in Fig. [3] The
richness of the trajectories, as a result of their diversity, allows
the establishment of a model to cope with unseen trajectories.
Each baseline trajectory was created by generating ideal IMU
readings for a period of 400s in a sampling rate of 100Hz,
resulting in a sequence of 6 x40, 000 samples for each baseline
trajectory as shown in Fig.

Our task is to estimate the system noise covariance matrix, or
specifically the noise variance of each IMU channel. Hence,
we divided each of the six IMU channels and corrupted their
perfect data with additive white Gaussian noise with variance
in the range of ¢ € [0.001,0.025], with 15 different values
inside this interval, as shown in Fig. J[b).

Hence, each baseline trajectory has 15 series of 6 x 40,000
noisy inertial samples, as shown in Fig. J(b). The justifica-
tion to include a simple noise model lies in the momentary
IMU measurement noise covariance sequence. A short time
window for the IMU measurements is considered and allows
characterizing the noise with its variance only. Next, the series
length N is chosen, and a corresponding labeled database is
generated as shown in Fig. 2Jc). Lastly, we choose N = 200
samples and create batches corresponding to two seconds each
with a total of 6 x 200 x 15. Then, these batches are randomly
divided into train and test datasets in such a manner that all
baseline trajectories are included in the train and the test sets
in a ratio of 80:20, as described in Fig. Ekd).

C. Architecture design

Several architectures were designed and evaluated. They
included a recurrent DNN, and, in particular, the long short-
term memory (LSTM) architectures for time series data.
However, in our problem they did not perform well and failed
in generalization of the noise variance property. One of the
architecture we examined included a bi-directional LSTM
layer followed by two linear layers. The training failed as the
temporal information wasn’t relevant for this task. On the other
hand, an architecture with only convolution layers achieved
satisfactory results, where it minimized the test loss very fast
and obtained a low position root mean squared error (PRMSE)
(the metric is defined in (25)). This result is due to the spatial
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Fig. 2. Dataset generation and pre-processing phase: (a) six different simulated baseline trajectories. Each baseline trajectory was created by tuning the IMU
signals a period of 400]s] at a frequency of 100[H z], resulting in a series of 6 x 40,000 samples for each baseline trajectory, obtained in phase (b). Example
generation (c): given series length, N, examples are created and stored with their label. (d) split the database into train set and test set with a ratio of 80:20.
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Fig. 3. Our six baseline trajectories.

information the noisy IMU signals have, allowing to capture
the dynamics and statistical properties of the measurements.
This information structure was easily captured by the spatial
convolutional operates in the convolution layers. As the goal
of this paper is to lay the foundations for a hybrid adaptive
navigation filter approach, we describe here only the DNN
architecture as presented in Fig. l] Our DNN model has the
following layers:
1) Linear layer: This is the simplified layer structure that
applies a linear transformation to the incoming data from
the previous layer. The input features are received in the

20
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£ 0 =
= 10 w
-10 50 0
20 2000 200
1000
1000 g
_ 200 500 T 100
=~ 1000 0 N
-200
0 200 200
100
-10 500

1500
£ 1000
500

A

- g 2010

0
200 -1000°
form of a flattened 1D vector and are multiplied by the
weighting matrix.
2) ConvlD layer: A convolutional, one-dimensional

(ConvlD) layer creates a convolution kernel that is
convolved with the layer input over a single spatial
dimension to produce a vector of outputs. During the
training phase the DNN learns the optimal weights
of the kernels. In our DNN model the input layer is
followed by a chain of three ConvlD layers. There are
five kernels for the first layer and three kernels for the
second and third layers. The kernel size decreases as
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the inputs go deep: the first ConvlD layer has twenty
kernels, the second ConvlD layer has ten kernels, and
the third Conv1D Ilayer has five kernels.

3) Global average pooling layer: Pooling layers help with
better generalization capability as they perform down
sampling feature map. In this way, the robustness of the
DNN grows. For example, better handling with changes
in the position of the features inside the 1D input vector.
For the DNN architecture we selected the global average
pooling method, which calculates the average for each
input channel and flattens the data so it passes from
Conv1D through the linear layers.

