
HAL Id: hal-03796289
https://hal.science/hal-03796289

Submitted on 20 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TRANS-Net: Transformer-Enhanced Residual-Error
AlterNative Suppression Network for MRI

Reconstruction
Dianlin Hu, Yikun Zhang, Jianfeng Zhu, Qiegen Liu, Yang Chen

To cite this version:
Dianlin Hu, Yikun Zhang, Jianfeng Zhu, Qiegen Liu, Yang Chen. TRANS-Net: Transformer-Enhanced
Residual-Error AlterNative Suppression Network for MRI Reconstruction. IEEE Transactions on In-
strumentation and Measurement, 2022, 71, pp.2517913. �10.1109/TIM.2022.3205684�. �hal-03796289�

https://hal.science/hal-03796289
https://hal.archives-ouvertes.fr


1 
Abstract—Since deep priors could exploit more intrinsic 

features than hand-crafted prior knowledge, unrolled 
reconstruction methods significantly improve image quality for 
fast MRI reconstruction with the combination of iterative 
optimization and deep neural network-based regularization terms. 
One popular way for unrolled methods is to employ the 
regularization penalty on the reconstructed result within the 
image space. Dissimilarly, in this paper, we innovatively propose a 
reconstruction framework termed Transformer-enhanced 
Residual-error AlterNative Suppression Network (TRANS-Net) 
for MRI reconstruction to extend the unrolled methods. Unlike 
some existing model-based algorithms, TRANS-Net additionally 
deploys the regularization term on the error maps in the residual 
image domain, which greatly emphasizes the high-frequency 
information contained in the MR images. Besides, to further 
explore the global spatial correlation of the reconstructed image, 
the transformer module is adopted to enlarge the receptive field of 
deep priors regularized on the reconstructed images for better 
tissue recovery. The quantitative and qualitative results show that 
the proposed TRANS-Net method has superior performance to 
the state-of-the-art reconstruction algorithms in anatomical 
structure restoration and perceptual detail preservation. 
 

Index Terms—MRI imaging, unrolled reconstruction method, 
deep prior, residual image domain, transformer. 
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I. INTRODUCTION 
AGNETIC Resonance Imaging (MRI) is a widely used 
medical imaging tool for numerous clinical applications 

due to its non-invasive ability to reveal structural, anatomical 
and functional information [1]. However, the main drawback of  
MRI is the slow acquisition process, which will lead to 
degraded images because of the patient movement and  
physiological motion. Meanwhile, the prolonged acquisition 
time also restricts the large-scale usage of MRI since the 
expensive cost and less comfort [2]. Therefore, how to 
accelerate the acquisition process for MRI is a hot research 
topic. One possible way for the MR imaging time reduction is 
to undersample the measurement data in k-space. However, the 
undersampled k-space data will generate corrupted images 
inundated with severe aliasing artifacts because of the 
Nyquist-Shannon theorem [1, 3]. To tackle this issue, many 
reconstruction algorithms have been developed to improve 
image quality. 

Compressed Sensing (CS)-based reconstruction methods 
have attracted great attention in medical imaging [4]. Noticing 
the sparseness property of MRI images in some transform 
domains, some methods have been proposed for fast MRI 
reconstruction. Specifically, Block et al. introduced the total 
variation (TV) as the regularization constraint for multi-coils 
MRI reconstruction to suppress streaking artifacts and remove 
noise [5]. Later, the total generalized variation (TGV) was 
proposed to extend TV theory and achieved better performance 
in noise reduction and edge preservation over the conventional 
TV minimization [6]. Besides the mentioned constraint 
functions, sparse representation was another commonly used 
regularization prior [7]. Ravishankar et al. employed dictionary 
learning as the penalty function to enforce the sparsity for the 
local structure, which demonstrated dramatic improvements 
compared to previous CS methods [8]. Further, Huang et al. 
incorporated bayesian statistics with dictionary learning to 
formulate a novel nonparametric model (BPFA) for MR 
imaging [9]. BPFA gave an impressive reconstruction result 
that benefited from adaptively learning the hyper-parameters. 
As an extension of sparsity prior, low rank has been widely 
applied for dynamic MRI by exploiting the correlations 
between spatiotemporal MR images [10, 11]. Realizing the 
non-local similarity in MR images, non-local means (NLM) 
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filter was induced for noise suppression and gained 
perceptually improved images [12, 13]. Although CS-based 
MR imaging (CS-MRI) methods exhibited remarkable 
performance in aliasing artifact removal and anatomical 
structure preservation from the undersampled k-space data, 
they still had some defects in the sensitive hyper-parameter 
selection, high computational cost and hand-designed priors. 

Recently, deep learning (DL)-based methods have been 
successfully applied in inverse problems [14, 15]. Particularly, 
convolutional neural networks (CNN) have become the 
state-of-the-art technique for various medical imaging tasks [16, 
17]. Assisted by the large-scale training datasets, Wang et al. 
designed a convolutional neural network to learn the mapping 
relationship between the corrupted image and the reference 
image [18]. Experiments implied that this method could 
successfully restore fine structures and details. Then, to 
stabilize the training process and accelerate the convergence, 
residual learning was utilized for fast MRI reconstruction [19]. 
These CNN-based methods only exploited the objective 
function from a single domain to optimize network weights, 
which may fail to use prior knowledge in other domains. 
Therefore, Yang et al. developed an innovative CNN model, 
which involved image domain loss, frequency domain loss, 
feature space loss and adversarial loss, resulting in superior 
reconstruction images with visually promoted details and 
textures [1]. Unlike the cost function defined independently in 
various transform domains, a cyclic data consistency loss was 
deployed in [20] to simultaneously underline the consistency 
between the reconstructions and references in k-space and the 
image space. Based on the [20], Liu et al. adopted the data 
augmentation training strategy to strengthen the robustness of 
the proposed method (SANTIS) against undersampling pattern 
discrepancy [21]. Compared to CS-MRI methods, SANTIS 
could provide better images with sharper edges. For the 
comprehensive information contained in frequency and image 
domains, the cross-domain-based framework (KIKI-Net) was 
proposed, leading to improved results over the single-domain 
neural network [22]. Further, a multi-domain CNN (MD-CNN) 
was investigated for cardiac MR cine imaging [23]. Despite 
these methods possessing outstanding performance and short 
imaging time, the acquisition of large-scale noise-free datasets 
limited their applications in clinical practice. 

