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Abstract— The advancements in machine vision have opened
up new avenues for implementing multimodal biometric identi-
fication systems for real-world applications. These systems can
address the shortcomings of unimodal biometric systems, which
are susceptible to spoofing, noise, nonuniversality, and intra-
class variations. Besides, ocular traits among various biometric
traits are preferably used in these recognition systems due to
their great uniqueness, permanence, and performance. However,
segmenting visual biometric features under unconstrained situ-
ations remains challenging due to a variety of variables, such
as Purkinje reflexes, specular reflections, eye gaze, off-angle
pictures, poor resolution, and numerous occlusions. To overcome
these challenges, this research presents a novel framework called
SIPFormer, comprising the encoder, decoder, and transformer
blocks to simultaneously segment three ocular traits (sclera,
iris, and pupil) using its discriminative multihead self-attention
mechanism. Besides, we used the large publicly available iris
database reflecting different unconstrained acquisition settings,
with inherent noise effects such as scanner artifacts, intensity and
illumination variations, motion blur, and occultations caused by
eyelashes, eyelids, and eyeglasses. Furthermore, the simulation
results demonstrate the efficacy of the proposed SIPFormer
model, where it achieved the mean Dice similarity coefficient
scores of 0.9018, 0.9176, and 0.9229 for segmenting the sclera,
iris, and pupil classes, respectively.

Index Terms— Biometric traits, iris, pupil, sclera, segmenta-
tion, transformers.

I. INTRODUCTION

OVER the last decade, the need for reliable authentication
systems has grown in step with the meteoric rise of

the information technology industry and rapid technological
development. As a result, researchers are constantly striving
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to perfect foolproof authentication methods. Biometric tech-
nology, which refers to the authentication of a person based
on measurable physical or behavioral attributes, is becoming
increasingly popular in this area. Moreover, biometric systems
have a remarkable false match and false rejection rate of 2%,
making them almost hard to exploit using standard decryption
approaches [1]. To a large extent, biometric systems are now
required in our daily lives. Unlike conventional methods, these
alternatives do not need us to physically store or remem-
ber sensitive information, such as user names, passwords,
or other authentication credentials. Biometrics are used in
various crucial applications, from unlocking mobile phones
to cash withdrawal, and consumer apps to law enforcement
and restricted access control [2], [3], [4].

Several biometric identifiers can be used to identify an indi-
vidual positively. Among these, ocular features have proven
superior to other biometric attributes for applications requir-
ing high reliability and accuracy due to their dependability,
longevity, and efficiency [5]. In contrast, systems that rely
on other characteristics, such as fingerprints, can be easily
compromised, as they may be burned or affected by allergic
skin reactions with time. Similarly, the performance of the
voice recognition system is unreliable since voices can be
manipulated [6], [7]. The primary ocular biometric traits are
the sclera, iris, and pupil, as shown in Fig. 1. Each ocular
trait has its own uniqueness and importance, as described in
the following.

1) Sclera: A relatively new biometric trait for person
identification has shown promising results [8], [9]. The
vascular pattern in the sclera (see Fig. 1) is highly
unique for each individual and even observed to be
different between the left and right eyes of a person
[10]. In addition, it is tough to counterfeit the sclera,
unlike the iris, which can be easily forged by wearing a
contact lens [10]. Moreover, segmenting the sclera can
help achieve higher accuracy of iris recognition systems
under unconstrained lighting conditions [11].

2) Iris: The most widely used ocular trait in biometric
systems possesses a high degree of distinctiveness and
randomness in terms of its pattern, size, shape, and color.
This complexity is primarily because of the rich and
unique textures of the iris, such as furrows, rings, freck-
les, crypts, zigzags, or ridges [12], as shown in Fig. 1.
Moreover, the iris trait exhibits greater immutability
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Fig. 1. Periocular and ocular components. The red and aqua boxes represent
the vascular pattern of sclera and iris texture, respectively.

throughout a person’s life, and some studies even con-
cluded the usefulness of the iris in postmortem recogni-
tion [13].

