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Mask-guided Spatial-Temporal Graph Neural
Network for Multi-frequency Electrical Impedance
Tomography

Zhou Chen, Student Member, IEEE,, Zhe Liu, Student Member, IEEE,, Lulu Ai, Sheng Zhang,
and Yunjie Yang, Member, IEEE

Abstract—Multi-frequency Electrical Impedance Tomography
(mfEIT) is an emerging biomedical imaging modality that
exploits frequency-dependent electrical properties. The mfEIT-
image-reconstruction problem for cell imaging is particularly
challenging due to weak signals from miniaturized sensors and
high sensitivity to modelling errors. Existing approaches are
primarily based on the linearized model and few are applied to
the miniaturized setup. Here we report a Mask-guided Spatial-
Temporal Graph Neural Network (M-STGNN) to reconstruct
mfEIT images in cell culture imaging. The M-STGNN captures
simultaneously spatial and frequency correlations, and the spatial
correlation is further constrained by geometric structures from
auxiliary binary masks, such as CT or microscopic images. We
validate the mfEIT approach through numerical simulations and
experiments on MCF-7 human breast cancer cell aggregates. The
results demonstrate the superiority of M-STGNN over the state
of the art with an improvement of approximately 10.7% under
the experimental setup. It can be readily extended to multi-modal
biomedical imaging applications.

Index Terms—Graph neural network, deep learning, electrical
impedance tomography, multi-frequency, image reconstruction.

I. INTRODUCTION

ULTI-FREQUENCY Electrical Impedance Tomogra-

phy (mfEIT) is a tomographic modality that recon-
structs the spectroscopic conductivity images associated with
intrinsic tissue properties [1]-[3]. Currents with a sequence
of frequencies are injected into the boundary electrodes and
induced voltages are acquired to infer the spatial conductivity
distribution at given frequencies [4], [5]. mfEIT provides
appealing benefits of low-cost fabrication, portability, non-
destructiveness, radiation-free measurement and fast imaging
speed. As the different electrical characteristics between var-
ious tissues can be exploited for physiological and patholog-
ical diagnostics, mfEIT has been investigated for diagnostic
imaging, such as acute stroke detection [6], [7], cardiac
activity imaging [8], breast cancer detection [9], [10], and
functional lung imaging [11], [12]. With the development
of microtechnologies, mfEIT with miniaturized sensors also
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shows its potential in tissue engineering at the cellular level
by providing label-free and non-destructive imaging and mon-
itoring of cellular dynamics [3], [13], [14]. Yang et al. [3]
performed 3D imaging of breast cancer cell spheroids in
3D scaffolds. Wu et al. [13], [14] demonstrated the use of
mfEIT in monitoring cell growth and viability. However, sen-
sor miniaturization [15], [16] makes 3D cell culture imaging
challenging due to weak measurement signals and sensitivity
to modelling errors. Therefore, enhancing noise robustness
and facilitating high-quality mfEIT imaging have become
increasingly demanding.

One of the major challenges of mfEIT comes from the
nonlinear and severe ill-posed nature of the image recon-
struction problem, which requires simultaneous reconstruction
of multiple frequency-dependent conductivity distributions.
Existing literature commonly addresses the mfEIT-image-
reconstruction problem in the linearized regime. Most work
reconstructs the image under each frequency independently
based on mono-frequency reconstruction algorithms such as
GREIT [17], Total Variation (TV) regularization [18], or spar-
sity regularization [19]. Others approximate the forward model
of mfEIT based on the Multiple Measurement Vector (MMV)
model [20]. The MMV model constrains the solutions by
joint-sparsity to reconstruct multiple conductivity distributions
of varying frequencies at the same time. Alberti et al. [21]
proposed to optimize the MMV model by using Iterative
Soft Thresholding (IST) to combine the strengths of IST and
Group Sparsity (GS). Alternatively, the MMV model can be
optimized by the prevailing Alternating Direction Method of
Multipliers (ADMM) that has been applied in multi-frequency
complex-valued Electrical Capacitance Tomography (ECT)
[22]. In our previous work [23], ADMM was unrolled with
a finite number of iterations into a single network to solve the
MMV problem. We demonstrated that this unrolling approach
can notably improve the image quality by combining the
advantages of the MMV model and deep neural network.
The mfEIT-image-reconstruction problem can also be inter-
preted using a Bayesian statistical inversion framework. For
instance, Liu et al. [24] and Xiang et al. [25] addressed the
multi-frequency tomographic imaging problem by utilizing
the Sparse Bayesian Learning (SBL) framework based on
the MMV model. Despite the noteworthy progress, these
approaches depend on either the linearized mfEIT model or
strong sparsity assumption, which restricts their performance
for non-linear or non-sparse situations. Therefore, we in this



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. XX, NO. X, AUGUST XXX 2

study aim to improve mf-EIT imaging quality by learning
the non-linear relationship between the measurement data
and multi-frequency conductivity distributions, with a specific
focus on cell imaging applications.