Replacing the explicitly hand-crafted priors with the 
implicitly deep neural networks, unrolled reconstruction 
methods have presented great potential in image reconstruction. 
Zhang et al. employed the neural network to replace the 
1-norm constraint based on the ISTA method and gained 
impressive results for image compressive sensing [15].  Ma et 
al. directly unfolded the ADMM optimization for hyperspectral 
image super-resolution [24]. To accelerate the convergence of 
subproblems, MetaInv-Net adopted gradient descent with a 
learned initializer for sparse-view CT reconstruction [25]. 
Unlike regularizing the image by the classical CNN model,  Xia 
et al. introduced graph convolution to boost the denoising 
performance for low-dose CT [26]. In MRI reconstruction, 
there are also many unrolled methods. Schlemper et al. 

designed sequential CNNs and employed data consistency 
layers to boost the reconstruction image quality [3]. At the 
moment, to overcome the drawbacks of CS-MRI in 
hyper-parameter settings and hand-designed regularization 
constraints, an unrolled variational model (VN) was performed 
by gradient descent optimization [27]. Further, Aggarwal et al. 
established a model-based reconstruction method (MoDL) to 
solve data fidelity minimization in more complex MR imaging 
using a conjugate gradient optimization strategy [28]. Data 
fidelity term was a necessary component in unrolled 
reconstruction methods, and it was usually optimized by 
2-minimization. However, 2-distance might not be the optimal 
metric function because of ignoring the real distribution of 
noise [29]. Hence, to resolve this issue, Cheng et al. employed 
the neural network to learn the data consistency term. Most 
existing unrolled methods only underlined the sparse prior. 
Therefore, Ke et al. combined low rank and sparsity to promote 
the reconstruction results for dynamic MR cine imaging [30]. 
These unrolled methods were derived from CS-MRI, so they 
were more interpretable than CNN-based methods. Meanwhile, 
the regularization terms were automatically learned from the 
datasets. Hence, they usually outperformed hand-designed 
priors [31, 32]. 

Excluding the k-space domain-based processing methods [22, 
23, 29], both CS-MRI and DL-based methods merely deployed 
regularization constraints on the reconstructed results in the 
image domain to improve the image quality. However, this 
scheme may limit further improvement for MRI reconstruction 
because it is hard to directly promote high-frequency 
information based on the reconstructed image. Therefore, this 
paper proposes a Transformer-enhanced Residual-error 
AlterNative Suppression Network (TRANS-Net) for 
single-coil MRI reconstruction. It is an unrolled method that 
employs deep neural networks as the regularization constraints. 
The main contributions of this work are three-fold. First, most 
existing unrolled methods stress the image property of the 
reconstructed results, e.g., image gradient sparsity or low rank 
[27, 30], to remove aliasing artifacts and recover anatomical 
structures. Differing from these methods, TRANS-Net also 
regularizes the error MR images on the residual domain, 
reducing the difficulty of finding the optimal solution for detail 
preservation. Second, most unrolled methods usually utilize 
small neural networks in each iteration, focusing only on the 
local features. To overcome this problem, TRANS-Net applies 
the transformer module to encode the global information 
effectively. Third, TRANS-Net conducts two light 
U-shape-based neural networks to improve the representation 
capacity of the deep priors. Two datasets were performed to 
validate the superior performance of TRNAS-Net in detail 
preservation and artifact removal. 

The rest of this paper is organized as follows. Section Ⅱ 
introduces the background of unrolled methods. The 
mathematical model of TRANS-Net and the architecture of the 
neural network are given in Section Ⅲ. Section Ⅳ presents the 
experiments and analyses for the proposed method. In Section 
Ⅴ, we will discuss some related issues and make conclusions.



 
Fig. 1. The flowchart of TRANS-Net. (a) The workflow of the proposed method, (b) The architecture of HC-Net, (c) The architecture of GE-Net. 

II. BACKGROUND 

A. Compressed Sensing-based MRI Model 
The classic CS-MRI model can be expressed as follows: 

min
𝑥𝑥

1
2
‖𝐹𝐹𝑢𝑢𝑥𝑥 − 𝑦𝑦‖22 + 𝜆𝜆𝜆𝜆(𝑥𝑥)                        (1) 

where the first term is data fidelity term, 𝐹𝐹𝑢𝑢  denotes the 
undersampled Fourier transform, 𝑦𝑦 presents the undersampled 
k-space measurement data, 𝑥𝑥 stands for the reconstructed MR 
image, 𝑅𝑅(·) expresses the regularization function on the 𝑥𝑥, 𝜆𝜆 
indicates the hyper-parameter to balance the trade-off between 
the data fidelity term and the regularization term. By solving 
the optimization problem Eq. (1) [5, 6, 8], a high-quality image 
𝑥𝑥 can be obtained. 
 

B. Unrolled MRI Reconstruction Model 
The hand-designed prior constraint 𝑅𝑅 is the main obstacle of 

CS-MRI because it cannot intrinsically expose the image 
property. Hence, some unrolled methods are investigated to 
overcome the shackle of CS-MRI via using the deep priors 
trained by MR images themselves [33-35]. The typical unrolled 
method can be formulated as follows: 

min
𝑥𝑥

𝜆𝜆
2
‖𝐹𝐹𝑢𝑢𝑥𝑥 − 𝑦𝑦‖22 + 1

2
‖𝑥𝑥 − 𝑓𝑓𝜃𝜃(𝑥𝑥𝑢𝑢)‖22                 (2) 

here 𝑥𝑥𝑢𝑢 = 𝐹𝐹𝑢𝑢𝐻𝐻𝑦𝑦  is the MR image reconstructed from the 
zero-filled undersampled k-space data 𝑦𝑦 , 𝑓𝑓𝜃𝜃  represents the 
trained neural network with the weighting parameter 𝜃𝜃. Eq. (2) 
can be iteratively solved by alternatively updating the 
regularization term and data consistency term, which are briefly 
expressed as [3]: 

𝑧𝑧𝑘𝑘+1 = 𝑓𝑓𝜃𝜃𝑘𝑘+1(𝑥𝑥𝑘𝑘)                                (3) 

𝑢𝑢𝑘𝑘+1 = �
𝑠𝑠𝑧𝑧𝑘𝑘+1(𝑗𝑗)             if 𝑗𝑗 ∈ Ω
𝑠𝑠𝑧𝑧𝑘𝑘+1(𝑗𝑗)+𝜆𝜆𝜆𝜆(𝑗𝑗)

1+𝜆𝜆
    if 𝑗𝑗 ∉ Ω

                    (4) 

𝑥𝑥𝑘𝑘+1 = 𝐹𝐹𝐻𝐻𝑢𝑢𝑘𝑘+1                                  (5) 
where 𝑓𝑓𝜃𝜃𝑘𝑘+1 is the deep neural network at k+1th iteration, Ω 
indicates the subset of indices sampled in k-space, 𝑠𝑠𝑧𝑧𝑘𝑘+1 =
𝐹𝐹𝑧𝑧𝑘𝑘+1  is the frequency data of 𝑧𝑧𝑘𝑘+1 , 𝐹𝐹  denotes the Fourier 
transform, 𝑗𝑗 stands for the jth coefficient in Ω, 𝐹𝐹𝐻𝐻 presents the 
inverse Fourier transform. Eqs. (3)-(5) give the classical 
workflow of the unrolled method, which is simple but effective 
[3]. 

III. TRANS-NET MODEL 

A. Mathematical Model of TRANS-Net 
Most unrolled methods make great efforts to improve the 

MR image quality according to Eq. (1). However, those 
methods only regularize the reconstructed results 𝑥𝑥  on the 
image domain, which may ignore the residual components in 
the k-space domain as follows.  

