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Abstract—Myoelectric control has gained much attention
which translates the human intentions into control commands for
exoskeletons. The electromyogram (EMG)-driven musculoskele-
tal (MSK) model shows prominent performance given its ability
to interpret the underlying neuromechanical processes among
the musculoskeletal system. This model-based scheme contains
inherent physiological parameters, e.g., isometric muscle force,
tendon slack length, or optimal muscle fibre length, which
need to be tailored for each individual via minimising the
differences between the experimental measurement and model
estimation. However, the creation of the personalised EMG-
driven MSK model through the evolutionary algorithms is time-
consuming, hurdling the use of the EMG-driven MSK model
in practical scenarios. This paper proposes a computational
efficient optimisation method to estimate the subject-specific
physiological parameters for a wrist MSK model based on the
direct collocation method. By constraining control variables to
the experimentally measured EMG signals and introducing the
physiological parameters into control variables, fast optimisation
is achieved by identifying the discretised parameters at each grid
simultaneously. Experimental evaluations on 12 healthy subjects
are performed. Results demonstrate the proposed method outper-
forms the baseline optimisation algorithms used in the literature,
including genetic algorithm, simulated annealing algorithm, and
particle swarm optimisation algorithm. The proposed direct
collocation method shows the possibility to alleviate the costly
optimisation procedure and facilitate the use of the MSK model
in practical applications.

Index Terms—EMG-driven musculoskeletal model, parameter
optimisation, personalisation, direct collocation method, wrist
joint.

I. INTRODUCTION

MYOELECTRIC control has gained substantial atten-

tion in practical scenarios [1]–[4], such as increasing

workers’ physical performance and preventing musculoskeletal

disorders in industrial applications, or enhancing the patients’

recovery processes and restore the functional daily activities
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in rehabilitation applications. The myoelectric control decodes

the human motion intention straightforwardly using the elec-

tromyogram (EMG) signal and encodes it into continuous con-

trol commands for controlling exoskeletons or prostheses [5]–

[8].

To decode the human motion intention continuously, two

main schemes are used, including the data-driven model [9],

[10] and the musculoskeletal (MSK) model [11]. The data-

driven model mostly employs regression algorithms, i.e., ma-

chine learning and deep learning algorithms, to establish the

relationship between EMG signals and motion variables. How-

ever, the data-driven model is established based on numerical

functions and abundant experimental data. It is essentially

a “black-box” method where the underlying neuromechan-

ical processes are omitted, limiting the use of the data-

driven model in practical scenarios [12]. Alternatively, the

MSK model explicitly interprets the non-linear transformation

among the muscle activation, mechanical muscle forces, and

motion variables. For instance, Jung el al. utilised the MSK

model to estimate the ankle and knee joint torque during

different walking conditions [13]. Bennett el al. also utilised

the EMG-driven model to achieve accurate knee loading

force prediction [14]. Nevertheless, the prediction performance

of EMG-driven MSK models is substantially influenced by

subject-specific parameters, i.e., maximum isometric force, op-

timal muscle fibre length, tendon slack length, and pennation

angle, that define the force-generating capacity in the Hill’s

muscle model. Since these parameters are difficult to estimate

in vivo and they are closely related to gender, age, and activity

levels, optimisation procedures are developed to establish the

subject-specific EMG-driven MSK model [15].

The subject-specific MSK models are obtained through

the objective functions that best match the experimental and

estimated motion variables. Due to a large number of phys-

iological parameters in the MSK model, the evolutionary

algorithms are commonly employed such as the particle swarm

optimisation (PSO) [16], [17], generic algorithm (GA) [18],

[19], simulated annealing algorithm (SA) [20], and gravita-

tional search algorithm (GSO) [21]. Nevertheless, it emerges

that EMG-driven MSK models achieve the high estimation

accuracy based on the expense of rapidity. Time-consuming

optimisation procedures are reported to establish the person-

alised MSK model via evolutionary algorithms. For example,

Silvestros et al. employed the genetic algorithm to obtain the

optimal visco-elastic bushing parameters in a human cervical

spine MSK model, which approximates a run time of 10

hours for each subject [18]. Sartori et al. also reported the
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average optimisation time for the multiple degrees-of-freedom

(DoFs) lower limb MSK model is around 20 hours [22].