Our previous work focused on data-driven approaches for
cell culture imaging with EIT. We established a mono-
frequency EIT dataset for image reconstruction and pro-
posed a hybrid learning-based approach DL-GS [26], and a
pure learning-based approach SADB-Net [27], for cell cul-
ture imaging. Concerning mfEIT, we in [23] constructed the
Edinburgh mfEIT Dataset and developed the aforementioned
model-based learning approach, MMV-Net, built upon the lin-
earized mfEIT model. All these approaches were validated by
experiments on MCF-7 human breast cancer cell aggregates.
Based on the previous work, we here report an mfEIT image
reconstruction algorithm for cell culture imaging based on
the graph neural network to predict simultaneously multiple
conductivity images at different frequencies directly from the
mfEIT measurement data with the assistance of auxiliary
images. We employ an undirected graph to represent the
regular EIT grid in a non-Euclidean space (see Fig. 1). Graph
nodes correspond to pixels in the regular grid and contain
the corresponding conductivity values. We then propose a
Mask-guided Spatial-Temporal Graph Neural Network (M-
STGNN) to generate high-quality and robust mfEIT images.
The general network architecture of M-STGNN is developed
based on the GraphWaveNet proposed by [42]. GraphWaveNet
makes predictions on multiple future steps at the same time
given historical steps in traffic forecasting. Due to similar
objectives, the general structure of GraphWaveNet is inherited
by M-STGNN for the mfEIT-image-reconstruction problem.
The key idea is to explicitly exploit both spatial and frequency
correlations of mfEIT images reconstructed from the one-
step Gaussian Newton solver. Learning these correlations
helps fine-tune multi-frequency images. Moreover, we intro-
duce external geometric structures from the auxiliary imaging
modality in the format of binary masks to further help optimize
the structural information. The geometric structure could be
obtained from different imaging modalities, such as CT scans
[28] and microscopic images [29]. The main contributions of
this work are as follows:

1) A customized graph neural network is proposed for
mfEIT image reconstruction to achieve high-quality cell
culture imaging. The proposed M-STGNN is designed
to approximate the non-linear relationship between mea-
surement data and multi-frequency conductivity distribu-
tions.

2) The proposed M-STGNN incorporates spatial and fre-
quency correlations between mfEIT images. It further
utilizes external geometric structures to constrain the
structural information so that the spatial correlation
is learned from training data as well as this prior
knowledge. This extra step is capable of stabilizing the
solutions of mfEIT.

3) Both numerical analysis and real-world experiments on
MCEF-7 breast cancer cell demonstrate the superiority
of the proposed M-STGNN in reconstructing multi-

frequency images in terms of reconstruction accuracy,
noise robustness, generalization ability and computa-
tional efficiency compared to the state of the art.

The remainder of this paper is organized as follows. Section
II reviews related work on mfEIT image reconstruction and
graph neural networks. Section III elaborates the proposed
mask-guided spatial-temporal graph neural network. Section
IV describes the mfEIT dataset, experimental implementation
and results. Section V draws conclusion and discusses the
future work.

II. RELATED WORK
A. Multi-frequency Electrical Impedance Tomography

The EIT forward problem is defined as the calculation of the
boundary voltages V, given the conductivity distribution o. Let
) denote the ROI, NV be the number of electrodes attached at
the boundary 912, and n be the outward unit normal of 0. We
use the Complete Electrode Model (CEM) [30] to formulate
the forward problem:

V. (o(x)Vu(z)) =0,
Ou(x)

z e ey

u(z) + 20 () on =V, xz€ep,l=1,....N (2
/ a(m)au(x)dSzlg, z€enl=1,....N (3)

er On
o(x) 312)(1133) =0, z€IQ\UN, e “4)

where ey is the /th electrode; 2y, Iy, and V, denote respectively
the contact impedance, injected currents and corresponding
voltages on e,. Currents [, satisfy the conservation of charge