𝑟𝑟𝑘𝑘 = 𝑦𝑦 − 𝐹𝐹𝑢𝑢𝑥𝑥𝑘𝑘                                    (6) 
where 𝑥𝑥𝑘𝑘 is the reconstructed image at the 𝑘𝑘𝑡𝑡ℎ iteration and 𝑟𝑟𝑘𝑘 
stands for the residual map between the 𝑥𝑥𝑘𝑘  and 𝑦𝑦  in the 
frequency domain. Compared to 𝑥𝑥𝑘𝑘 , 𝑟𝑟𝑘𝑘  indicates the 
high-frequency error and can be used to compensate for the 𝑥𝑥𝑘𝑘 
in respect to subtle detail missing. Therefore, inspired by [36], 
Eq. (1) can be extended by adding one extra regularization term 
on the k-space residual map 𝑟𝑟𝑘𝑘 , whose objective function is 
written as: 

min
𝑥𝑥,𝑟𝑟

𝜆𝜆
2
‖𝑦𝑦 − (𝐹𝐹𝑢𝑢𝑥𝑥 + 𝑟𝑟)‖22 + 1

2
‖𝑥𝑥 − 𝛤𝛤(𝐹𝐹𝑢𝑢𝑥𝑥 + 𝑟𝑟)‖22  

+ 𝜇𝜇
2
‖𝑟𝑟‖22 + ζ‖𝑊𝑊𝑊𝑊‖1      (7) 



where 𝛤𝛤 stands for a complex function to accurately transform 
the k-space data into the image data. 𝑊𝑊 indicates the sparsity 
transform, e.g., wavelet framework. 𝜆𝜆 > 0, 𝜇𝜇 ≥ 0, and ζ > 0 
are hyper-parameters to control the proportion of different 
terms. Differing from Eq. (1), Eq. (7) has two data fidelity 
terms in the k-space domain and image domain by additionally 
introducing the residual map 𝑟𝑟. Specifically, the first term is to 
ensure that the sum of 𝐹𝐹𝑢𝑢𝑥𝑥  in k-space and 𝑟𝑟  is close to the 
measurement data 𝑦𝑦.  With the assumption that the  𝛤𝛤  can 
accurately transform the k-space data into image data, the 
second term aims to push the current reconstructed image 𝑥𝑥 to 
the reference image. These two terms can further improve the 
constrain capacity as opposed to the one data fidelity in Eq. (1). 
The third term aims to minimize the residual map 𝑟𝑟 and the last 
term represents the sparsity-based regularization term to 
constrain the reconstructed image 𝑥𝑥 in the transform domain. 
Since the optimization problem Eq. (7) has two variables, then 
we can use the alternative optimization strategy to divide it into 
the following sub-problems: 

𝑟𝑟𝑘𝑘+1 = argmin
𝑟𝑟

1
2
‖𝑥𝑥𝑘𝑘 − 𝛤𝛤(𝐹𝐹𝑢𝑢𝑥𝑥𝑘𝑘 + 𝑟𝑟)‖22  

+ 𝜆𝜆
2
‖𝑦𝑦 − (𝐹𝐹𝑢𝑢𝑥𝑥𝑘𝑘 + 𝑟𝑟)‖22 + 𝜇𝜇

2
‖𝑟𝑟‖22     (8) 

𝑥𝑥𝑘𝑘+1 = argmin
𝑥𝑥

1
2
‖𝑥𝑥 − 𝛤𝛤(𝐹𝐹𝑢𝑢𝑥𝑥 + 𝑟𝑟𝑘𝑘+1)‖22  

+ 𝜆𝜆
2
‖𝑦𝑦 − (𝐹𝐹𝑢𝑢𝑥𝑥 + 𝑟𝑟𝑘𝑘+1)‖22 + ζ‖𝑊𝑊𝑊𝑊‖1   (9) 

Regarding Eq. (8), the solution of 𝑟𝑟𝑘𝑘+1 should be satisfied with 
the condition as follows: 

�𝜕𝜕𝜕𝜕�𝐹𝐹𝑢𝑢𝑥𝑥
𝑘𝑘+𝑟𝑟�

𝜕𝜕�𝐹𝐹𝑢𝑢𝑥𝑥𝑘𝑘+𝑟𝑟�
�
𝑇𝑇

(𝛤𝛤(𝐹𝐹𝑢𝑢𝑥𝑥𝑘𝑘 + 𝑟𝑟) − 𝑥𝑥𝑘𝑘)  

+𝜆𝜆(𝐹𝐹𝑢𝑢𝑥𝑥𝑘𝑘 + 𝑟𝑟 − 𝑦𝑦) + 𝜇𝜇𝜇𝜇 = 0     (10) 

According to [36], �𝜕𝜕𝜕𝜕�𝐹𝐹𝑢𝑢𝑥𝑥
𝑘𝑘+𝑟𝑟�

𝜕𝜕�𝐹𝐹𝑢𝑢𝑥𝑥𝑘𝑘+𝑟𝑟�
�
𝑇𝑇
can be approximated by 𝐹𝐹𝑢𝑢 

and 𝐹𝐹𝑢𝑢�𝛤𝛤(𝐹𝐹𝑢𝑢𝑥𝑥𝑘𝑘 + 𝑟𝑟)� can be simplied with 𝐹𝐹𝑢𝑢𝑥𝑥𝑘𝑘 + 𝑟𝑟  (more 
interprelation of these two apprioximation can be referred to 
[36]). Therefore, Eq. (8) can be solved as: 

𝑟𝑟𝑘𝑘+1 = 𝜆𝜆(𝑦𝑦−𝐹𝐹𝑢𝑢𝑥𝑥𝑘𝑘)
1+𝜆𝜆+𝜇𝜇

                                (11) 

For Eq. (9), the solution of  𝑥𝑥𝑘𝑘+1 can be given as (more details 
can be found in supplementary material): 

𝑥𝑥𝑘𝑘+1 = 𝑊𝑊∗𝑆𝑆𝛿𝛿(𝑊𝑊(𝑥𝑥𝑘𝑘 + 1+𝜇𝜇
𝜆𝜆
𝛤𝛤(𝑟𝑟𝑘𝑘+1)))         (12) 

here 𝑆𝑆𝛿𝛿  is the soft-thresholding operation, 𝑊𝑊∗  denotes the 
adjoint of 𝑊𝑊, and 𝛿𝛿 = ζ

𝜆𝜆
. 

There are two operators, 𝛤𝛤 and W∗𝑆𝑆𝛿𝛿𝑊𝑊 in Eq. (12), can be 
replaced by deep priors ΦR and ΦI, respectively. Meanwhile, 
the hyperparameters 𝜆𝜆  and 𝜇𝜇  are also optimized in different 
iterations. Hence, we have the TRANS-Net model as shown in 
Fig. 1(a): 

𝑥𝑥𝑘𝑘+1 = ΦI
k+1(𝑥𝑥𝑘𝑘 + 1+𝜇𝜇𝑘𝑘+1

𝜆𝜆𝑘𝑘+1
ΦR
k+1(𝐹𝐹𝑢𝑢𝐻𝐻𝑟𝑟𝑘𝑘+1))          (13) 

In our work, the transform function 𝛤𝛤 is composed of ΦR𝐹𝐹𝑢𝑢𝐻𝐻 
for simplification. 
 

B. K-space Error Map 
The k-space error map 𝑟𝑟𝑘𝑘 in Eq. (11) is the key element of 

TRANS-Net, which exactly estimates the undersampled 
k-space difference between the reconstructed image 𝑥𝑥𝑘𝑘−1 and 
the measurement data 𝑦𝑦. Even though the reconstructed image 
𝑥𝑥𝑘𝑘−1  completes the task of artifact reduction and tissue 
restoration, 𝑟𝑟𝑘𝑘  still remains the high-frequency information 
that 𝑥𝑥𝑘𝑘−1 missed. Therefore, the reconstructed image 𝑥𝑥𝑘𝑘−1 can 
be gradually improved following the direction pointed by 𝑟𝑟𝑘𝑘 
via the iterative process, which is superior to existing unrolled 
methods. 
 