4) Leaky ReLU: Leaky rectified linear unit [34] is a non-
linear activation function obtaining a value o with the
following output:

rar={

The main advantage of the leaky ReLU over the classical
ReLU (0 for o < 0) is the small positive gradient when
the unit is not active, which deals better with the dying
ReLU problem [35]. The leaky ReLU functions were
combined after each layer in the DNN model.

5) Layer normalization: One of the challenges of DNN
is that the gradients with respect to the weights in one
layer are highly dependent on the outputs of the neurons
in the previous layer, especially if these outputs change
in a highly correlated way [36]. Batch normalization, and
in particular layer normalization, was proposed to reduce
such an undesirable covariate shift. The layer normaliza-
tion was added after every ConvlD layer (together with
the leaky ReLU layer).

The parameters of the above layers are as follow: a series of
200 x 1 samples is inserted to a one-dimensional convolutional
layer (Conv1D) with a kernel size equals to 20 with five filters.
Then, a leaky ReLU activation function and normalization
layer are applied, adding nonlinearity for better generalization
capability of the DNN. We duplicated this structure twice
more with three filters each and smaller kernels: the second
with a kernel size equals to ten and the third with a kernel
size equals to five. The output is inserted to a global average
pooling layer followed by four linear layers, with leaky ReLLU
activation functions between them, with 100, 80,50 and 20
weights, retrospectively. Finally, the DNN outputs the process
noise variance.

« a>0

00l <0~ (24)

D. Hybrid Learning Approach

In this work, GNSS position updates are employed to
aid the INS and demonstrate our hybrid learning approach.
Applying the suggested adaptive tuning approach in online
setting involves integrating the INS/GNSS with the regressor
as presented in Fig. [5] Algorithm 1 describes the INS/GNSS
with process noise covariance learning in a real time setup.
The IMU signals are inserted both into the INS/GNSS filter
(8) — (12) and the DNN model. The regressed continuous
process noise covariance is plugged into (7) to obtain the
discrete one, which in turn is substituted into (9).

Algorithm 1 Hybrid adaptive filter applied to INS/GNSS
Input: wiy, £y, Vaiding, Ato, AT, T, tuning Rate
Qutput: v” "
Initialization : vy, ef
LOOP Process
1: for t =0to T do
2 obtain w;yp, f
3 solve navigation equations (3)
4:  if (mod(t, AT)=0) then
5: obtain panss
6
7
8
9

update navigation state using the es-EKF (8)-(14)
end if
Calculate DNN model and predict Qf , ;.
. if mod(t, tuning Rate) = 0 then
10: Qi1 = Fnn (Sk)
11:  end if
12: end for

IV. ANALYSIS AND RESULTS

We employ the following two metrics to evaluate the
position accuracy of the proposed approach:

« Position root mean squared error (2% norm) for all three

axes:
1 (&)
PRMSE = |=> " > &%,
= Jj€{zy,2}

(25)

o Position mean absolute error for all six IMU channels:

PMAE:%Z > 18l

k=1j€e{z,y,z}

(26)

where c is the number of samples, k is a running index for the
samples, j is the running index for the Cartesian coordinate
system, and 6p;, is the position error term.

A. Train Dataset Analysis

The proposed DNN architecture, presented in Section [[TI-C|
was trained on the dataset described in Section [II-Bl After 30
epochs it achieved an RMSE of 0.0032 on the test set, show-
ing the proposed DNN generalization capability and thereby
establishing the trained DNN regressor model. The training
process was done in mini-batches of 500 examples each. The
ADAM optimizer [37]] was used with an initial learning rate
of 0.001 and a learn-rate-schedule with a drop factor of 0.1
after 20 epochs. In our working environment (Intel i7-6700HQ
CPU@2.6GHz 16GB RAM with MATLAB), the training time
for input length of 200 samples elapsed about three hours.
The averaged inference time is 0.02[s]. Fig. [f] presents the
performance for N = 200 samples where the red line is
the desired one, representing when the GT value is equal
to the DNN predicted value. The gray points represent the
performance of the test set with the trained DNN model. The
mean values of the test set lies near the red line (blue points)
for most cases.