Moreover, different calibration sets and multiple executions

are also conducted to find the most optimal set of parameters.

The time-consuming optimisation procedures, especially for

the complex MSK model, impacts users’ engagement and lead

to barriers to the translation of the advanced MSK models into

practical applications [23].

To address this issue, Buongiorno et al. proposed the linear

optimisation approach that only optimises one parameter per

muscle [24]. Although the linear approach is more compu-

tationally efficient, it fails to preserve the high estimation

accuracy compared with the genetic algorithm. In addition,

the personalised MSK model can be obtained through the

direct collocation (DC) method. The DC method becomes a

powerful approach paired with MSK models for predictive

simulation [25], human movement analysing [26], and pros-

thesis control [27]. Falisse et al. employed the direct colloca-

tion method to estimate the subject-specific parameters for a

lower limb MSK model which results in a short optimisation

time and 30% improvement of the estimation performance,

compared with the linear scaled method [28]. Nevertheless,

there is no direct comparison with evolutionary algorithms that

commonly used for the MSK models.

This paper builds on a previously published conference

case study [29], in which the main goal was to present the

preliminary validation of the DC method to estimate the

subject-specific parameters on the limited subject samples

using a limited set of performance criteria. This study develops

the proposed DC method with enhanced accuracy and pro-

vides a rich comparison with the state-of-the-art evolutionary

algorithms for the EMG-driven wrist MSK model. The con-

tributions of this paper include: 1) The MSK model optimised

by the proposed DC method achieves the same estimation

performance as the MSK model obtained through evolutionary

algorithms while the computation speed is significantly less

than the evolutionary algorithms; 2) By taking account of

the MSK dynamics and discretising the control and state

variables, the wrist MSK model is transcribed into a large-

scale non-linear programming (NLP) problem can be solved

the NLP solver, IPOPT [30] effectively; 3) The physiological

parameters are included as control variables, instead of as

the static parameters, to improve the sparsity of the Jacobian

matrix in the resultant NLP problem. A specific constraint

is induced to maintain the parameters constant during the

optimisation. Experimental evaluation is conducted on 12

healthy subjects. Three optimisation algorithms, including GA,

SA, and PSO are selected as baseline methods to evaluate

the proposed DC methods. Results indicate, under the same

objective function and optimisation criteria, the proposed DC

method outperforms the baseline methods in terms of the

computational cost and estimation performance.

The remaining paper is organised as follows: Section II

gives the methodology, including experiment protocols and

the main framework of the proposed optimisation approach.

Experimental results are presented in Section III. Finally,

discussions are given in Section IV, followed by a conclusion

in Section V.

II. METHODS

A. Experiment

Twelve subjects (eight males and four females, age 28.9 ±
2.8 years) participant in the experiment with the given signed

consent form. This experiment is approved by the MaPS and

Engineering Joint Faculty Research Ethics Committee of the

University of Leeds (MEEC 18-002). Each subject is informed

to seat on an armchair and 16 reflective markers are placed

on the right arm, corresponding to the VICON upper limb

model. The markers’ trajectories are recorded through the 8

VICON motion capture cameras (sampled at 250Hz) and the

motion data are low-pass filtered (Butterworth 2nd, 1Hz). The

wrist kinematics are then computed through the VICON nexus

software.

EMG signals are recorded using the Delsys TrignoTM

system (sampled at 2000Hz). Five wireless eletrodes are

placed over two wrist flexors (flexor carpi radialis (FCR),

flexor carpi ulnaris (FCU)), and three wrist extensors (extensor

carpi radialis longus (ECRL), extensor carpi radialis brevis

(ECRB), and extensor carpi ulnaris (ECU)). The electrodes’

positions are determined by the palpation and evaluation

of the signal quantify prior to the experiment. Raw EMG

signals are band-pass filtered (Butterworth 4th order, 25Hz
- 450Hz), fully rectified, and low-pass filtered (Butterworth

4th order, 4Hz). The resultant signals are normalised with

respect to maximum voluntary contraction (MVC) that are

measured prior to the experiment. All data are synchronised

and resampled at 1000Hz.