defined by
N
Z I, =0 )
(=1

and to further stabilize the solution, we also require the
convention defined by

N
> Ve=o. (©)
=1

In mfEIT, current comprising a set of frequency elements
{f1, f2,.--, fi} is injected into the ROIL The mfEIT-image-
reconstruction problem is to recover the spectroscopic con-
ductivity distributions simultaneously given boundary voltage
measurements under multiple frequencies. We consider time-
difference multi-frequency imaging, which can eliminate the
common modelling errors to some extent. The multi-frequency
conductivity changes Ag € R™*! are reconstructed based on
the voltage changes AV € R™*!. Many algorithms have been
reported to address this ill-posed and ill-conditioned inverse
problem [21], [23]-[25]. In this paper, we adopt the one-step
Gaussian Newton solver f,s(-) with the Laplacian filter [17]
to provide the initial guess. Despite fast computational time,
the one-step approach is limited by image artifacts and low
contrast. We employ a deep network f(-;@) parameterised by
network weights 6 to improve the one-step reconstruction. The
network parameters @ are determined based on training data
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D of input-target pairs {(AV#), Aoéﬁ))}le, where {Aaé’i)}
represents the ground truth of conductivity distributions. The
inverse problem is then converted to a regression problem by
minimising an objective function L:

. 1
min L(6;D) = B Z
(AV,Ac4:)€D

[AG g — f(fos(AV);0)].

)

B. Graph Neural Networks

Many machine learning tasks, such as object detection,
speech recognition, and machine translation, have benefited
from the success of deep learning [31]-[33]. Deep learning
can effectively extract latent representations of Euclidean data,
which is a special case of graphs with instances assumed to
be independent of each other. To generalize deep learning
approaches to graph-structured data, Graph Neural Networks
(GNNs) have been proposed and applied in many areas, such
as molecular fingerprints [34], recommender system [35],
and traffic forecasting [36]. A recent work [37] employed
graph structures to construct the finite element mesh and
proposed a GNN to solve the mono-frequency EIT inverse
problem. Our work extends the GNN to solve the mfEIT
image reconstruction problem with the assistance of auxiliary
structural information.

Wu et al. [38] provided a comprehensive overview of GNNs,
which are categorized into recurrent GNNs (RecGNNs), con-
volutional GNNs (ConvGNNs), graph autoencoders (GAEs),
and spatial-temporal GNNs (STGNNs). Early studies in
RecGNNs learned node representations by propagating mes-
sages with neighbours iteratively until a fixed point is reached.
The idea of message passing of RecGNNs as well as Convolu-
tional Neural Networks (CNNs) in computer vision motivated
the development of convolution for graph data, which com-
putes the average of neighbourhood information. ConvGNNSs,
as the most prominent variant GNN, consist of multiple graph
convolutional layers to learn latent representations. Like au-
toencoders in deep learning, GAEs encode inputs into a latent
space and then decode latent representations back to graph
information, which is typically used for network embedding
and graph generation. STGNN is a GNN variant that learns
patterns from dynamic graphs by simultaneously considering
spatial and temporal dependencies.

C. Spatial-temporal Graph Neural Networks

Spatial-temporal graphs are dynamic on account of node
or edge features varying over time [38]. Recent state-of-art
STGNN models capture spatial dependence with graph con-
volutions or attentions and temporal dependence with RNNss,
CNN s or attentions, leading to three types of STGNNs: RNN-
based, CNN-based and attention-based [39].

DCRNN [40] is an autoencoder-like RNN-based model
incorporating a diffusion graph convolution network into a
Gated Recurrent Unit (GRU) network. The computational
problem is the main drawback of RNN-based models caused
by the usage of recurrent units. CNN-based approaches [41],
[42] address the problem in a non-recursively by stacking

nodes’ conductivities
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a regular grid

Fig. 1. Left: conductivity distribution in Euclidean space. Right: graph
representation G in non-Euclidean space.

multiple spatial-temporal blocks. In particular, each block of
STGCN [41] includes two gated 1-D convolutional layers
with a graph convolutional layer in-between. GraphWaveNet
[42] utilizes dilated casual convolutions instead for temporal
correlation based on the WaveNet proposed by [43]. This
architecture is widely adopted as it provides promising results
for various dynamic datasets. In the aforementioned graph
convolutions, neighbor features of nodes are aggregated with
equal or handcrafted weights. To avoid pre-definition and learn
these weights through training, the multi-attention mechanism
is introduced into STGNNs in an autoencoder architecture
[44]. In this work, the proposed network is developed based
on the architecture of GraphWaveNet for dynamic datasets.