The INS/GNSS fusion is mostly performed under real-
time conditions, where latency in the position computation
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Fig. 5. Our adaptive hybrid adaptive filter applied to the INS/GNSS fusion
process to tune the process noise covariance matrix, Q. Both IMU and
GNSS measurements are plugged into the INS/GNSS filter, while the six
IMU channels are also inserted into the DNN for predicting the process noise
covariance matrix.
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Fig. 6. GT values versus predicted DNN values on the test set. All values
are presented by gray crosses. The blue mean points represent the mean for
each value, and the dashed red line (true value=predict value) represents the
DNN generalization capability.

might degrade the performance. Thus, the influence of the
IMU sequence length input was examined. The system noise
covariance matrix was learned, based on series of length N. As
N >> 1, the probability of learning the correct terms grows,
since the DNN can capture the signal intrinsic properties easier
using more data; however, the latency grows. Considering
this trade-off, we trained the chosen architecture with various
N values and calculated the RMSE as shown in Fig. [7] As
expected, N = 400 obtained the minimum RMSE, yet for the

rest of the analysis we chose N = 200 (similar RMSE) to
receive the regression result as it is given in a shorter time
period. For example, in the stimulative train and test dataset
the sampling rate is 100Hz, thus working with N = 200 gives
the regression result every two seconds instead of working
with four seconds (/N = 400).

x10°

DNN output RMSE
no w = ot

—_

10 50 100

Input length

200 400

Fig. 7. DNN RMSE vs. input length (N).

B. Field experiment

A field experiment with the DJI Matrice 300 [38] was
performed (Fig. [8). The trajectory is shown in Fig.[9] A figure-
eight trajectory was made with some additional approximated
straight line segments. The experiment parameters, including
the GNSS RTK GT values and IMU, are given in Table I.
The quadrotor dataset was published in [39] and is publicly
available at https://github.com/ansfl/Navigation-Data-Project,

Equations (2)-(12) were used as a model-based es-EKF with
a constant process noise covariance matrix. Three different
cases of the model-based es-EKF with constant process noise
covariance matrix (MB-EKF-CQ) were examined:

. MB-EKF-CQI: q1:3 — 0.002,(]4;6 = 0.02.

o MB-EKF-CQ2: ¢;.3 = 0.001, g4.,6 = 0.01.

. MB-EKF-CQ3: q1:3 = 0.002,(]4;6 = 0.01.

In addition, using (16)-(18), three different (window size
length) cases of model-based es-EKF with the adaptive process
noise covariance matrix (MB-EKF-AQ) were examined:

« MB-EKF-AQ1: ¢ = 1.
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Fig. 8. DIJI matrice 300 in our field experiment.
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Fig. 9. The trajectory of the quadrotor used to evaluate the proposed approach.

« MB-EKF-AQ2: ¢ = 3.
« MB-EKF-AQ3: ¢ = 5.

All six approaches were compared to our proposed hybrid
adaptive EKF (HB-AEKF) using the trained network, as de-
scribed in the previous section. Results in terms of PMAE and
PRMSE are presented in Table 2. The MB-EKF-AQ model-
based adaptive filters obtained better performance than the
MB-EKF-CQ constant process noise filters. In particular, MB-
EKF-CQ3 achieved the best performance for constant process
noise with a PMAE of 2.2[m] and a PRMSE of 1.6[m],
where MB-EKF-AQ3 manged to improve them by 18% and
19%, respectively. Our proposed hybrid adaptive approach,
HB-AEKF, with an input length of 200 samples, obtained
the best performance, with 1.7[m] PMAE and 1.2[m] PRMSE
improving MB-EKF-AQ3 by 5.5% and 7.7%, respectively.

The ¢ parameters time evaluation were obtained using
our HB-AEKF approach—are shown in Fig. for both
accelerometers and gyroscopes. Their behavior shows fluctu-
ations in the first 25 seconds and then steady-state behavior.
This behavior can be attributed to the convergence of the es-
EKF (8)-(12) once it obtains enough data and captures the
IMU noise statistic.