During the experiment, subjects are informed to perform

the continuous wrist flexion/extension motion. Five repetitive

trials are obtained for each subject. A three-minute break is

given between trials to prevent muscle fatigues.

B. Wrist MSK Model

The wrist MSK model is utilised to compute the wrist

flexion/extension motion through five muscle-tendon actuators

(i = 1, 2, . . . , 5) that correspond to wrist muscles selected in

the study. The wrist MSK model includes activation dynamics

and contraction dynamics. The activation dynamics contain a

first-order differential equation to compute the neural activa-

tion a relating to the filtered signal ei, which can be written

as [31]:
dai
dt

= (
ei
tact

+
1− ei
tdeact

)(ei − ai) (1)

where the tact and tdeact denote the activation time and deac-

tivation time, which are set to 15ms and 50ms respectively.

Moreover, the activation dynamics are augmented by:

anoni =
eAai − 1

eA − 1
(2)

where anoni is the resultant muscle activation. The A denotes

the coefficient to account for the non-linearity.

Contraction dynamics used in this study are described by

the rigid musculotendon model [32], in which the pennated

muscle element, comprising a contractile element in parallel

with a passive elastic element, is connected to an inextensible
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tendon element. Thus, the muscle-tendon force is calculated

by [33]:

Fmt,i =Fiso,i(fa(l̂m))f(v̂m)anoni + fp(l̂m)) cosφi (3)

lmt,i =lm,i cosφi + lts,i (4)

where Fiso,i denotes the maximum isometric force. The

fa(l̂m), f(v̂m), fp(l̂m) interpret the force-length-velocity char-

acteristics relating to the anoni (t), normalised muscle length

l̂m = lm,i/lmo,i, and f(v̂m). In this study, we set f(v̂m) = 1,

according to [34]. To update the muscle length (Eq. (4)), the

muscle-tendon lengths lmt,i are approximated by the second-

order Fourier equation with respect to wrist joint angle θ,

which are exported from OpenSim [35].

To estimate the wrist joint motion, we model the hand as

a rigid segment which is rotated around the wrist joint in

the sagittal plane. The wrist joint angle is then computed by

forward integration of the equation of motion:

Mθ̈ + Cθ̇ +Kθ = τ (5)

where θ denotes wrist joint angle. M denotes the mass term

which is estimated based on the subject’s body mass and

height [36]. C and K denote the damping and stiffness term

respectively, according to [37]. τ is the joint torque estimated

from the wrist MSK model:

τ =

5
∑

i=1

∂lmt,i

∂θ
Fmt,i (6)

1) Parameter Optimisation: The wrist MSK model con-

tains muscle-related physiological parameters that need to be

tailored for each subject,including the isometric muscle force

Fiso,i, optimal muscle length lmo,i, and tendon slack length

lts,i. To further account for the inter-subject variation, we

induce the scale coefficient ki for the muscle-tendon length.

The EMG-to-activation coefficient A is a single parameter. We

then use a vector p to collect all parameters:

p = [Fiso,i, lmo,i, lts,i, ki, A] (7)

The estimation of p can be written as:

p̂ = argmin
p

{J} (8)

where

J =
1

T

T
∑

t=1

(θt − θ̂t)
2 (9)

where θ and θ̂ denote the ground truth and estimated value

respectively. T denotes the total sample number.

The resultant parameter optimisation problem (Equation (8))

is solved by evolutionary algorithms such as GA, SA, and

PSO. However, this commonly leads to a time-consuming

optimisation procedure [24]. In the next section, we will

present a computationally efficient manner to determine these

parameters using the DC method.

C. Direct Collocation Method

To optimise the physiological parameters through the DC

method, we first convert the wrist MSK model into an optimal

control problem that finds control variable u and state variable

x to minimise the objective function. The DC method is then

utilised to transcribe the optimal control problem into a finite-

dimension NLP problem, which discretises the control and

state variables and utilises the system dynamics as the con-

straints [38]. Thus, the optimisation problem can be formulated

as:

min
u,x

J (10)

subject to

f(x, ẋ,u) = 0 (11)

Ulo ≤ x,u ≤ Uup (12)

where x and u denote the state and control variables.

f(x, ẋ,u) denotes the system dynamics. Ulo and Uup are

the boundary conditions, which are entailed in Table I.

