
 

 
 
 
 

Hu, P., Ho, E.S.L. and Munteanu, A. (2022) Alignbodynet: deep learning-based 

alignment of non-overlapping partial body point clouds from a single depth 

camera. IEEE Transactions on Instrumentation and 

Measurement, (doi: 10.1109/TIM.2022.3222501). 

 

This is the Author Accepted Manuscript. 

There may be differences between this version and the published version. You are 

advised to consult the publisher’s version if you wish to cite from it. 

 

http://eprints.gla.ac.uk/285320/ 

 

Deposited on: 15 November 2022 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk  

  

https://doi.org/10.1109/TIM.2022.3222501
http://eprints.gla.ac.uk/242796/
http://eprints.gla.ac.uk/


IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 1

AlignBodyNet: Deep Learning-based Alignment of
Non-overlapping Partial Body Point Clouds from a

Single Depth Camera
Pengpeng Hu, Edmond S.L. Ho, and Adrian Munteanu

Abstract—This paper proposes a novel deep learning frame-
work to generate omnidirectional 3D point clouds of human
bodies by registering the front- and back-facing partial scans
captured by a single depth camera. Our approach does not
require calibration-assisting devices, canonical postures, nor
does it make assumptions concerning an initial alignment or
correspondences between the partial scans. This is achieved
by factoring this challenging problem into (i) building virtual
correspondences for partial scans, and (ii) implicitly predicting
the rigid transformation between the two partial scans via the
predicted virtual correspondences. In this study, we regress the
SMPL vertices from the two partial scans for building the virtual
correspondences. The main challenges are (i) estimating the
body shape and pose under clothing from single partial dressed
body point clouds, and (ii) the predicted bodies from front- and
back-facing inputs required to be the same. We, thus, propose a
novel deep neural network dubbed AlignBodyNet that introduces
shape-interrelated features and a shape-constraint loss for resolv-
ing this problem. We also provide a simple yet efficient method for
generating real-world partial scans from complete models, which
fills the gap in the lack of quantitative comparisons based on the
real-world data for various studies including partial registration,
shape completion, and view synthesis. Experiments based on
synthetic and real-world data show that our method achieves
state-of-the-art performance in both objective and subjective
terms.

Index Terms—Non-overlapping registration, ICP, Virtual cor-
respondence, 3D scanning, Partial registration, Deep learning on
point clouds

I. INTRODUCTION

3D models of human bodies are key components for human-
centric applications such as body measurement, healthcare,

computer animation, virtual try-on, and virtual reality. 3D
scanning technologies are popular means for acquiring accu-
rate and realistic 3D human models. Traditional 3D scanning
systems (e.g. laser scan or structured light) are very expensive
and usually require expert knowledge for operation and data
acquisition. With the advent of commodity depth cameras such
as Microsoft Kinect and Intel Realsense, low-cost 3D body
scanning becomes a new trend with potential for wide-scale
deployments in numerous applications [1], [2].

According to the number of employed depth cameras,
existing depth-based 3D scanning systems can be mainly
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classified into two main categories: multi-camera [3], [4], [5]
and single-camera scanning systems [6], [7], [11] respectively.
Multi-camera systems set several depth cameras at various pre-
defined positions around the subject. Partial scans from each
depth camera are aligned together to obtain omnidirectional
body point clouds. Such systems are not convenient for home
usage, and heavily rely on the quality of extrinsic calibration.
In contrast, single-camera scanning brings stronger operability
due to its good flexibility and ease-of-use characteristics.
Unlike multi-camera scanning methods that only deal with
multiple partial scans, single-camera scanning methods make
use of single [8], dual [11], or more partial scans [7]. For single
/ dual partial scan-based methods, parametric body models are
usually deformed to fit the acquired partial body point clouds
[11]. However, detailed characteristics of the subject such as
facial features and hairs cannot be preserved due to the limited
subspace of the employed parametric body model. For multiple
partial scan-based systems, a depth camera moves around
the subject yielding geometry information of different body
parts. Omnidirectional body point clouds are then generated
by rigidly/non-rigidly aligning the resulting set of partial scans.
However, such systems require low-speed and stable camera
motion around the subject to avoid jittering effects. This cannot
be always guaranteed for handheld scanning devices and the
fusion process of the resulting partial point clouds has to be
aborted when the camera tracking fails. Moreover, a global
optimization [9], [10] is required and many redundant depth
images are employed in data fusion, which increases the
computational burden and is prone to registration inaccuracies.