III. METHODOLOGY
A. mfEIT Graph Representation

Fig. 1 shows the transformation of EIT grid from Euclidean
domain to non-Euclidean domain. The undirected graph is
represented as G = (V,€) with n nodes v; € V and edges
(vs,v5) € €. The adjacency matrix A € R™*™ describes edges
of the graph G. If (v;, vj) € &, the intersection A;; of the ith
row and the jth column is determined by

_ (7),i—1)j)2
A'ij =e ez (8)

where [ is a free parameter and is set as 0.057 in this paper.
Otherwise, A;; is zero. A is then normalized based on [45]. At
each frequency channel f € {f1, f2,..., fi}, the graph G has
a dynamic node feature matrix X/ e R"™*1 where each node
v; is assigned a single feature to represent the conductivity
change.

Let X/1/1 ¢ R"*! be the low-quality reconstruction ob-
tained from the one-step Gaussian Newton solver, and M € R"
be the structural constraint in hand in form of binary masks.
Given a graph G, this paper aims to learn a function g to
improve the quality of ng;fl constrained by M, which is
formulated as

[Xgé:f’,M, g] END €8] 9)

M—-STGNN

where X{V}f srann € R™*! stands for the enhanced re-
construction by the proposed Mask-guided Spatial-Temporal
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Graph Neural Network, which will be discussed in Section
III-B.

B. Mask-guided Spatial-Temporal Graph Neural Network

Images reconstructed from the one-step Gaussian Newton
solver suffer from high sensitivity to noise, blurriness and
artifacts. We hypothesize that explicitly learning spatial and
frequency correlations of these mfEIT images could improve
the image quality. We propose to constrain the spatial cor-
relation by binary masks available to optimize the structural
information. The binary masks could be extracted from, for
instance, CT scans [28] and microscopic images in the same
ROI using a multi-modal imaging setup [29]. Thereafter, a
Mask-guided STGNN network (M-STGNN) (see Fig. 2) is
proposed to achieve high-quality mfEIT images. The network
architecture of M-STGNN is similar to GraphWaveNet [42].
GraphWaveNet was originally designed for traffic forecasting.
Given multiple historical steps, GraphWaveNet predicts mul-
tiple future steps as a whole rather than in a recursive way. Its
framework is capable of capturing spatial-temporal dependen-
cies simultaneously. We argue that the general architecture of
GraphWaveNet is appropriate for mfEIT image reconstruction
due to similar objectives.

Fig. 2 presents the framework of M-STGNN comprising
of input and output layers, and a stack of ST-GCN layers.
Each ST-GCN layer has a graph convolution layer (GCN)
and a gated temporal convolution layer (GTCN), which is
constructed by two parallel dilated convolution layers. The
ST-GCN layers also apply residual connection and are skip-
connected to the output layers. The last ST-GCN layer reduces
the frequency dimension to one. For the following linear
layers, the output channel number of each layer is a factor
of frequency channels /.

The key idea of this architecture is to learn spatial and
frequency dependencies by GCNs and GTCNSs respectively.
In terms of the spatial dependency, M-STGNN relies on
not only the learning process of GCNs but also the prior
knowledge from structural constraint M. Therefore, both input
H*™Y € R"¥¢ and M are fed into the kth GCN. Let
Z%) € R"*4 be the output, and W € R°*? be the network
weights, the GCN adopts a diffusion process with 7' finite
steps, which is defined as

z® :Z

t=

!

t

rowsum( At) (H(kil) OM)Wo+

At

apt

(10)
(H HFD o M)W,

where A,,; denotes the self-adaptive adjacency matrix pro-
posed in [42] to learn hidden spatial dependency, and ©
denotes element-wise product. Z™) is then passed to the
GTCN to capture the trend of each node along frequency. The
GTCN employs two parallel dilated casual convolution layers
followed by different activation layers. 1-D dilated casual
convolution [46] slides over the input along the frequency
dimension by a skipping distance with a certain step. By
stacking ST-GCN layers with increasing the skipping distance
for GTCNss, the receptive field of the network is enlarged to

TABLE I
SAMPLE NUMBERS IN EACH DATA SET
Dataset Training Validation Testing
Before Augmentation 4 x 8,700 4 x 1,900 4x 1,814
After Augmentation 4 x 13,050 4 x 2,850 4 x 5,442

capture longer-term dependency. In other words, early stage
ST-GCN learns short-term frequency correlation whereas the
last ST-GCN learns long-term frequency correlation.

Compared to GraphWaveNet, several modifications have
been made in M-STGNN, which are listed as follows:

1) The binary mask M is introduced to GCNs to constrain
the structural information in a way that spatial corre-
lation benefits from both prior knowledge and training
data.

2) Our previous work [26] on mono-frequency EIT imaging
observed that structural information of the conductivity
image enables significant image quality improvement.
M-STGNN inherits this idea by swapping the sequence
of GTCNs and GCNs of GraphWaveNet.