The control variables contains the filtered EMG signal ei
and the physiological parameters:

u = [ei,p]. (13)

The physiological parameters are considered as control

variables, instead of the static parameters, in order to enhance

the sparse pattern of the Jacobian matrix, as depicted in Fig. 1.

The state variables encompass the joint angle θ, joint velocity

v and muscle activation ai(t), which are represented by:

x = [θ, v, ai]. (14)

Equations (1), (3), (5), and (6) are utilised to impose the

system dynamics f(x, ẋ,u). We use the implicit formulation

in this study:

f(x, ẋ,u) =











θ̇ − v

Mv̇ + Cv +Kθ − τ

ȧi − (ei − ai)(
ei
tact

+ 1−ei
tdeact

)

(15)

where θ̇, v̇, and ȧi denotes the derivatives of the state variables.

The related optimal control problem is then transcribed into

the finite-dimension NLP problem by discretising the state

variables x and control variables u on Y equal-spaced grids.

We use the same objective function J in the DC method. More-

over, the system dynamics are converted into the algebraic

equality constraints using the finite differential approximation,

where the mid-point rule is used:

f(
xn+1 + xn

2
,
xn+1 − xn

tn+1 − tn
,
un+1 + un

2
) = 0, (16)

n = 1, 2, 3 . . . Y − 1;

The initial conditions of control and state variables are con-

sistent with the measured EMG signal and wrist joint motion,

resulting in seven task constraints. Since the physiological

parameters are added as control variables, we utilised specific

equality constraints to restrict these parameters are invariant

at each discretised grid:

pn+1 − pn = 0 (17)
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The default value of the muscle-tendon parameters is taken

from [39], as depicted in Table I. The pennation angle is

excluded as it has the negligible effects on the prediction

performance [40]. Moreover, to make ei is consistent with the

measured EMG signals, the upper and lower boundaries for ei
are equal to measured EMG signals. The resultant boundary

conditions are also reformulated to have the same length as

the discretised control and state variables.

TABLE I
BOUNDARY CONDITIONS FOR CONTROL AND STATE VARIABLES

p Muscle Default Boundary p Muscle Default Boundary

Fiso

FCR 407.9

±50% lmo

FCR 0.063

±15%FCU 479.8 FCU 0.051

ECRL 337.3 ECRL 0.081

ECRB 252.5 ECRB 0.059

ECU 192.9 ECU 0.062

p Muscle Default Boundary p Muscle Default Boundary

lts

FCR 0.244

±15% k

FCR 1

±15%FCU 0.265 FCU 1

ECRL 0.244 ECRL 1

ECRB 0.222 ECRB 1

ECU 0.229 ECU 1

A -2 [-3,0.001] a 0 [0,1]

θ 0 [-70,70] v 0 [-inf, inf]

1) Implementation: The MSK model-related optimal con-

trol problem for the DC method contains 7 states variable

(2 joint kinematics and 5 muscle activations), and 26 con-

trol variables (5 filtered EMG signals and 21 muscle-tendon

parameters), which leads to a total Y × (7 + 26) unknown

parameters. The total number of the equality constraints is

(Y − 1)× (7 + 21) + 7. We set Y = 200 in this study.

The resultant NLP problem can be solved by a standard NLP

solver, IPOPT, which is available in the MATLAB platform.

We utilise the IPOPT solver with the Hessian matrix approxi-

mation. Moreover, the NLP solver requires the gradient of the

objective function and the Jacobian of constraints. We manu-

ally generate the sparse patterns of the constraint Jacobian ma-

trix with respect to the discretised vector using the MATLAB

symbolic toolbox, as illustrated in Fig. 1. The proposed DC

method is available online: github.com/eenyzhao/DC-code.

D. Baseline methods

In this study, we compare the proposed DC method with

three baseline methods that are used for the MSK optimisation,

including GA, SA, and PSO. The evolutionary algorithms

are performed using the MALTAB optimisation toolbox (ga,

simulannealbnd, and particleswarm). In the optimisation

criteria (options), the tolerance for all evolutionary algorithms

is set to 1 × 10−2. Moreover, the optimisation termination

(MaxStallIterations) are set to 51, 20, 2000 for the GA, PSO,

and SA. The MaxIterations are set to 1000, 1000, 10000 for

GA, PSO, and SA. Other settings remain default. For the DC

method, the convergence tolerance and constraints tolerance

are set to 1×10−2 and 1×10−3 respectively. The most optimal

solution for each approach is then selected.