To solve the above problems, we propose a novel deep
learning approach to reconstruct omnidirectional 3D body
point clouds from two partial body scans captured by a single
depth camera. The main contributions of this work can be
summarized as follows:

• A novel deep learning method for omnidirectional 3D
point cloud reconstruction of human bodies is proposed
that makes use of a two partial body scans obtained with
a single depth camera.

• Novel shape-interrelated features and a novel shape-
constraint loss are proposed, enhancing the performance
of the proposed method.

• A simple yet efficient method is proposed to generate
real-world partial point clouds from complete models,
filling the gap in the lack of quantitative comparisons
based on real-world data for various studies including
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partial registration, shape completion, and view synthesis.
It also has potential for generating large-scale datasets
to train single- and multi-view algorithms when labeled
partial scans are difficult to be collected.

II. RELATED WORKS

A. Parametric body fitting

Automatic fitting of 3D human body models to point
clouds is a classic task in computer vision and graphics.
3D scanning methods can yield high-quality body models.
However, noises and holes cannot be avoided in scanned
bodies due to device limitation and self-occlusion. To address
these problems, researchers proposed to build parametric body
models by fitting a template mesh to a range of scanned bodies
[12], [13], [14]. The invention of parametric body model
provides the foundation for solving many challenging tasks.
For instance, [15] proposed an automatic rigging method by
matching the pre-rigged parametric body to the 3D scan and
then transferring the skeleton and skin weights from the fitted
paramtric body to the scan. [16] proposed a deep learning-
based method for estimating body shape and pose under
clothing by fitting the SMPL model to a dressed body scan.
[11] proposed to estimate the SMPL shape parameters from
two partial dressed/undressed scans. However, these methods
cannot preserve detailed information about the subjects such
as facial features and hair due to inherent use of a parametric
body model. [17] proposed to combine implicit function learn-
ing and parametric models for 3D human reconstruction. This
method can capture garment, face and hair details only when
complete body point clouds are available. Unlike these works
that use the parametric body to represent the reconstructed
body shapes, we aim at registering two raw partial scans of
subjects. In our proposed method, we fit the SMPL model to
the front- and back-facing partial point clouds simultaneously
for the purpose of building virtual correspondences between
the two partial inputs.

B. 3D Shape Rigid Registration

In 3D scanning, the key challenge is the registration of
partial point clouds [18], [19]. Its goal is to find the opti-
mal transformations that align the input partial point clouds.
Existing registration methods can be mainly classified into two
categories: ICP-based and deep learning-based.

The pioneering iterative closest point algorithm (ICP) [20]
and many ICP-based variants (see e.g. [21]) have been pro-
posed in the literature, all aiming to improve accuracy and ro-
bustness in the registration process. However, the performance
of ICP-based methods highly depends on two assumptions:
good initial alignment and sufficient overlap area between
source and target shapes. Such assumptions enable a proper
initialization for the iterative optimization by using the nearest
neighbors as correspondences. If accurate correspondences are
known, the registration can be well performed without the need
of good initial alignment. To this end, a lot of researchers pay
an attention to finding correspondences. [22] trained a deep
convolutional neural network to find dense correspondences

between partial human body scans by predicting the segmen-
tation label for each point in the depth images. [23] proposed a
two-step method. First, the authors trained a neural network to
deform a body template to fit two complete body scans. Next,
by searching nearest neighbors between the two inputs and the
deformed template, dense correspondences between two inputs
can be implicitly obtained. However, these methods fail for our
task as they assume that correspondences actually exist be-
tween inputs. It should be noted that none of correspondences
exist for non-overlapping front- and back-facing partial scans.
What we aim at resolving is a more challenging problem: non-
overlapping partial registration. Unlike but inspired by existing
correspondence-finding works, we propose to estimate virtual
correspondences for registration.