3) GraphWaveNet treats all nodes as a whole in terms
of temporal correlation, indicating that all nodes in a
graph share the same temporal trend. This property is
unsuitable for mfEIT imaging, where different objects
possess different frequency correlations. Instead, M-
STGNN assigns independent learning kernels for all
nodes.

IV. EXPERIMENTS AND RESULTS

A. Dataset

We verify M-STGNN on the Edinburgh mfEIT Dataset con-
structed by the authors [23]. The dataset is constructed by sim-
ulation using COMSOL Multiphysics and MATLAB, which
is available at: https://datashare.ed.ac.uk/handle/10283/4441. It
contains 4 x 12,414 voltage measurements and conductivity
pairs at four distinct frequencies. We adopt the same data
normalization as in [23]. The dataset is then split into training
(4 x 8,700 samples: 4 x 2,100 samples of one-object pattern,
4x2,800 samples of two-object pattern, and 4 x 3, 800 samples
of three-object pattern), validation (4 x 1,900 samples: 4 x 500
samples of one-object pattern, 4 x 600 samples of two-object
pattern, and 4 x 800 samples of three-object pattern) and
testing (4 x 1,814 samples: 4 x 400 samples of one-object
pattern, 4 x 600 samples of two-object pattern, and 4 x 814
samples of three-object pattern) sets. We also conduct data
augmentation by adding Gaussian noise with different Signal-
to-Noise Ratios (SNRs) to voltage measurements. White noise
with Signal-to-Noise Ratio (SNR) of 50dB is added to half
samples in the training and validation set. White noise with
SNR of 50dB, 40dB and 30dB is respectively added to all
samples in the testing subset. Table I summarizes the data size
in training, validation, and testing subsets before and after data
augmentation. Corresponding binary masks for training data
are generated by setting all non-zero conductivity values of
true images as one.
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Fig. 2. Schematic illustration of Mask-guided Spatial-Temporal Graph Neural Network (M-STGNN).

B. Network Training

We train the M-STGNN using PyTorch. The Mean Square
Error (MSE) is selected as the loss function. We use Adam [47]
for optimization with a batch size of 20 and a weight decay
of 5e-6. The learning rate starts at 0.0001 and is decreased by
a factor of 0.1 with a step size of 20. The maximum training
epoch is 200.

C. Baselines

We compare M-STGNN with several state-of-the-art mfEIT
image reconstruction approaches:

« MMV-ADMM [22] is a traditional iterative algorithm
which was reported for multi-frequency complex elec-
trical capacitance tomography but can also be applied
for mfEIT image reconstruction. The maximum iteration
number is set as 100.

e MMV-Net [23] is a model-based deep learning method
proposed by the authors that unrolls the MMV-ADMM
algorithm for mfEIT image reconstruction. We adopt the
same training procedure as in [23].

o GraphWaveNet [42] is a spatial-temporal graph neural
network which incorporates graph convolution and di-
lated casual convolution designed for traffic forecasting.
This architecture can be applied for mfEIT image recon-
struction due to the similar property of dynamic datasets.
The training procedure is the same as that for M-STGNN.

—— training, M=1,N=2
---- validation,M=1,N=2
—— training,M=3,N=2
---- validation,M=3,N=2
training M=2,N=2
---- validation,M=2,N=2
training M=2,N=3
validation,M=2,N=3

0.030

0.025

0.020

Loss

0.015

0.010

0.005

0.000
0

25 50 75 100 125 150 175 200

Epoch

Fig. 3. The learning curves illustrate the variation among different choices
of the block number M and the layer number N.

D. Evaluation on Simulation Data

1) Learning Curves: Learning curves in Fig. 3 show the
impact of different choices of the block number M and the
layer number N. The red lines drop faster at the early stage and
generates the lowest asymptote. This implies that the model
with M=3 and K=2 can learn faster and eventually provide the
best validation performance.
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TABLE II
PERFORMANCE COMPARISONS (PSNR, SSIM, RMSE AND FPS) ON
EDINBURGH MFEIT DATASET. FPS MEANS FRAME PER SECOND

SNR MMV- MMV- Graph-

Metrics  /p)  ADMM  Net [23] WaveNet ~ M-STONN
[22] [42]
ﬁfe’i‘f 23.0880 267585  25.8098 29.2829
PSNR 50 229291 254704 241782  29.2824
40 227070 230531 195365 29.2820
30 215629 216358 136622  29.2797
Noise 5543 09350 09137 0.9693
Free
SSIM 50 05385 08855  0.8464 0.9693
40 05238 08143 0.6064 0.9693
30 04877 06842 03304 0.9693
Noise 0803 00510 00578 0.0378
Free
RMSE 50 00809 00602 00715 0.0378
40 0082 00807  0.1320 0.0378
30 00989 00904 02535 0.0378
No. of learning NA 8.780 85,676 503,472,290
parameters
FPS (105) 139 792 9771 3473
Best results are highlighted in bold.
Case 1 Case 2 Case 3

(@
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°
°
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Fig. 4. Three different cases from the testing set. (a)-(d) Truth conductivity
distributions at f1, fa, f3, and fa. (e) Corresponding binary masks.