Fig. 1. The partial derivatives of constraints function with respect to state and
control variables results in the sparse Jacobian matrix containing 61 non-zero
elements at each grid. Columns correspond the state and control variables and
rows correspond to the constraints functions.

E. Performance Criteria

To obtain the subject-specific muscle-tendon parameters, a

cycle of wrist flexion/extension movement is extracted from

the experimental trial for each subject. The remaining motion

trials are used to validate the feasibility of the optimal solution.

Two criteria are used to evaluate the estimation performance,

root mean square error (RMSE) and coefficient of determina-

tion (R2):

RMSE =

√

√

√

√

1

T

T
∑

t=1

(θt − θ̂t)2 (18)

R2 =1−
Var(θ − θ̂)

Var(θ)
(19)

In particular, RMSE and R2 reveal the difference in terms

of amplitude and correlation between the estimation and the

ground-truth, respectively. To evaluate the computational cost,

the optimisation duration of each optimisation is measured.

Separate one-way analysis of variance (ANOVAs) are con-

ducted. The performance criteria are used as the response

variables. Moreover, a post-hoc analysis using Tukey’s Honest

Significant Difference test is applied. The significance level is

set at p < 0.05.

III. RESULTS

In this section, we verify the feasibility and effectiveness

of the proposed DC method to estimate the subject-specific

parameters for the wrist MSK model. In specific, the overall

comparisons with baseline methods are carried out in terms

of the computational cost and estimation accuracy. Subse-

quently, detailed evaluations are presented to demonstrate the

robustness of the proposed method against the grid densities

and different initial guesses. All optimisation algorithms are
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performed on the same laptop computer with 2.6GHz Intel

i5-1145G7 CPU and 16GB of RAM, running on MATLAB

R2019a and IPOPT release 3.14.4.

A. Overall Comparison

We first evaluate the computational cost of all optimisation

algorithms. Fig. 2 elucidates the optimisation duration vs.

iterations in four optimisation algorithms. It is found that GA

(11.65) has the largest slope, followed by PSO (10.24). The SA

(0.257) has the similar slope with the proposed DC (0.263).

However, the SA requires larger number of iterations to find

the optimised physiological parameters. Fig 3 illustrates the

optimisation duration for each subject, which demonstrates

the SA required longer time to find the optimal solution. It

emerges that the proposed method can identify the optimised

parameters in a computational-efficient manner.
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(d) Direct collocation method

Fig. 2. The optimisation duration against the iterations for four optimisation
algorithms. The slopes are 11.65, 0.2575, 10.24, and 0.2832 for GA, SA,
PSO, and DC respectively.
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Fig. 3. Comparison of the optimisation time across subjects. The time cost
of the DC method is the smallest among subjects.

We then evaluate the estimation performance for all opti-

misation algorithms. The mean R2 and RMSE of all opti-

misation algorithms are given in Table II and Fig. 4. There

TABLE II
THE MEAN (STANDARD DEVIATION) R2 AND RMSES OF BASELINE

APPROACHES AND THE PROPOSED DC METHOD.

GA SA PSO DC

R2 0.852(±0.081) 0.837(±0.064) 0.868(±0.064) 0.880(±0.049)

RMSE (rad) 0.210(±0.082) 0.223(±0.084) 0.198(±0.077) 0.191(±0.072)

Duration (s) 648.07(±150.87) 274.912(±90.89) 435.24(±260.56) 26.06(±14.35)
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(c) Optimisation duration

Fig. 4. The estimation accuracy and computational cost of the wrist
MSK model via different optimisation algorithms. The proposed DC method
achieves the same performance as the baseline methods while the optimi-
sation cost is the smallest. The significance level is set as 0.05 (∗∗∗p <
0.001,∗∗ p < 0.01, and∗p < 0.05).

is a significant difference between the DC method and SA

regarding the R2 (p = 0.013). Moreover, one representative

result is given in Fig. 5, in which the subject-specific parameter

estimated by the DC method results in a higher R2 and a

smaller RMSE compared with baseline methods. It emerges

that the DC method reaches the same precision compared with

the GA, SA, and PSO. Therefore, to a large extent, it can

find a better solution to the subject-specific parameters for

the wrist MSK model under the same objective function and

optimisation criteria.