Recently, deep learning has been introduced to deal with
registration problems. For example, [24] proposed Deep Closet
Point (DCP) that uses a point cloud feature encoder, an
attention-based module and a differentiable singular value
decomposition (SVD) to predict rigid transformations for point
clouds. However, an additional iteration is required to refine
the results of DCP. The authors of [25] proposed Deep Global
Registration (DGR) consiting of three modules: correspon-
dence confidence prediction, pose estimation, and pose refine-
ment. [26] proposed a deep learning-based approach to register
multi-view 3D point clouds by firstly estimating the initial
pairwise registration and then performing a globally consistent
refinement. However, these methods are not designed for non-
overlapping partial point cloud registration.

The closest work to ours is the recently published method in
[27]. It predicted two completed bodies for registration from
two partial point clouds, respectively. However, this method
was not designed for dressed bodies, and it was only tested
on the synthetic data, which cannot show its effectiveness in
practice. Furthermore, this method ignored the fact that the
partial scans were actually captured from the same subject.
To resolve these problems, we propose a novel approach
for registering two non-overlapping dressed body scans, and
validate the effectiveness of proposed method on the real-
world data.

III. PROPOSED METHOD

A. Problem Statement

As Figure 1 shows, the rigid registration consists of three
scenarios: high-, low- and non-overlapping scenarios. The ma-
jority of existing methods focus on the point cloud registration
with high overlap [20] while a few of methods attempted to
deal with the registration with low overlap [28]. Unlike these
methods that depends on the overlap, in this article, we focus
on a more challenging problem, namely rigidly registering two
non-overlapping partial point clouds of human bodies.

We use X and Y to denote the front- and back-facing
partial body point clouds, respectively. Note that X and Y
can be noisy or clean, and they are allowed to have the
same or different number of points. The goal is to find an
optimal rigid transformation to align X with Y . The rigid
transformation is denoted as [Rxy, txy], where Rxy ∈ SO (3)
and txy ∈ R3 represent the rotation matrix and the translation
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Fig. 1. Schematic diagrams of different overlapping scenarios:(a) high-
overlapping, (b) low-overlapping, (c) non-overlapping. Red and blue indicates
the source and target, respectively.

vector, respectively. In ICP-based methods, the registration
problem can be solved by minimizing the following loss:

Loss =
1

Q

Q−1∑
i=0

||Rxy · xi + txy − yc(xi)||
2 (1)

where Q is the number of points in X and c (.) is a mapping
function that establishes the correspondences in Y for each
point from X . Intuitively, this approach fails for our task
because no correspondences between the front- and back-
facing partial body point clouds exist due to the lack of an
overlap area between the scans. Inspired by the work of [27],
we address this task by converting it to a problem of finding
virtual correspondences, and rewrite equation (1):

Loss = ||Rxy · τ (X) + txy − ζ (Y ) ||2 (2)

where τ () and ζ () are two mappings interpreting partial body
point clouds X , Y to complete body point clouds τ (X),
ζ (Y ), respectively. Note that τ (X) and ζ (Y ) represent the
same body shape, and more importantly, they have the save
point order. Therefore, intuitively, virtual correspondences
(τ (X) , ζ (Y )) can be obtained. Next, the transformation
[Rxy, txy] is directly computed using the normal equation.
Our method is summarized in Figure 2. Two non-overlapping
partial scans are fed into a deep neural network (DNN) to
predict virtual correspondences. Rotation R and translation t
are computed based on the virtual correspondences. Compared
to ICP-based methods, such an approach does not require
assumptions regarding initial alignments or necessary overlap
areas, and avoids an expensive iterative refinement procedure.
Its key step is to learn τ (). Specifically, τ (X) and τ (Y )
should represent absolutely the same body shape. Our main
insights are: (i) τ () and ζ () should be learned in an joint
manner, (ii) the features of X and Y should have a commu-
nication, and (iii) there must be a constraint to force (τ (X)
to be close to ζ (Y ). Therefore, we design a novel two-stream
encoder-decoder network architecture depicted by Figure 3.