Fig. [T1] summarizes the positioning performance by provid-
ing two graphs of the cumulative density function (CDF); one
representing PRMSE and the other the PMAE. In those plots,

TABLE I
EXPERIMENT PARAMETERS

Description Symbol Value
GNSS noise (var) - horizon R11, Ra2 0.01[m]?
GNSS noise (var) - vertical R33 0.02[m]?
GNSS step size AT 0.2[s]
IMU step size At 0.001[s]
Accelerometer noise (MPU-9250) a5 0.02%[m/s)?
Gyroscope rate noise (MPU-9250) Q1.6 0.0022[rad/s)?
Experiment duration T 60[s]
Initial velocity vy [0,0,0]7 [m/s]
Initial position Py [32.19,34.8°, 0]
TABLE 1I

EXPERIMENT RESULTS SHOWING PMAE AND PRMSE PERFORMANCE

Approach PMAE[m| | PRMSE[m|]
HB-AEKF (ours) 1.7 1.2
MB-EKF-AQ1 2.3 1.6
MB-EKF-AQ2 2.0 14
MB-EKE-AQ3 18 13
MB-EKF-CQI 24 18
MB-EKF-CQ2 24 17
MB-EKF-CQ3 2.2 1.6
><1073 T T T T T
1.8
:’.— 1.6 T ad v
Y
T
£ 14
S 1ot o
q2
1 q3
0 10 20 30 40 50 60
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X0t ‘ . . .
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g q4
5r —
4
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Fig. 10. The process noise parameters as a function of time as obtained
using our HB-AEKF approach. The upper plot shows the accelerometer noise
variance for each axis as detected by the DNN model, and the lower plot
shows the same for the gyroscope.

all three MB-EKF-AQ and three MB-EKF-CQ approaches are
presented as well as our proposed HB-AEKF hybrid approach
(black lines). Both graphs show clearly that the entire error is
lower for HB-AEKEF than all other approaches. The PRMSE of
the MB-AEKEF is lower than 1.7[m] and the PMAE lower than
2.8[m] for the entire scenario. In comparison with the MB-
EKF-AQ1 approach, the maximum PRMSE and the maximum
PMAE might grow too much: 3.7[m/] and 4.0[m)], respectively.
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Fig. 11. PRMSE and PMAE CDF graphs.

V. CONCLUSIONS

The proper choice for the system noise covariance matrix
is critical for accurate INS/GNSS fusion. In this paper, a
hybrid learning and model based approach was suggested
in an adaptive filter framework. To that end, a novel DNN-
based approach to learn and online tune the system noise
covariance was developed. The input to the DNN is only the
IMU readings. This learning approach was then combined with
the model based es-EKF, resulting in a hybrid adaptive filter.

The DNN model has been trained only once on a simulated
database consisting of six different baseline trajectories. Anal-
ysis on this dataset showed a trade-off between accuracy and
the regression solution latency, where as the latency increases
the accuracy decreases. Relying on this analysis, an input
length of 200 samples was chosen.

To validate the performance of the proposed approach, it
was compared to six model-based approaches representing
both constant and adaptive process noise covariance selection.
Quadrotor field experiments were conducted and used as an
additional test dataset on the trained network. We obtained
state-of-the-art results for each noise value compared to clas-
sical adaptive KF approaches; a PRMSE lower than 1.2[m)]
and a PMAE lower than 1.7[m] were obtained using our
suggested approach, compared to a PRMSE of 1.6[m] and
a PMAE of a 2.3[m] that were obtained using the innovation-
based adaptive approach and classical tuning. Results in a
total PRMSE improvement of 24% and PMAE improvement
of 27%.

This improvement also demonstrates the robustness and
generalization properties of the proposed DNN architecture,
enabling it to cope with unseen data from different IMU sen-
sors. In addition, and together with the train dataset results, it
proves our hypothesis of regressing only the first six elements
in the diagonal of the continuous process noise covariance
matrix.

Although demonstrated for quadrotor INS/GNSS fusion, the
proposed approach can be elaborated for any external sensor
aiding the INS and for any type of platform.