C. High-frequency Correction Neural Network (HC-Net) 
To obtain the promoted reconstructed image 𝑥𝑥𝑘𝑘 based on the 

previous intermediate result 𝑥𝑥𝑘𝑘−1 , the k-space error map 𝑟𝑟𝑘𝑘 
needed to be transformed into the residual image first. In this 
paper, we adopt the inverse Fourier transform to get the residual 
image by 𝑝𝑝𝑘𝑘 = 𝐹𝐹𝑢𝑢𝐻𝐻𝑟𝑟𝑘𝑘. However, 𝑝𝑝𝑘𝑘 cannot provide an accurate 
difference evaluation from the undersampled k-space data 𝑟𝑟𝑘𝑘. 

So, unlike the classical unrolled method, TRANS-Net 
additionally conducts a deep neural network ΦR

k  to correct the 
residual image 𝑝𝑝𝑘𝑘 for the precise evaluation of the difference 
between the reconstructed image 𝑥𝑥𝑘𝑘 and the reference image. 
This step persistently underlines the high-frequency component, 
e.g., edges and fine structures, resulting in encouraging 
improvement than [3, 27]. 

Specifically, we apply the high-frequency correction neural 
network (HC-Net) to enhance the performance of TRANS-Net 
in detail preservation, as shown in Fig. 1(b). HC-Net is a 
lightweight U-shape network rather than a stack of successive 
convolutional layers [16, 37], which could offer a more 
powerful ability in feature extraction because of having more 
learnable parameters with the same computational resources. 
HC-Net has two sub-components: encoder and decoder. The 
target of the encoder is to compress the spatial information of 
feature maps and extract the essential features lying in the 
low-dimensional manifold, which has the robustness to noise 
and perturbation [38]. The decoder aims to correct the residual 
image 𝑝𝑝𝑘𝑘  to get the accurate difference map 𝑣𝑣𝑘𝑘 from the 
encoded feature space. Skip connection and global residual 
connection are both necessary components in U-shape 
networks [39, 40], which can accelerate information flow, 
avoid detail missing and speed up convergence [14, 41]. Also, 
BN [42] and ReLu [43] are employed to expedite the training 
process, prevent overfitting and improve the non-linear 
representation capacity. More architecture details of HC-Net 
can be found in Fig. 1(b). 

 

D. Global-feature Enhancement Neural Network (GE-Net) 
After obtaining the corrected residual image 𝑣𝑣𝑘𝑘  via HC-Net, 

the updated intermediate result 𝑧𝑧𝑘𝑘 can be achieved by the 
weighted sum of 𝑥𝑥𝑘𝑘−1 and 𝑣𝑣𝑘𝑘 . Again, another deep prior ΦI

k is 
employed to regularize 𝑧𝑧𝑘𝑘 to get the final reconstructed image 
𝑥𝑥𝑘𝑘 at the kth iteration. 



 
Fig. 2. Overview of transformer module in GE-Net. 

ΦI
k  also uses a U-shape network smaller than HC-Net, 

termed global-feature enhancement neural network (GE-Net), 
as illustrated in Fig. 1(c). Meanwhile, to further enlarge the 
receptive field of GE-Net, the transformer technique is adopted 
to explore the spatial correlations within the global feature 
space [44], which has been applied to image processing and 
gets impressive results [45-48]. 

The workflow of the transformer module in GE-Net is 
depicted in Fig. 2 [48]. First, we need to create a 1D sequence 
by flattening non-overlapped patches from the input feature 
map MI ∈ R𝐻𝐻×𝑊𝑊×𝐶𝐶  into the serialized signal MS ∈ R𝐿𝐿×𝑁𝑁2 , 
where each flattened patch has 𝑁𝑁2  elements and 𝐿𝐿 =
(𝐻𝐻 × 𝑊𝑊)/𝑁𝑁2  is the number of patches. Then, a linear 
projection layer is used to embed MS into the latent space and 
get the ML ∈ R𝐿𝐿×𝐾𝐾 . Subsequently, successive transformer 
layers are utilized to strengthen the exploitation of the global 
relationship contained in the feature map. It can be noticed that 
the transformer layer mainly consists of two sublayers, which 
are multi-head self-attention (MSA) and multi-layer perceptron 
(MLP), respectively [49]. Noticing that the output sequence of 
transformer layers MT has the same dimension with ML. Next, 

MT  is reshaped into MF ∈ R
𝐻𝐻
𝑁𝑁×𝑊𝑊𝑁𝑁×𝐾𝐾 , which is lied in the 2D 

feature map space. Last, several convolutional layers and 
upsampled operations are employed to gain the final result ME. 
The detailed implementation of the transformer module can be 
found at https://github.com/lonelyatu/TRANS-Net. 
 

E. Loss function 

In this work, we use 1-minimization as the loss function to 
optimize the TRANS-Net, which is defined as follows: 

𝐿𝐿 = ‖𝑓𝑓𝜃𝜃(𝑦𝑦) − 𝐼𝐼𝐹𝐹𝐹𝐹‖1                             (14) 
where 𝑓𝑓𝜃𝜃  is the TRANS-Net with learnable parameters 𝜃𝜃 , 
𝑓𝑓𝜃𝜃(𝑦𝑦)  in Fig.1 (a) presents the generated result at the final 
iteration block of the proposed method, 𝐼𝐼𝐹𝐹𝐹𝐹  indicates the 
reference image reconstructed from fully sampled k-space data. 
In the training stage, Eq. (14) is minimized to get the optimal 
parameters 𝜃𝜃. In the test stage, all the parameters are fixed to 
get the reconstructed result directly. 

IV. EXPERIMENTS 

A. Setup 
1) Datasets 

First, the MICCAI 2013 grand challenge dataset was 
performed to validate the performance of different 
reconstruction methods. It has more than twenty subjects that 
contain T1-weighted and T2-weighted images. We randomly 
selected 14978 2D brain images from 100 T1-weighted MRI 
datasets for training and 200 2D brain images from another 
independent 50 datasets for testing. The corresponding imaging 
parameters are as follows: the image size is 256×256×N 
(x×y×z) and each voxel presents an area of 0.9×0.9×3 mm3 

and TR/TE=7.9ms/4.5ms. 
Second, to evaluate the performance of the proposed method 

on different anatomical tissues, we collected cine MR images 
from Second Data Science Bowl Cardiac Challenge, which has 
more than 1000 patients. And each sequence has 30 time 
periods. The image quality varies greatly between different 
patients, with differing image resolution, contrast, and aspect 
ratio. Specifically, 4830 2D cardiac images were randomly 
selected from 55 cases for training and another 200 2D cardiac 
images from 10 cases for testing.  

All the images were cropped into the size of 256×256 and 
normalized to the range [0, 1]. 
2) Sampling Masks 

There were three undersampling patterns performed in this 
work, including 2D Gaussian (G2D), 2D Radial (R2D) and 1D 
Gaussian (G1D). All the datasets were undersampled with the 
acceleration factors of 10, 5, 3.3, respectively. Fig.3 depicts 
some examples of undersampling masks. 

 
Fig. 3. Representative undersampling patterns. 