B. Shape-interrelated features

Motivated by our first insight, we design a two-stream
encoder-decoder architecture as the backbone network. Given
the front-facing partial body point cloud X and the back-
facing partial body point cloud Y , the first task is to extract
features. We used a simplified PointNet [29] encoder to act
as our feature extractor due to its effectiveness and simplicity.
Note that our two feature extractors have the same architecture
but with different weights. Specifically, shared MLPs are
employed to learn per-point feature matrices GX and GY

Fig. 2. Method overview. Given non-overlapping front- and back-facing
partial body point clouds, we leverage the proposed novel network to predict
virtual correspondences for calculating the transformation between the two
partial inputs.

(each row represents the feature of each point). Next, two
global features vX and vY are obtained by passing GX and
GY to the point-wise maxpooling layers. Despite there are
many more advanced feature extractor candidates [30], [31],
[32], experimental results show the simple encoder can work
well in our study, and to compare the performances of different
encoders is not the target of this study.

Revisiting our second insight, vX and vY require a com-
munication. To this end, vX and vY are jointly concatenated
to GX and GY to obtain two augmented per-point feature
matrices MX and MY . By such a simple yet efficient feature-
fusion strategy, MX contains the information from Y while
MY contains the information from X . Finally, MX and MY

are processed by two more shared MLPs and point-wise
maxpooling layers to generate the shape-interrelated features
fX and fY .

C. Virtual Correspondence Prediction

None of correspondences exist between X and Y due to
the lack of overlapping area. We, thus, define the virtual
correspondences (τ (X) , ζ (Y )) based on the parametric body
vertices. Therefore, shape-interrelated features require to be
interpreted to parametric body vertices. MLP is used to this
end in [27]. However, the two outputs can have large shape
and pose variations. We argue there are two main reasons for
this phenomenon: (i) in [27] that authors predicted complete
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Fig. 3. Proposed network architecture.

body shapes from single partial point clouds, which is an ill-
posed problem; and (ii) for the same subject, the body shape
should be the same no matter if it is being observed from
front- or back-facing views (our third insight).

To address this problem, we followed a two-fold strategy.
Firstly, we proposed the above two-stream encoder and feature
fusion strategy. The communication information between X
and Y can be passed to the decoder. Secondly, we added
a Transformer to align the two outputs outputfront and
outputback to efficiently compare the error of predicted para-
metric body vertices from the front- and back-facing partial
body point clouds. Despite of the fact that many advanced
decoder candidates are available (e.g. [33], [16]), we use the
same MLP decoder as in [27] in order to validate our idea
and to fairly compare our method with the work of [27]. Main
conceptual improvements over [27] include (i) a two-stream
decoder architecture, and (ii) we add a Transformer that
transforms τ (X) from the front-facing view-based coordinate
to the back-facing view-based coordinate by the ground-
truth transformation. This Transformer plays an important
role in our study as we can enforce a powerful constraint

τ (X) = ζ (Y ). Note that the Transformer is necessary in the
training phase, but does not contribute in the inference phase.
This property is intuitive as no ground-truth transformation is
available in the inference phase.

D. Loss function

We propose a customized loss function for efficiently su-
pervising the learning of the proposed network. It consists of
three terms: front-facing vertex loss, back-facing vertex loss,
and a consistency loss.

Front-facing Vertex Loss. From the front-facing partial
point clouds of bodies, our network outputs SMPL vertices,
which are aligned with the front-facing partial point cloud.
The prediction error is computed by comparing the ground
truth against the reconstructed body. We define the front-facing
vertex loss as:

Lfront =
1

N

N∑
i=1

||τ (X)i − τ (X)
GT
i ||2 (3)
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where τ (X)i represents the ith vertex of the reconstructed
body and τ (X)

GT
i represents the ground-truth vertex of

τ (X)i.
Back-facing Vertex Loss. Similar to Lfront, our network

also outputs SMPL vertices from the back-facing partial point
clouds. We, thus, define the back-facing vertex loss as:

Lback =
1

N

N∑
i=1

||ζ (Y )i − ζ (Y )
GT
i ||2 (4)

Consistency Loss. Since the two partial point clouds are
obtained by scanning the same subject, we conclude that
τ (X) = ζ (Y ). Note that τ (X) and ζ (Y ) cannot be directly
compared as they are not aligned. Thanks to the proposed
Transformer, we define a shape-shared loss to constrain the
variations between the two reconstructed bodies:

LSC =
1

N

N∑
i=1

||τ (X)i − ζ (Y )i ||
2 (5)

Complete Loss. Our complete loss is defined as:

Loss = α · Lfront + β · Lback + ω · LSC (6)

where α, β and ω are the weights that control the contributions
of each term.