Although the present study demonstrated a small improve-
ment over model-based methods using the test dataset of a
quadrotor INS/GNSS fusion, it introduces a hybrid framework
to combine deep learning in an adaptive navigation filter.
This approach can be applied to other platforms, dynamics
and external sensor aiding the INS and serve as a foundation
approach for future work in the field.

APPENDIX
A. Abbreviations
TABLE III
ABBREVIATION AND DESCRIPTION
Abbreviation Description
AUV autonomous underwater vehicle
CDF cumulative density function
ConvlD one-dimensional convolution
DNN deep neural network
DVL Doppler velocity log
EKF extended Kalman filter
es error state
GNSS global navigation satellite system
GT ground truth
HB-AEKF hybrid based adaptive EKF
INS inertial navigation system
LSTM long short-term memory
MB-EKF-AQ model based EKF adaptive Q
MB-EKF-CQ model based EKF constant Q
ML machine learning
NED North-East-Down
PDR pedestrian dead-reckoning
PMAE position mean absolute error
PRMSE position RMSE
RMSE root mean squared error
SL supervised learning
UAV unmanned air vehicles

B. Dataset Generation

1) INS Equations of Motion: The INS equations of motion
include the rate of change of the position, velocity, and the
transformation between the navigation and body frame, as
shown in Fig.12.

The position vector is given by

p"=[¢6 A h

where ¢ is the latitude, \ is the longitude, and h is the altitude.
The velocity vector is Earth referenced and expressed in the
North-East-Down (NED) coordinate system:

" er¥, 27)

vl = [ UN Vg Up }T ER3X1, (28)

where vy, vE,vp denote the velocity vector components in
north, east, and down directions, respectively. The rate of
change of the position is given by [1]

¢ R;}J\fkh
. D ENTR) | (29)
h —UpD
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where Rj); and Ry are the meridian radius and the normal
radius of curvature, respectively. The rate of change of the
velocity vector is given by [1]]

V=T + g — (Wi, x] + 2wl x])v™,  (30)

where T? € R3*3 is the transformation matrix from body
frame to the navigation frame. f® € R3*! is the accelerometers
vector state expressed in the body frame, g” € R3*! is the
gravity vector expressed in the navigation frame. w(, is the
angular velocity vector between the earth centered earth fixed
(ECEF) frame and the navigation frame. The angular velocity
vector between ECEF and the inertial frame is given by w},
and the rate of change of the transformation matrix is given

by [1
" whx]).

where wfb = [ p q T ]T € R**! is the angular velocity
vector as obtained by the gyroscope and w?, is the angular
velocity vector between the navigation frame and the inertial
frame expressed in the body frame. The angular velocity
between the navigation frame and the inertial frame expressed
in the navigation frame is given by wj,. The alignment
between body frame and navigation frame can be obtained
from T7, as follows

I = T ([whx] — 31)

¥ atan2 (Ti’z?,la T’?L?)Q)
e=1] 6 | = arccos (TI;L?,B) e R (32)
P —atan2 (Tfﬂsv T?LQB)

where ¢ is the roll angle, # is the pitch angle, and ) is the
yaw angle. These three angles are called Euler angles.

T
T
p P
q q Y
r()
‘:r y TC)

Fig. 12. Autonomous underwater vehicle and quadcopter with their body axes
and angular rates.

2) IMU readings: The GT trajectories were created by
tuning vehicle angular rates, P, and vehicle accelerations, a,
as follows [40]

P=[¢ 6 o] er>, (33)
and,

a=[a, a, a ]’ erR¥L (34)

The transformation between the desired motion and the INS
framework for the gyroscope readings is given by [40]

why =T (W2, +wit) +wh, (35)

where
o 1 0 —sind
wh =10 cosp sinpcosd | PeR> (36)
0 —sing cosycosb
and from (30) the accelerometer readings are
f, = T [a— g" + (W, x +2wi x)v"]. 37

Once, the GT IMU readings (35) and (37) are obtained, noise
characteristics as described in Section III are added to create
our dataset.
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