We further measure the mean optimisation duration to

estimate the subject-specific parameters under the same op-

timisation criteria, which is depicted in Table II and Fig. 4(c)

respectively. The duration of the optimisation procedure of

the DC method is 26.06 s (±14.35 s), which is significantly

less than the baseline methods. Post-hoc analyses indicate

the proposed approach is more statistically efficient than the

baseline methods.
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Fig. 5. Representative example indicates that the proposed approach achieves
the same accuracy with the baseline optimisation approaches. In specific, R2

are 0.872, 0.864, 0.918, and 0.927 for GA, SA, PSO, and DC respectively.
RMSEs are 0.132 rad, 0.137 rad, 0.106 rad, and 0.10 rad respectively.
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Fig. 6. The effects of number of grids on the estimation accuracy for each subject.

B. Effects of Grid Density

To test the robustness of the proposed method against the

grid densities, we evaluate the effects of the grid densities on

the DC method. The grid densities result in the discretisation

of the state and control variables in the solution processing.

Different grid densities (Y = 20, 50, 100, 150, 200, 300, 500,

and 1000) are evaluated. Fig.6 (a) and Fig. 6 (b) illustrate

the R2 and RMSE for each subject at different grid densities.

Different optimal solutions are found at different grid densi-

ties. For example, the estimation accuracy of S7 varies from

0.74 at grid 150 to 0.87 at grid 300 (also the optimisation

duration for S7 is the longest in GA and DC). This is due to

the influences of control variables in the proposed DC method,

which contains the filtered EMG signals and MSK parame-

ters. The filtered EMG signals interpret muscle recruitment

information that may be contaminated by the noises, such as

the electrode shift, crosstalk, and the impedance changes of

electrode-skin interface [41]. Therefore, the DC method may

converge to different optimal solutions. Nevertheless, the same

estimation accuracy at different grid densities is found for most

subjects, which indicates the proposed DC method is able to

converge the same solution as the MSK parameters are time-

independent.

Aside from the evaluation of the grid densities of the

DC method, we further explore the impact of the sample

frequencies on the baseline methods, according to [20], [42].

In this experiment, we estimate the optimised MSK parameters

with the optimisation trial with 20Hz, 50Hz, 100Hz, 200Hz,

500Hz, and 1000Hz sample frequencies, via GA, SA, and

PSO respectively. We further compare the results with the cor-

responding grid densities. Table III and Fig. 7 depict the mean

R2 and RMSE across different sample frequencies. Results

indicate that, at the higher sample frequencies (above 100Hz),

all four optimisation approaches are able to estimate the

subject-specific parameters. In specific, PSO and DC show

higher R2 than GA, followed by SA. Nevertheless, as shown

in Fig. 7, at the low sample frequencies (20Hz and 50Hz
respectively), baseline methods fail to identify the subject-

specific parameters whereas the proposed DC method can find

the optimal solution. The proposed approach maintains the

same performance throughout different grid densities, which

indicates its robustness. This is due to the fact that the

proposed method employs system dynamics as constraints for

parameter optimisation, i.e., activation dynamics, contraction

dynamics, and the equation of motion. Fast optimisation is

achieved by identifying the discretised parameters at all grid

simultaneously.

In order to further investigate the effectiveness of the opti-

misation algorithms, the optimisation duration at the different

grid densities or sample frequencies is measured. Fig. 8

depicts the linear regressions of the optimisation duration of

four optimisation algorithms. The slopes are 0.636, 0.258,

0.426, and 0.263 for GA, SA, PSO, and DC respectively.

Results reveal that GA has the largest computational cost to

estimate the subject-specific parameters, followed by PSO.

The computational costs of SA and DC are smaller than

GA and PSO, and the computational cost of SA is close to

the DC method. The proposed DC method, however, could

estimate a better solution compared with SA, as elucidated

in Table III. Moreover, the PSO shows a similar accuracy
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Fig. 7. The (a) mean R2 and (b) mean RMSE at different grid densities/sample frequencies. The proposed approach maintains the same estimation accuracy
at lower grids whereas the baseline methods have the degraded estimation performance.