2) Quantitative Comparisons: Table II reports quantitative
comparisons based on average Peak Signal to Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM), and
Root Mean Square Error (RMSE) over all the testing data. M-
STGNN consistently outperforms all competing approaches on
all metrics. To further evaluate the robustness against noise, we
add different levels of Gaussian noise to the measurement data,
i.e., noise free, 50dB, 40dB, and 30dB. MMV-ADMM, MM V-
Net, and GraphWaveNet show a clear trend of degrading
performance with decreasing SNR. In contrast, M-STGNN
exhibits overwhelming noise robustness performance, which
reveals the effectiveness of the structural constraint from
external binary masks.

We also compare the running speed of all algorithms.
All learning-based approaches run much faster than MMV-
ADMM while obtaining higher image quality, suitable for
real-time mfEIT imaging. GraphWaveNet and M-STGNN are
respectively 12.3 times and 3.1 times faster than MMV-Net,
indicating the superiority of GNNs over model-based learning
approaches. M-STGNN runs slower than GraphWaveNet by
73.18 ft/s. The main reason is that the trainable parameters of
M-STGNN is about 2k times larger than GraphWaveNet (see
the last second row in Table II ) because it uses independent
parameters to learn temporal correlations for each node and
an extra branch to deal with the binary masks. Thus the
average inference speed of M-STGNN increases compared to
GraphWaveNet. Nevertheless, M-STGNN can achieve 24.73
ft/s, which is still sufficient for real-time mfEIT imaging.

3) Case Study: Three representative cases with different
patterns are selected from the testing set when SNR is 50dB
(see Fig. 4).

Fig. 5 shows corresponding mfEIT reconstruction results
of all algorithms. Overall, M-STGNN outperforms the other
three algorithms under all frequencies visually and quan-
titatively, whereas MMV-ADMM keeps suffering from low
resolution and blurriness. In case 1, all algorithms are capable
of recovering the object shape and the trend of conductivity
variation along the frequency. The case 2 is more challenging
with two inclusions of different conductivity, which MM V-
ADMM hardly separates. MMV-Net is unable to reconstruct
the shape of the lower right inclusion accurately. Graph-
WaveNet performs even worse with distorted shape of both
inclusions, whereas M-STGNN provides the most accurate
shape, constrained by the binary masks. Regarding case 3,
MMV-ADMM is unable to distinguish the two inclusions at
the top and even fails to recognize the top-left inclusion at
fa. All learning-based approaches outperform MMV-ADMM,
especially in terms of shape reconstruction.

It is noteworthy that ideally we expect M-STGNN to
generate accurate conductivity estimation for all objects, es-
pecially with the structural information constrained by the
binary masks. However, when there are multiple inclusions
within the ROI with different conductivity, what M-STGNN
learns from the training data is to assign similar conductivity
values to all inclusions, which is similar to the results of
MMV-Net and GraphWaveNet. The potential reason could be
that the capability to distinguish multi-level conductivity is
limited by the information provided by the current EIT sensor
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Case 1

MMV-ADMM MMYV-Net GraphWaveNet M-STGNN MMV-ADMM MMYV-Net

f1

PSNR =22.79 PSNR =26.53 PSNR =25.97 PSNR =30.74 PSNR =19.68 PSNR =22.84
SSIM = 0.32 SSIM = 0.95 SSIM = 0.91 SSIM = 0.99 SSIM =0.28 SSIM = 0.91
RMSE =0.072 RMSE=0.047 RMSE=0.050 RMSE =0.029 RMSE =0.104  RMSE = 0.072

PSNR =23.83 PSNR =27.66 PSNR =26.87 PSNR =31.14 PSNR =20.71 PSNR =24.42
SSIM =0.37 SSIM = 0.95 SSIM = 0.91 SSIM = 0.99 SSIM = 0.33 SSIM = 0.91
RMSE =0.064  RMSE =0.041 RMSE =0.045 RMSE = 0.028 RMSE =0.092 RMSE = 0.060