E. Registration

Once our network is trained, virtual correspondences
(τ (X) , τ (Y )) are obtained. Equation 2 is rewritten as:[

Rxy txy
0 1

]
×
[

τ (X)
ones (N)

]
=

[
τ (Y )

ones (N)

]
(7)

where ones (N) represents the operation that creates a row
vector filled with N ones. By normal equation, the transfor-
mation can be directly obtained:[

Rxy txy
0 1

]
=

([
τ (Y )

ones (U)

]
×
[

τ (X)
ones (U)

]T)

×

([
τ (X)

ones (U)

]
×
[

τ (X)
ones (U)

]T)−1 (8)

IV. EXPERIMENTAL RESULTS

A. Training dataset and setup

Considering that human beings wear clothes in the real
life, we trained our model on the BUG (Body Under virtual
Garments) dataset [16]. BUG is a large-scale synthetic dressed
body dataset consiting of 100K male and 100K female
dressed bodies, realistic dressed body scans and ground-truth
body shapes in motion. Same as [27], simulated partial scans
and ground-truth transformation are obtained. We randomly
selected 99.5K male samples for training our model and 0.5K
male samples for the test. The training is carried out using the
Adam optimizer [34] with an initial learning rate of 0.0001 for
50 epochs and a batch size of 16. The training is performed on
a desktop PC (Intel(R) Xeon(R) Silver 4112 CPU @2.60GHz
64GB RAM GPU GeForce GTX 1080Ti) based on TensorFlow
[35]. We set α = 1, β = 1 and ω = 1 in the loss.

B. Results on the PDT13 data

Despite our model is trained merely on the synthetic data,
it is designed for dealing with the real-world data. To validate
its effectiveness for the real-world data, we test the proposed
algorithm on the PDT13 dataset [36]. The PDT13 dataset
consists of front- and back-facing scans of subjects obtained
using a Kinect camera. Figure 4 depicts our results, and it can
be seen that the non-overlapping two partial body scans can
be visually well aligned even noises exists.

Fig. 4. Results on the PDT13 data using our method. The front- and back-
facing partial body point clouds are denoted by the red (the source) and blue
(the target) color, respectively.

C. Comparisons

In this experiment, we compare our algorithm against pop-
ular ICP [20], recent deep learning-based registration methods
(deep global registration (DGR) [25], non-overlapping partial
registration (NO-PR) [27]), the recent partial-based paramet-
ric body fitting method IP-Net [17], and the template-based
body fitting method 3D-CODED [23]. Given the ground truth
rotation RGT and translation tGT , the rotation error RE and
translation error TE are defined as:

RE
(
R,RGT

)
= arccos

(
trace

(
R−1RGT

)
− 1

2

)
(9)

TE
(
t, tGT

)
= ||t− tGT || (10)

where R and t represent the estimated rotation matrix and
translation vector, respectively.

D. Results on the BUG data

We first perform the comparisons based on the synthetic
data. We randomly select 50 samples from the unseen testing
BUG data. Figure 5 and Table I compare the results of different
methods. It can be seen that our method outperforms the other
methods.

E. Results on the BUFF data

For the quantitative evaluation, the predicted transformation
should be compared with the ground-truth transformation.
However, no usable real-world dataset containg the ground-
truth transformation exists in the literature. One potential
solution is to scan the subjects by calibrated dual Kinect
cameras facing each other. However, calibration errors cannot
be avoided that may result in unfair comparisons; in addition,
it is expensive and time-consuming to scan many subjects in
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Fig. 5. Comparison with different methods based on BUG data.