 
3) Comparison Methods 

In this paper, all the DL-based methods were conducted in 
the TensorFlow framework, and traditional methods were 
performed by MATLAB 2018a. All the experiments were 
implemented on a PC (CPU was Inter(R) Xeon(R) E5-2683, 2 
GHz, GPU was NVIDIA GTX 1080Ti with 11G memory, 
RAM was 64GB) with Windows 10 operating system.  

The proposed TRANS-Net was optimized using the Adam 
algorithm [50] with 𝛽𝛽1=0.9 and 𝛽𝛽2=0.999. The learning rate 
was initially set to 10-4 and slowly decreased to 10-6. It took 
about 15 hours for 50 epochs to train the proposed method on 
the brain dataset and 6 hours on the cardiac dataset. The batch 
size was 8 and needed about 8GB of memory. And the iteration 
number was set to 10 for the trade-off between the performance 
and computational cost.  

There are two hyperparameters 𝜆𝜆  and 𝜇𝜇  in the proposed 
method as shown in Fig. 1(a). Differing from fixing them in 

https://github.com/lonelyat


traditional methods, hyperparameters of TRANS-Net in 
different iterations have different values, because they are 
optimized at the training stage to find the optimal values. At the 
training step, they were initially set to 1 and 0, respectively. All 
the training and testing details can be found at 
https://github.com/lonelyatu/TRANS-Net. 

To assess the performance of TRANS-Net, some advanced 
MRI reconstruction methods, including zero filling (ZF), 
TGV[6], DLMRI [8], DAGAN [1], DCCNN [3], VN [27], and 
LDC [29] were treated as comparisons. Specifically, TGV and 
DLMRI present traditional iterative methods with 
hand-designed regularization terms. DAGAN is the 
image-domain-based method. DCCNN, VN and LDC stand for 
the unrolled methods. 

Besides, we adopted the root mean square error (RMSE), 
peak single-to-noise ratio (PSNR) and structural similarity 
index (SSIM) [51] to evaluate the reconstruction results of 
various methods quantitatively. RMSE and PSNR aim to 
evaluate the pixel-wise distance between the reconstructed 
image and the reference image. Lower RMSE and higher PSNR 
mean better results. Meanwhile, SSIM measures the similarity 
of the feature contents between the reconstructed image and the 
ground truth. A larger SSIM value corresponds to a more 
competitive result. These three assessments are widely used for 
different tasks in image restoration [14, 30, 52, 53]. 

B. Brain Data Results 
Table Ⅰ lists the average quantitative evaluations of the 200 

2D T1-weighted brain images by various reconstruction 
methods with different undersampling patterns and acceleration 
factors. It can be seen that ZF inevitably leads to the worst 
assessment scores in all cases because of the zero-filling 
operation. Compared to ZF, TGV and DLMRI bring obvious 
improvement, which means the regularization constraint in the 
conventional CS-MRI is effective. Particularly, DLMRI 
achieves better results than DAGAN in some cases, which 
indicates the traditional iterative method is still competitive 
when the regularization term is chosen appropriately. 
Benefiting from the deep learning and rigorous CS theory, 
unrolled methods can consistently expose the relationship 
between undersampled k-space data and MR images, achieving 
better evaluations than the CNN-based method. Under the 
guidance of the learned data fidelity term, LDC can evaluate the 
distance from the reconstructed result to the reference image in 
a more accurate way and leads to better quantitative scores than 
DCCNN and VN. Further, our TRANS-Net gains the lowest 
RMSE, highest PSNR and SSIM scores that indicate the 
proposed method can lead to more accurate MR images in pixel 
value and anatomical structures, which confirms that the 
residual-domain-based regularization term and the transformer 
module can improve the reconstruction image. 

Table Ⅰ 
QUANTITATIVE EVALUATIONS OF DIFFERENT METHODS ON THE BRAIN DATASET WITH DIFFERENT UNDERSAMPLING PATTERNS AND ACCELERATION FACTORS 

Method Mask G2D(R=10) G2D(R=5) G2D(R=3.3) R2D(R=10) R2D(R=5) R2D(R=3.3) G1D(R=10) G1D(R=5) G1D(R=3.3) 

ZF 
RMSE 0.0446 0.0351 0.0256 0.0528 0.0301 0.0180 0.0639 0.0355 0.0311 
PSNR 27.10 29.17 31.90 25.64 30.52 35.00 24.00 29.09 30.24 
SSIM 0.4073 0.4548 0.5221 0.3849 0.5231 0.6480 0.5741 0.6888 0.7176 

TGV 
RMSE 0.0204 0.0101 0.0052 0.0255 0.0093 0.0047 0.0487 0.0294 0.0254 
PSNR 34.30 40.46 46.30 32.49 41.35 47.15 26.35 31.29 32.38 
SSIM 0.7738 0.9742 0.9860 0.8618 0.9784 0.9889 0.8010 0.9105 0.9396 

 RMSE 0.0102 0.0081 0.0045 0.0208 0.0083 0.0046 0.0467 0.0148 0.0148 
DLMRI PSNR 39.92 41.87 47.58 33.81 42.25 47.30 26.72 36.70 36.69 

 SSIM 0.9312 0.9765 0.9889 0.8897 0.9801 0.9892 0.8627 0.9736 0.9390 

DAGAN 
RMSE 0.0110 0.0064 0.0036 0.0218 0.0078 0.0042 0.0331 0.0153 0.0113 
PSNR 39.25 44.04 48.91 33.40 43.41 47.76 29.68 36.39 39.04 
SSIM 0.9698 0.9795 0.9897 0.9303 0.9815 0.9908 0.8938 0.9630 0.9691 

DCCNN 
RMSE 0.0093 0.0054 0.0032 0.0184 0.0071 0.0036 0.0328 0.0143 0.0103 
PSNR 40.77 45.59 50.09 34.83 44.20 48.99 29.75 36.98 39.83 
SSIM 0.9785 0.9846 0.9929 0.9389 0.9836 0.9925 0.9129 0.9645 0.9769 

VN 
RMSE 0.0056 0.0037 0.0023 0.0135 0.0055 0.0029 0.0277 0.0100 0.0082 
PSNR 45.21 48.74 52.75 37.60 45.44 50.97 31.24 40.08 41.79 
SSIM 0.9879 0.9913 0.9965 0.9462 0.9882 0.9969 0.9205 0.9726 0.9855 

 RMSE 0.0049 0.0030 0.0019 0.0119 0.0050 0.0026 0.0250 0.0089 0.0073 
LDC PSNR 46.23 50.50 54.15 38.68 46.20 51.83 32.15 41.06 42.78 

 SSIM 0.9910 0.9921 0.9974 0.9654 0.9916 0.9978 0.9157 0.9816 0.9892 

TRANS-Net 
RMSE 0.0042 0.0027 0.0018 0.0114 0.0047 0.0024 0.0241 0.0080 0.0067 
PSNR 47.44 51.24 55.05 39.05 46.78 52.70 32.43 41.98 43.52 
SSIM 0.9918 0.9935 0.9985 0.9770 0.9948 0.9985 0.9383 0.9896 0.9920 
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Fig. 4. Reconstruction results from the brain dataset for different methods on the G2D undersampling pattern with different acceleration factors, including 
reconstructed images, magnified ROIs and the corresponding difference maps. The display windows of the reconstructed images and ROIs are [0, 1], the display 
windows of the difference maps with the acceleration factors R=10, R=5, and R=3.3 are [-0.05, 0.05], [-0.025, 0.025], and [-0.015, 0.015], respectively. 