PSNR =24.75 PSNR =27.21 PSNR =27.55 PSNR =29.71 PSNR =21.67 PSNR =25.27
SSIM = 0.42 SSIM =0.83 SSIM = 0.94 SSIM =0.98 SSIM = 0.36 SSIM = 0.86
RMSE =0.058 RMSE =0.043 RMSE=0.042 RMSE =0.033 RMSE =0.082  RMSE =0.055

Case 2

Case3

GraphWaveNet M-STGNN MMV-ADMM MMYV-Net GraphWaveNet M-STGNN

PSNR =21.59 PSNR =25.10 PSNR =17.01 PSNR =20.74 PSNR =19.54 PSNR = 24.64
SSIM = 0.88 SSIM = 0.96 SSIM = 0.31 SSIM = 0.89 SSIM = 0.84 SSIM = 0.95
RMSE =0.083  RMSE =0.056 RMSE = 0.141 RMSE = 0.091 RMSE =0.105 RMSE = 0.058

PSNR =23.01 PSNR =26.92 PSNR =19.72 PSNR =23.49 PSNR =21.97 PSNR =27.53
SSIM = 0.88 SSIM = 0.97 SSIM = 0.44 SSIM = 0.91 SSIM = 0.85 SSIM = 0.96
RMSE =0.071 RMSE = 0.045 RMSE=0.103 RMSE=0.067 RMSE=0.079 RMSE =0.042

PSNR =24.46 PSNR =27.72 PSNR =21.61 PSNR =26.57 PSNR = 24.80 PSNR =29.51
SSIM = 0.88 SSIM = 0.97 SSIM = 0.54 SSIM = 0.82 SSIM = 0.87 SSIM = 0.96
RMSE =0.060 RMSE =0.041 RMSE =0.083 RMSE=0.047 RMSE=0.057 RMSE =0.033

PSNR = 25.65 PSNR =27.37 PSNR =27.77 PSNR = 27.56 PSNR =22.88

SSIM = 0.48 SSIM = 0.96 SSIM = 0.94 SSIM =0.97 SSIM = 0.43 SSIM = 0.92
RMSE =0.052 RMSE=0.043 RMSE=0.040 RMSE =0.032 RMSE =0.071  RMSE = 0.052

PSNR =25.72

PSNR = 25.65 PSNR =26.68 PSNR =22.97 PSNR =28.74 PSNR = 26.63 PSNR =28.55

SSIM = 0.89 SSIM = 0.96 SSIM = 0.49 SSIM = 0.94 SSIM = 0.88 SSIM = 0.95
RMSE =0.052  RMSE = 0.046 RMSE =0.071 RMSE=0.036 RMSE=0.046 RMSE =0.035

Fig. 5. Reconstructed results of M-STGNN compared to baseline approaches when SNR is 50dB.

TABLE III
NUMERICAL COMPARISONS OF EXPERIMENTAL RESULTS BASED ON
SSIM.
. Frequency MMV- MM V- Graph-
Metrics 1 H,) © ADMM  Net [23] Wavenet  M-STONN
[22] [42]
50 0.7355 0.8530 0.8353 0.9665
I 40 0.7116 0.8540 0.8429 0.9523
30 0.6284 0.8505 0.8312 0.9261
20 0.6955 0.8454 0.8411 0.8904
50 0.7617 0.8184 0.8462 0.9684
2 40 0.6661 0.8292 0.8401 0.9541
30 0.6208 0.8352 0.8383 0.9275
20 0.7262 0.8466 0.8428 0.9471
50 0.7154 0.8487 0.8352 0.9734
3 40 0.7403 0.8501 0.8428 0.9579
30 0.6626 0.8496 0.8365 0.9311
20 0.7474 0.8552 0.8475 0.8955
100 0.2716 0.8574 0.7266 0.9695
80 0.3964 0.8566 0.7421 0.9558
4 50 0.3390 0.8523 0.7575 0.9332
40 0.3588 0.8502 0.7950 0.9038

Best results are highlighted in bold.

layout, which might be solved by deploying more electrodes
(e.g., at the substrate of the sensor) in order to obtain more
measurements.