TABLE III
MEAN ESTIMATION ACCURACY OF ALL OPTIMISATION ALGORITHMS OVER THE DIFFERENT GRID DENSITIES/SAMPLE FREQUENCIES

Genetic algorithm

20 50 100 200 500 1000

mean R2 0.261(±0.26) 0.256(±0.18) 0.856(±0.093) 0.834(±0.14) 0.865(±0.074) 0.852(±0.081)

mean RMSE (rad) 0.556(±0.19) 0.510(±0.19) 0.203(±0.079) 0.210(±0.08) 0.200(±0.082) 0.210(±0.082)

Simulated Annealing

20 50 100 200 500 1000

mean R2 0.127(±0.16) 0.217(±0.21) 0.806(±0.11) 0.812(±0.094) 0.825(±0.081) 0.837(±0.064)

mean RMSE (rad) 0.918(±0.99) 0.536(±0.215) 0.243(±0.11) 0.236(±0.096) 0.231(±0.095) 0.223(±0.084)

Particle Swarm Optimisation

20 50 100 200 500 1000

mean R2 0.213(±0.21) 0.160(±0.18) 0.881(±0.058) 0.877(±0.065) 0.841(±0.158) 0.868(±0.064)

mean RMSE (rad) 0.551(±0.23) 0.541(±0.18) 0.188(±0.070) 0.189(±0.074) 0.198(±0.074) 0.198±0.077)

Direct Collocation method

20 50 100 200 500 1000

mean R2 0.881(±0.067) 0.873(±0.065) 0.870(±0.071) 0.878(±0.062) 0.880(±0.050) 0.880(±0.049)

mean RMSE (rad) 0.184(±0.073) 0.192(±0.076) 0.194(±0.077) 0.190(±0.076) 0.188(±0.066) 0.191(±0.072)

to DC but has a larger computational cost. Therefore, to a

large extent, the DC method outperforms the state-of-the-art

optimisation algorithms for the MSK model in terms of the

estimation performance or computational effectiveness.

C. Effects of different initial guesses

We further evaluate the effects of different initial guesses on

the proposed DC method. The first initial guess is based on the

nominal value, as shown in Table I. We choose the parameters

optimised by the simulated annealing algorithm using 20Hz
as the second initial guess. Fig. 9 illustrates the estimation

performance when two initial guesses are used. Results show

that the proposed method is able to converge similar optimal

solutions for most subjects. This indicates the robustness of

the proposed method against the different initial guesses.

IV. DISCUSSION

A. Subject-specific Musculoskeletal Modelling

The MSK model is a powerful tool to understand the

underlying neuromechanical processes and predict or simu-

late human motion with respect to the muscle activation. A

generic MSK model, with the default or simply linear scaled

physiological parameters, may be adequate to investigate the

biomechanical questions that are not sensitive to the model

personalisation [43]. For example, studying the muscle redun-

dancy problem, investigating the biomechanical reactions to

the physical interventions, or simulating the tendon transfer

surgery could be achieved by a generic model appropriately.

The subject-specific MSK model becomes necessary when

it is coupled with the individual’s neuromuscular quantities,

such as a human-machine interface for assistive devices or

the myoelectric control for prostheses. It is believed that the
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Fig. 9. Comparison of estimation accuracy when the different initial guesses
are used.

subject-specificity enhances the physiological and physical

plausibility so as to apply the MSK model to populations with

muscular pathologies [44]. Furthermore, the subject-specific

models can result in better motion estimation, as shown in

Fig. 4.

The creation of subject-specific EMG-driven MSK models,

however, requires the lengthy setup and time-consuming op-

timisation procedure, e.g., needs to multiple runs to select

the most optimal solution. This is because the EMG-driven

MSK models are mainly influenced by the EMG signals,

the chosen optimisation algorithms, and the large number of

physiological parameters [15]. In this study, we utilise the

MATLAB optimisation toolbox to employ the evolutionary

algorithms for parameter optimisation. The tolerance of all

algorithms is set to 1×10−2. Other optimisation criteria remain

default. The experimental results show that all algorithms

achieve the same level of estimation accuracy. The proposed

DC method shows prominent performance given its ability to

obtain the subject-specific parameter in an efficient manner.