To demonstrate the performance of different reconstruction 
methods in the visual aspect, experiments on the G2D 
undersampling pattern with acceleration factors R=10, R=5 and 
R=3.3 were performed, respectively. Fig. 4 gives the 
reconstruction results, regions-of-interest (ROIs), and the 
corresponding difference maps of different algorithms. It can 
be observed that ZF brings aliasing artifacts and blurring tissues 
in Fig. 4(b1)-(b3) due to the loss of k-space data. Noticing the 
sparse property of MR images in the gradient domain, the 
TV-based method can effectively remove the artifacts and 
restore tissue structures. However, TGV still misses some 
subtle details compared to reference images. This implies the 
limitation of CS-MRI that the hand-designed regularization 
term cannot accurately model the high-quality MR image space. 
By automatically learning the intrinsic feature from the MR 
images, DL-based methods can provide more promising results 
than CS-MRI, which is consistent with the observations in 
Table Ⅰ. More specifically, DAGAN outperforms TGV by 
predicting the artifacts from the degraded images directly. 
Nevertheless, it fails to guarantee the consistency between the 
reconstruction image and the undersampled measurement data 
in k-space. Therefore, the data consistency layer is induced in 
the unrolled method. Consequently, VN and LDC can produce 
improved images with more detailed information (as pointed 
out by the blue arrow in Fig. 4(e1)(f1)). Further, LDC provides 
more tissue details than VN by introducing a more exact data 
fidelity term, as indicated by the yellow arrow in Fig. 4(f1). It is 
highly noticed that the proposed TRANS-Net can generate 
more clear edges (as pointed by red arrows in Fig. 4(g1)) and 
more precise images (as demonstrated by difference maps in 
Fig. 4(g2)-(g3)). 

To further investigate the visual performance of the proposed 
method on different undersampling patterns, numerous 
experiments were conducted. Fig. 5 depicts the reconstruction 
images of different methods on the R2D and G1D 

undersampling patterns with the acceleration factor R=5. Again, 
ZF still results in severely degraded reconstruction images. 
Meanwhile, from the reconstruction results in Fig. 4(b1)-(b3) 
and Fig. 5(b1)-(b2), we can conclude that different 
undersampling patterns will induce various artifacts with 
diverse manifestations. It can be noticed in Fig. 5 (c1)-(c2) that 
DLMRI can provide improved perceptual images compared to 
ZF. DCCNN, VN, and LDC remain the superior performance 
in detail restoration (as pointed by the blue arrows in Fig. 
5(d1)(e2)(f2)). This means the performance of unrolled 
methods is stable in terms of different undersampling patterns 
and acceleration factors. Last but not least, the proposed 
TRANS-Net has the best visual results in subtle structure 
preservation, as indicated by the red arrows in Fig. 5(g1)-(g2). 

 
C. Cardiac Data Results 

To further inspect the performance of the proposed method 
on different organ tissues, experiments on the cine cardiac 
dataset with different undersampling patterns and acceleration 
factors were performed. 

Table Ⅱ gives average assessments of 200 images for 
different methods. The same conclusion in Table Ⅰ can also be 
observed in Table Ⅱ that the proposed method has the best 
metric scores in all evaluation indictors. Fig. 6 demonstrates the 
reconstruction images from the cardiac datasets of different 
algorithms. It can be seen that the visual results of the  
CNN-based algorithm and unrolled methods gradually become 
better in turn, which can be convincingly verified by the 
difference maps in Fig. 6(c1)-(g3). Particularly since the 
residual-domain-based regularization constraint underlines the 
high-frequency components, and the transformer module 
enhances the exploitation of global features. Therefore, our 
TRANS-Net can generate the best accurate images (as 
observed by the difference maps in Fig. 6(g1)-(g3)) with minor  



 
Fig. 5. Reconstruction results from the brain dataset for different methods on the R2D and G1D undersampling patterns with the acceleration factor R=5, including 
reconstructed images, magnified ROIs and the corresponding difference maps. The display windows of the reconstructed images and ROIs are [0, 1], the display 
windows of the difference maps are [-0.06, 0.06]. 

Table Ⅱ 
QUANTITATIVE EVALUATIONS OF DIFFERENT METHODS ON THE CARDIAC DATASET WITH DIFFERENT UNDERSAMPLING PATTERNS AND ACCELERATION 

FACTORS 
Method Mask G2D(R=10) G2D(R=5) G2D(R=3.3) R2D(R=10) R2D(R=5) R2D(R=3.3) G1D(R=10) G1D(R=5) G1D(R=3.3) 

ZF 
RMSE 0.0427 0.0327 0.0258 0.0520 0.0318 0.0214 0.0660 0.0361 0.0322 
PSNR 27.42 29.76 31.82 25.75 30.01 33.46 23.63 28.88 29.87 
SSIM 0.7890 0.8318 0.8740 0.7080 0.8190 0.8971 0.7094 0.8453 0.8553 

TGV 
RMSE 0.0266 0.0191 0.0134 0.0465 0.0261 0.0163 0.0590 0.0266 0.0232 
PSNR 31.53 34.41 37.50 26.73 31.77 35.88 24.61 31.55 32.73 
SSIM 0.8720 0.9168 0.9505 0.7502 0.8753 0.9429 0.7156 0.8840 0.8898 

 RMSE     0.0182 0.0118 0.0078 0.0440 0.0190 0.0091 0.0574 0.0195 0.0167 
DLMRI PSNR 34.87 38.67 42.53 27.23 34.59 41.04 24.86 34.30 35.60 

 SSIM 0.9281 0.9599 0.9797 0.7751 0.9215 0.9744 0.7270 0.9261 0.9395 

DAGAN 
RMSE 0.0196 0.0135 0.0100 0.0415 0.0184 0.0099 0.0472 0.0198 0.0192 
PSNR 34.19 37.71 40.02 27.66 34.74 40.11 26.54 34.10 34.38 
SSIM 0.9129 0.9530 0.9683 0.7690 0.9183 0.9678 0.7437 0.9119 0.9145 

DCCNN 
RMSE 0.0143 0.0094 0.0073 0.0317 0.0144 0.0077 0.0465 0.0155 0.0136 
PSNR 36.93 40.56 42.81 30.01 36.90 42.29 26.66 36.23 37.37 
SSIM 0.9453 0.9703 0.9805 0.8391 0.9421 0.9776 0.7553 0.9438 0.9525 

VN 
RMSE 0.0122 0.0085 0.0060 0.0288 0.0126 0.0072 0.0427 0.0138 0.0120 
PSNR 38.33 41.45 44.53 30.84 38.07 42.92 27.40 37.25 37.46 
SSIM 0.9570 0.9738 0.9852 0.8580 0.9537 0.9800 0.7923 0.9534 0.9602 

 RMSE 0.0108 0.0078 0.0055 0.0264 0.0112 0.0066 0.0392 0.0120 0.0103 
LDC PSNR 39.40 42.20 45.31 31.61 39.08 43.77 28.15 38.49 39.76 

 SSIM 0.9646 0.9734 0.9873 0.8749 0.9605 0.9827 0.8123 0.9619 0.9682 

TRANS-Net 
RMSE 0.0100 0.0075 0.0049 0.0250 0.0107 0.0063 0.0367 0.0115 0.0102 
PSNR 40.02 42.57 46.33 32.09 39.45 44.14 28.73 38.95 39.89 
SSIM 0.9682 0.9790 0.9894 0.8850 0.9620 0.9837 0.8313 0.9635 0.9689 

details and clear edges (as marked by the red arrows and red 
circles). Both brain and cardiac datasets validate the 
outstanding performance of the proposed method qualitatively 
and quantitively. 