E. Evaluation on Experimental Data

In addition to simulation study, we carried out real-world ex-
periments on human breast cancer cell spheroids with a quasi-
2-D miniature EIT sensor [48] to examine the generalization
ability of the proposed method. The sensor with a diameter
of 14 mm is equipped with 16 planar electrodes (see Fig. 6).
The imaging targets are 3D cultivated MCF-7 cell (e.g., cells
cultivated in a 3D format to better mimic tissues, such as

spheroids and scaffolds) in the laboratory environment. The
background substance is the standard Dulbecco’s Modified Ea-
gle’s Medium for cell culture with a conductivity of 2 .S-m™!
(Life Technologies, Carlsbad, CA, USA) [14]. All MCF-7
human breast cancer cell spheroids are less conductive than the
background substance at the frequencies of interest. The con-
ductivity of MCF-7 human breast cancer cell spheroids will in-
crease with the increasing current frequency. The circular cell
spheroids in Fig. 6 (b), (d), and (f) have a diameter of around
2 mm [26], [27]. In these cases, the excitation frequencies are
{f1, f2, f3, fa} = {50, 40, 30,20}k H z. The experiment on the
triangular MCF-7 human breast cancer cell pellet in Fig. 6
(g) refers to our previous work in [23], where the excitation
frequencies are {f1, fo, f5, fa} = {100, 80,50,40}kHz. The
binary masks in Fig. 6 (b), (d), (f) and (h) are extracted
according to the microscopic images in Fig. 6 (a), (c), (e) and
(2). The experimental data are not guaranteed to have the same
impedance spectra as the simulation data because we focus
more on capturing the frequency correlation of conductivity
values. However, the simulation data can cover the possible
conductivity variation range caused by MCF-7 cells.

Fig. 7 illustrates the mfEIT image reconstruction results of
the four experimental phantoms. Additionally, Table III reports
the quantitative comparisons of corresponding results based on
SSIM. Overall, MMV-ADMM fails to, but the three learning-
based approaches manage to consistently provide a clear trend
of conductivity changes along frequency. Among them, M-
STGNN achieves significantly better shape reconstruction. For
phantom 1, MMV-ADMM generates evident artifacts at lower
frequencies. MMV-Net and GraphWaveNet underestimate the
size of both cell spheroids. M-STGNN provides the better
shapes under all frequencies. The two cell spheroids get closer
in phantom 2. Both MMV-ADMM and MMV-Net exhibit
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(d)
Fig. 6. Experimental phantoms on 16-electrode miniature EIT sensor. (a) Phantom 1: two MCF-7 cell spheroids [27]. (b) Binary mask of phantom 1. (c)

Phantom 2: two MCF-7 cell spheroids [26]. (d) Binary mask of phantom 2. (e) Phantom 3: two MCF-7 cell spheroids [26]. (f) Binary mask of phantom 3.
(g) Phantom 4: a MCF-7 cell spheroid [23]. (h) Binary mask of phantom 4.
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Fig. 7. Reconstructed results of four experimental phantoms.
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poor ability in terms of noise reduction. GraphWaveNet could
only roughly recover the cell spheroid on the left while
M-STGNN demonstrates superior performance in terms of
both shape preservation and noise reduction. For phantom 3,
MMV-ADMM is unable to distinguish the two adjacent cell
spheroids. MMV-Net and GraphWaveNet manage to separate
them but their sizes are underestimated. However, M-STGNN
consistently yields better shapes at all frequencies. Phantom
4 is a simpler scenario with a single cell spheroid. MMV-
ADMM reconstructs the trend of conductivity changes along
frequency but with distorted shapes. The three learning-based
approaches are able to provide the unseen triangular shape
whereas M-STGNN is more powerful in shape preservation,
which mainly benefits from the strong structural constrain
from the binary mask.

The results suggest that M-STGNN generalizes well to
real-world experiments on MCF-7 human breast cancer cell
spheroids. It outperforms the conventional iterative algorithm
and the state-of-the-art learning-based approaches by learning
both spatial and frequency correlations of mfEIT images and
exploiting external binary masks to constrain the general
structures.

V. CONCLUSION

This study proposes a novel graph neural network M-
STGNN to address the image reconstruction problem of
mfEIT, with a particular focus on tissue engineering appli-
cations. M-STGNN learns both spatial and frequency cor-
relations between mfEIT images. Additionally, M-STGNN
considers the multi-modal imaging context and introduces bi-
nary masks from auxiliary imaging modalities such as optical
imaging to constrain the fine structure of mfEIT images. Sim-
ulations and real-world experiments are conducted to evaluate
and benchmark the performance of M-STGNN quantitatively.
The results show that M-STGNN can achieve considerable
improvements in shape preservation and noise robustness,
compared to the state-of-the-art mfEIT image reconstruction
approaches. In the future work, we aim to extend this approach
to optical-mfEIT dual-modal imaging to screen the dynamic
3D cell activities (e.g., cell-drug response) in real time. The
main challenges for extending to 3D setup lie in a few
aspects, e.g., the acquisition and processing of 3D masks, the
construction of 3D training dataset, and the higher-dimension
inverse problem.
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