It is believed that the state-of-the-art optimisation algorithms

are able to find the best solutions with different optimisation

criteria and longer optimisation time, e.g., using the higher

tolerance settings and different population size. However, the

computational cost is increased accordingly. Recently, Kian et

al. demonstrated that optimisation of the MSK models is task-

dependent, which all experimental motion tasks may be con-

sidered as the optimisation trial to generate the subject-specific

EMG-driven MSK model [45]. The augmented calibration sets

substantially increase computational cost, leading to the use

of MSK models in practical scenarios with the evolutionary

algorithms being unrealistic. The proposed direct collocation

method provides a computational-efficient solution to estimate

the physiological parameters.

The highly personalised MSK model could be further

achieved via magnetic resonance imaging (MRI), computed

tomography (CT) scans, or the finite element model [46]–

[50]. These approaches depend on the selection of anatomical

landmarks from the MRI imaging technique and are inde-

pendent of the dynamic movement trials of the participant.

This encourages us to carry out future works that combine

the imaging-based methods with the proposed DC method to

generate more physiological-relevant MSK models.

B. Direct Collocation method

The DC method for the MSK models has been widely ex-

plored recently, such as simulating the human pedalling [26],

investigating the internal joint contact load during jump-

ing [51], finding the optimal trajectories during the curved

running [52], or identifying the stiffness for ankle-foot ortho-

sis [53]. By transcribing the system dynamics into the large,

sparse NLP problem and parametrising the control and states

variables, the research questions can be solved efficiently due

to the linear algebra operations [38]. Nevertheless, the direct

collocation method requires the sparse constraints Jacobian

matrix which is model-specific and task-dependent, leading

to the generation of the Jacobian matrix being challenging

and may be prone to errors. When studying a new research
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question, a new Jacobian matrix is required. This issue can

be addressed by the recently developed open source soft-

ware, OpenSim Moco [54]. However, the models employed

are mostly based on the linear scaled method, leading to

estimation differences between the nature limb postures and

model estimations [27]. To overcome this issue, we employ

the direct collocation method to estimate the subject-specific

parameters for the wrist MSK model by constraining the input

control variables to the experimentally measured EMG signals

and adding the physiological parameters to control variables.

Fast optimisation is achieved by identifying the parameters

at each grid simultaneously. The inclusion of parameters into

control variables preserves the sparse pattern of the Jacobian

matrix, as shown in Fig. 1. Although this study utilises the

simplified version of the wrist MSK model, it shows the

capabilities of providing the accurate wrist motion estimation,

as demonstrated in Fig. 4 and Table II. Moreover, our goal is

to enable the computational efficient optimisation to generate

the personalised wrist MSK model, which is substantially

demonstrated in this study.

C. Limitations and Future work

There are several limitations to this study. Firstly, the

proposed method is only validated on the wrist MSK model

that involves one DoF. We solely utilise one motion task to

optimise the wrist MSK model. Future work will be carried

out employing the proposed method for the MSK model with

increased complexities, i.e., more DoFs and motion tasks

that span the upper limb. Secondly, the proposed method is

demonstrated to estimate the subject-specific parameters for

healthy subjects. Future work will evaluate the DC method

for the MSK model with tendon compliance. Extending this

study to patients with neurological disorders is also necessary

to consider the abnormal muscle activation pattern and muscle

weakness. Further studies will combine the proposed method

with the MRI imaging technique to generate the wrist MSK

model with higher personalisation.

V. CONCLUSION

In this study, we proposed a computational efficient op-

timisation method to estimate subject-specific parameters of

the wrist MSK model based on the direct collocation method.

By adding the physiological parameters to control variables

and inducing a specific constraint, we have demonstrated the

feasibility of the proposed method to generate the personalised

wrist MSK model with high estimation accuracy. Results show

that the proposed DC method outperforms the state-of-the-art

optimisation algorithms. We envision that the proposed method

could alleviate the time-consuming optimisation procedure and

facilitate the use of the MSK model in practical scenarios.
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