D. Analysis for Iteration Number 
The iteration number in the unrolled reconstruction method 

is an important component. Hence, experiments from the brain 
dataset on the G2D undersampling pattern with the acceleration 



 
Fig. 6. Reconstruction results from the cardiac dataset for different methods on various undersampling patterns with different acceleration factors, including 
reconstructed images, magnified ROIs and the corresponding difference maps. The display windows of the reconstructed images and ROIs are [0, 1], the display 
windows of the difference maps with the acceleration factors R=10, R=5, and R=3.3 are [-0.06, 0.06], [-0.04, 0.04], and [-0.07, 0.07], respectively. 

factor R=10 were performed to explore the influence of 
iteration number on the final results. Fig. 7 illustrates how the 
iteration numbers affect the performance of the proposed 
method that the more iterations, the better the performance. 
Meanwhile, TRANS-Net can achieve competitive results with 
only a few iterations, suggesting the effectiveness of the 
residual-domain-based regularization term and transformer 
module. However, the larger iteration number will greatly 
increase the computational cost but gain little improvement. 
Hence, to balance the trade-off between performance and 
hardware consumption, the iteration number in this work is set 
to 10. 

 
Fig. 7. Quantitative evaluations for different iteration numbers of TRANS-Net 
from the brain dataset on the G2D undersampling pattern with the acceleration 
factor R=10. 

 
E. Ablation Study 

In this section, an ablation study was performed to expose the 
effects of different modules in the proposed TRANS-Net on the 

reconstruction performance. Experiments were based on the 
brain dataset with G2D undersampling pattern and acceleration 
factors R=10, R=5, R=3.3. 

The proposed method has two deep priors, i.e., 
residual-domain-based regularization term (RRT) and 
image-domain-based regularization term (IRT). First, only the 
RRT was adopted as the baseline model. Then, only the IRT 
was introduced to establish the first comparison model. Next, 
IRT, but without the transformer module, was integrated into 
the baseline model to build the second comparison model. Last, 
the transformer module was added to the second model to 
construct the third comparison model, i.e., TRANS-Net. 

Table Ⅲ 
QUANTITATIVE EVALUATIONS FOR THE ABLATION STUDY 

Method Mask G2D(R=10) G2D(R=5) G2D(R=3.3) 

+RRT 
RMSE 0.0095 0.0067 0.0046 
PSNR 40.44 43.43 46.72 
SSIM 0.9113 0.9553 0.8740 

+IRT 
RMSE 0.0059 0.0037 0.0026 
PSNR 44.99 48.78 51.78 
SSIM 0.9823 0.9925 0.9935 

+RRT+IRT 
RMSE 0.0047 0.0031 0.0021 
PSNR 46.07 50.07 53.84 
SSIM 0.9884 0.9930 0.9975 

TRANS-Net 
RMSE 0.0042 0.0027 0.0018 
PSNR 47.44 51.24 55.05 
SSIM 0.9918 0.9933 0.9985 

Table Ⅲ presents the quantitative evaluations for the 
ablation study. Compared to Table Ⅰ, RRT can boost the 
reconstruction images to some degree. Certainly, IRT has better 
performance in all evaluations over RRT because the IRT 
directly regularizes final images rather than only constraints the 
intermediate results like RRT. Further, incorporating the RRT 



and IRT, the second comparison model outperforms all the 
competitive algorithms in Table Ⅰ, which strongly claims the 
effectiveness of RRT. It is worth noting that TRANS-Net gets 
impressive results in all cases, affirming that the transformer 
module positively promotes the global feature extraction for 
IRT. 

 
Fig. 8. Reconstruction results from the brain dataset for different modules on 
the G2D undersampling pattern with different acceleration factors, including 
reconstructed images and the corresponding difference maps. The display 
windows of the reconstructed images are [0, 1], the display windows of the 
difference maps with the acceleration factors R=10, R=5, and R=3.3 are [-0.05, 
0.05], [-0.03, 0.03], and [-0.01, 0.01], respectively. 

Besides, to visually probe the effects of different modules, 
the reconstruction results of various comparison models were 
evaluated. It can be seen that only a single RRT can reduce the 
artifacts and restore most of the tissues. Moreover, from the 
difference maps in Fig. 8(b1)-(b3), we can observe that most of 
the high-frequency information is also preserved, which 
confirms the effectiveness of RRT. Meanwhile, only one IRT, 
which can be considered as the classical unrolled method, has 
better accuracy than RRT (as indicated by the difference maps 
in Fig. 8(c1)-(c3)). This demonstrates the drawback of RRT 
that it cannot guarantee the quality of final images. 
Consequentially, the combination of RRT and IRT gets the best 
results among the first three models, that it only losses some 
subtle edges. Last, to further explore the global features, the 
transformer module is integrated into the second comparison 
model to produce the TRANS-Net, resulting in greatly 
promising images with very few errors compared to the 
reference images (as noticed by the difference maps in Fig. 
8(e1)-(e3)). 
 

F. Generalization of TRANS-Net 
In order to inspect the generalization of the proposed method, 

we conducted experiments to explore the performance of 
TRANS-Net on domain variance, undersampling pattern 
variance and acceleration factor variance, respectively. 
1) Domain Variance 

This part mainly explores the performance of the proposed 
method against domain variance. Three models were trained on 
the G1D undersampling pattern with acceleration factors R=5. 
Meanwhile, four different test schemes were performed. The 
training and testing information is presented in Table IV. 

Table IV 
ABBREVIATED OF DIFFERENT TRAINING AND TESTING SCHEMES 

Scheme AB BA AC BC 

Test dataset Brain Cardiac Brain Cardiac 
Train dataset Cardiac Brain Brain&Cardiac Brain&Cardiac 

Table V lists the quantitative evaluations of four different 
test schemes. Comparing Tables I and II, we can notice that the 
performance of TRANS-Net will decrease severely when the 
training data and testing data are different. However, the 
proposed method performs better when the TRANS-Net is 
trained on all the datasets. 

Table V 
QUANTITATIVE EVALUATIONS OF DIFFERENT TEST SCHEMES 

Scheme AB BA AC BC 

RMSE 0.0157 0.0857 0.0107 0.0304 
PSNR 36.26 21.37 39.48 30.37 
SSIM 0.9367 0.4114 0.9770 0.9016 

 
Fig. 9. Reconstruction results of different test schemes. (a1)-(a2) Reference 
result, (b1) AB result, (c1) AC result, (b2) BA result, (c2) BC result. All the 
display winodws are [0,1]. 

Fig. 9 shows the reconstruction results of different test 
schemes. From Fig. 9(b1)(b2), it can be seen that TRANS-Net 
introduces fake structures (as pointed by the blue arrow in Fig. 
9(b1) and artifacts. Again, the proposed method could restore 
most tissues if the training datasets are diverse. 