TABLE I
COMPARISON OF AVERAGE ROTATION AND TRANSLATION ERRORS WITH DIFFERENT METHODS BASED ON THE UNSEEN BUG DATA.

Methods ICP[20] DGR [25] NO-PR [27] IP-Net [17] 3D-CODED [23] Our method
RE 162.056◦ 162.012◦ 4.254◦ 20.279◦ 5.6◦ 1.702◦
TE 186.222 mm 171.056 mm 13.429 mm 87.213 mm 29.02 mm 7.21 mm

order to generate a real-world body dataset with partial scans.
To alleviate this problem, we made use of the fact that many
scanned body models are publicly available. We propose thus a
simple yet efficient approach dubbed RealParialScan to extract
partial body point clouds directly from these scanned body
models, as shown in Algorithm 1. RealPartialScan provides
a step towards generating the large-scale real-world data
for training and quantitatively evaluating deep learning-based
algorithms that take requires partial data as input, including
shape completion [37], partial registration [27], view synthesis
[38], and multi-view tasks [39], [40]. Figure 6 shows an
example of the obtained partial scans using our method.

Algorithm 1 Real-world partial body point cloud generation
algorithm.
Input:

S: complete scanned body meshes or point clouds;
Output:

PGT : real-world partial body point clouds;
1: rendering partial point clouds P from S using a rendering

system (e.g. Blender)
2: for each point x in S, find its closet point y in P
3: if dist (x, y) < threshold
4: x ∈ PGT

5: return PGT ;

To quantitatively compare our algorithm against related
methods, we treat the front- and back-facing partial body point
clouds as the source and the target, respectively. Figure 7
depicts the visual comparisons on the BUFF data [41], and
Table II illustrates the registration errors. It can be seen that
ICP and DCR methods fail to perform the registration when no
overlapping exists. Our method achieves the best performance.
More results are illustrated in Figure 8.

F. Ablation Study

To verify the effect of each proposed component, we per-
formed an ablation study based on test data containing 500
samples that are not included in the training phase.

Shape-interrelated Features. As Table III shows, the pro-
posed strategy of offering communication between two partial
inputs can reduce the rotation error and the translation error.

Consistency Loss. The proposed transformer is used to
create the shape constraint for the two output shapes by
minimizing their per-vertex errors. Therefore, the transformer
works together with the designed shape-consistent loss. Ta-
ble IV shows that the proposed consistency loss reduce the
registration error.

V. CONCLUSIONS

We proposed a novel deep learning method for recon-
structing omnidirectional body point clouds by aligning two
non-overlapping partial body scans acquired with a single
Kinect camera. A novel two-stream encoder-decoder network
architecture, shape-interrelated features and a shape-constraint
loss are proposed. Our model was trained on a synthetic
dataset but it generalizes well to unseen real-world data.
Experimental results show that our method outperforms state-
of-the-art approaches. In the future, we are interested to extend
our work to multi-view non-rigid body point cloud registration,
and study the effect of overlap ratios on the registered result.
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Fig. 6. An example of generating partial body scans using our method: (a) The complete scanned body model, (b) Synthetic partial scans, (c) Real-world
partial scans using our method.

Fig. 7. Comparison with different registration methods based on BUFF data.

TABLE II
COMPARISON OF AVERAGE ROTATION AND TRANSLATION ERRORS WITH DIFFERENT REGISTRATION METHODS BASED ON BUFF DATA.

Methods ICP [20] DGR [25] NO-PR [27] IP-Net [17] 3D-CODED [23] Our method
RE 160.035◦ 160.047◦ 1.759◦ 20.894◦ 2.06◦ 0.951◦
TE 386.1 mm 389.3 mm 60.5 mm 504.3 mm 54.78 mm 34 mm

TABLE III
ABLATION STUDY ON THE PROPOSED SHAPE-INTERRELATED FEATURES.

Feature µ , RE σ , RE µ , TE σ , TE
With feature fusion 1.515◦ 1.637◦ 6.001 mm 4.156 mm
Without feature fusion 2.087◦ 2.261◦ 9.835 mm 7.456 mm
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