2) Undersampling Pattern Variance 
This section focuses on the effects of undersampling pattern 

variance on the proposed method. Three models were trained 
on the cardiac dataset with acceleration factors R=5. Also, four 



different test schemes were performed. The training and testing 
information is presented in Table VI. 

Table VI 
ABBREVIATED OF DIFFERENT TRAINING AND TESTING SCHEMES 

Scheme AB BA AC BC 

Test pattern G1D G2D G1D G2D 
Train pattern G2D G1D G1D&G2D G1D&G2D 

It can be noted that the evaluations of AB are similar to the 
results in Table II, which means that TRANS-Net is more 
robust to undersampling pattern variance than domain variance. 
Again, when the training datasets increase, the proposed 
method performs better. 

Table VII 
QUANTITATIVE EVALUATIONS OF DIFFERENT TEST SCHEMES 

Scheme AB BA AC BC 

RMSE 0.0134 0.0363 0.0121 0.0080 
PSNR 37.52 29.07 38.36 42.00 
SSIM 0.9564 0.8301 0.9610 0.9768 

3) Acceleration Factor Variance 
This content aims to investigate how the acceleration factor 

variance affects the proposed method. Three models were 
trained on the cardiac dataset with G2D undersampling pattern. 
Also, four different test schemes were performed. The training 
and testing information is presented in Table VIII. 

Table VIII 
ABBREVIATED OF DIFFERENT TRAINING AND TESTING SCHEMES 

Scheme AB BA AC BC 
Test factor R=10 R=5 R=10 R=5 
Train factor R=5 R=10 R=5&R=10 R=5&R=10 

From Table IX, we can observe that the proposed method has 
the most generalization ability with regard to acceleration 
factor variance compared to Table V and Table VII. The reason 
may be that the same undersampling pattern presents similar 
artifacts even though with different acceleration factors. 

Table IX 
QUANTITATIVE EVALUATIONS OF DIFFERENT TEST SCHEMES 

Scheme AB BA AC BC 

RMSE 0.0125 0.0078 0.108 0.0076 
PSNR 38.08 42.29 39.47 42.47 
SSIM 0.9620 0.9781 0.9658 0.9785 

To sum up, one trained TRANS-Net model can reconstruct 
multiply MRI data with appropriate performance when the 
training datasets cover all the imaging conditions. 

 

G. Removal of Noise and Motion Artifact 
1) Noise Removal 

To further probe the performance of the proposed method in 
noise removal, experiments from the brain dataset on the G1D 
undersampling pattern with the acceleration factor R=5 were 
performed. Specifically, the training and test images were 
generated by additionally adding Gaussian noise in the 
frequency domain with three different standard deviations, 
which were 10, 20, and 30 respectively. 

Table X provides the evaluation of the proposed method with 
different noise levels. It can be observed that TRANS-Net 
performs decreases little when the noise level increases, which 
indicates the proposed method is robust to the noise. 

Table X 
QUANTITATIVE EVALUATIONS OF DIFFERENT NOISE LEVELS 

Method Noise Level 10 20 30 

ZF 
RMSE 0.0241 0.0560 0.0694 
PSNR 32.45 25.05 23.18 
SSIM 0.7401 0.4569 0.3627 

TRANS-Net 
RMSE 0.011 0.0124 0.0152 
PSNR 39.02 38.14 36.38 
SSIM 0.9612 0.9585 0.9520 

 

 
Fig. 10. Reconstruction results from the brain dataset for different noise levels 
on the G1D undersampling pattern with acceleration factor R=5. The display 
windows of the reconstructed images are [0, 1]. 

Fig. 10 illustrates the visual results of the proposed method in 
noise removal. Compared to ZF, TRANS-Net could achieve the 
balance between noise-artifact removal and tissue detail 
preservation. 

2) Motion Artifact Removal 
This section pays attention to the motion artifact removal of 

the proposed method. Experiments from the cardiac dataset on 
the G2D undersampling pattern with the acceleration factor 
R=5 were performed. The training and test images with motion 
artifacts were generated according to [54]. 

Fig. 11 shows the qualitative results of the proposed method 
in motion artifact removal. Again, TRANS-Net can provide 
competitive results in removing motion blurring and retaining 
tissue edges. 

H. Computational Cost And Memory Usage 
Table XI presents the average computational cost and GPU 

memory usage of different methods for processing a single 
brain image. TGV and DLMRI consume much longer time than 



 
Fig. 11. Reconstruction results from the cardiac dataset for motion artifact 
removal on the G2D undersampling pattern with acceleration factor R=5. The 
display windows of the reconstructed images are [0, 1]. 

DL-based methods because they involve sophisticated 
optimization of regularization terms. All the DL-based methods 
can reconstruct the MRI result within a very fast time. Because 
of the lightweight U-shape network, the proposed method 
requires the smallest memory among all DL-based methods, 
which is more feasible to be deployed on various devices. 

Table XI 
COMPUTATIONAL COST (UNIT: SECOND) AND GPU MEMORY USAGE (UNIT: GB) 

OF DIFFERENT METHODS 
Method TGV DL 

MRI 
DA 

GAN 
DC 

CNN 
VN LDC TRANS 

-Net 
Time 67 354 0.02 0.04 0.11 0.03 0.08 
Memory / / 11.8 3.6 11.6 2.3 1.4 

V. CONCLUSION 
The unrolled methods have been widely applied in image 

restoration [3, 15, 31, 35, 37] due to the superior performance 
profited from the combination of CS theory and deep neural 
networks. They can overcome the defects of CS-MRI in the 
hyper-parameter selection, regularization term design and 
improve the interpretability for deep priors. However, one 
popular scheme of those methods usually conducts the 
regularization term on the reconstruction results in the image 
domain but ignores the importance of the error images in the 
residual space, which may limit their further improvement. 
Inspired by [55], we developed a transformer-enhanced 
residual-error alternative suppression network for MR imaging. 
Differing from the existing unrolled methods, the TRANS-Net 
additionally employs a regularization term on the error images 
reconstructed from the undersampled k-space to obtain 
accurate difference maps between the intermediate result and 
the reference image, which significantly emphasizes the 
high-frequency information from the reconstructed image and 
accelerates the convergences for the proposed method. Then, 
another traditional deep regularization prior deployed on the 
image domain aims to refine the final image. Nevertheless, this 
deep prior on the image domain only pays attention to the local 
features. Therefore, we adopt the transformer module to 
enlarge the receptive field and explore the latent relationship of 
the global image. Experiments based on the brain and cine 

cardiac datasets with different undersampling patterns and 
acceleration factors were performed to validate the 
performance of the proposed TRANS-Net method. Compared 
to other reconstruction algorithms, TRANS-Net shows 
remarkable performance in tissue restoration and subtle detail 
preservation. 

Although the TRANS-Net framework gives impressive 
results for fast MR imaging, it still has some issues that should 
be noticed in the future. First, in this paper, we did not consider 
the k-space based processing methods like [22, 23], which are 
also commonly used for MR imaging. Therefore, how to 
effectively combine the TRANS-Net and k-space based 
methods is still an interesting problem. Second, although the 
transformer module brings promising improvement, it is a 
preliminary attempt for unrolled MR imaging. Hence, a novel 
transformer architecture for unrolled methods should be 
developed with small learnable parameters and few 
computational resources. 
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