3) Pupil: The least commonly used ocular trait in biometry
due to its homogenous structure. Generally, segmen-
tation and detection of the pupil are considered the
fundamental procedure in developing various computer
vision applications [14]. However, there are limited
studies based on the pupil as a standalone trait for
authentication [15].

The characteristics of these ocular traits in conjunction
vary extensively across the human population. Over time,
uniqueness, and randomness, their immutability can provide a
robust and reliable multimodal biometric recognition system.
Despite these advantages, joint segmentation of ocular traits is
a challenging task mainly due to three major factors: Purkinje
reflexes, eye gaze, and occlusions due to eyelids and eyelashes.

Given the above, the motivation of this work is to present
a robust framework that can jointly segment the three ocular
traits (sclera, iris, and pupil), facilitating the development of
a biometric system based on multiocular traits in the future.
A recent spurt in the expansion of deep learning applications
may be attributed to the proven effectiveness of various
convolutional neural network (CNN) architectures over other
traditional approaches [16], [17], [18], [19]. These advantages
have proliferated deep learning-based biometric systems, and
the domain has surged recently in security and authentication
applications with a significant emphasis on ocular traits [20].

A. Related Works

1) Sclera: The researchers have previously proposed dif-
ferent deep learning solutions to segment and recognize
the sclera for biometric applications [10], [11], [21], [22],
[23]. Maheshan et al. [10] proposed a CNN sclera recogni-
tion engine consisting of four convolutional units and one
fully connected unit. They evaluated the framework on the
sclera segmentation, and recognition benchmarking competi-
tion dataset and received an accuracy of 87.65%. Besides, the
method for semantic segmentation of sclera in [11] used the
combination of CNN and conditional random fields (CRFs)
as a postprocessing technique. They validated the framework
on the sclera competition dataset and received an accuracy of
83.2% in the correct classification of sclera pixels.

Moreover, Zhu et al. [21] designed a stem-and-leaf branches
network, called SLBNet, to identify persons. They first used
the traditional image processing techniques to segment the
scleral vasculature, which is then passed on to the SLBNet
to identify the person. Similarly, different neural network
architectures are implemented in [22] to segment the iris
and sclera using two different datasets. Furthermore, in [23],
a CNN model called ScleraNET is presented to identify and
recognize a person using a sclera vasculature pattern.

2) Iris: Most of the existing works related to ocular bio-
metry in the literature have been conducted using the iris
trait [20]. In the past, many researchers proposed different
iris recognition methods. The most common ones include
feature descriptor-based methods [24], [25], [26]. Recently,
researchers have implemented deep learning-based iris seg-
mentation and recognition frameworks. Jha et al. [27] pro-
posed an iris segmentation framework at the pixel level
(PixlSegNet). Their framework is based on the convolutional
encoder–decoder architecture, where a stacked hourglass net-
work is used between the encoder and decoder paths. Besides,
Nguyen et al. [28] evaluated the performance of six different
pretrained CNN architectures on iris recognition using two
publicly available datasets. They showed that standard CNN
features, originally extracted and trained for classifying com-
mon objects, can also be transferred and used to recognize iris.

Moreover, the capsule network-based deep learning frame-
work for the recognition of iris is proposed in [29]. Their
algorithm adjusted the network structure detail to adapt for
iris recognition based on a modified dynamic routing algorithm
within the capsule layers. They employed the transfer learning
approach and divided the three pretrained CNN architectures
into subnetwork sequences to extract the features. Further-
more, the deep multimodal biometric system based on iris
recognition is proposed in [5]. They first localized the iris
regions in both the left and right eyes of the same person
and then passed to the CNN for extraction of discriminative
features and classification using the rank fusion technique.
In addition to that, a fully convolutional deep neural net-
work framework to segment iris using low-quality images
is proposed in [4]. They merged four different CNNs using
semiparallel deep neural network techniques.

3) Pupil: In the past, various deep learning solutions
have been proposed to detect, segment, and track pupil.
Yiu et al. [30] used a U-Net-based CNN architecture called
DeepVOG to segment the pupil. They trained the network
on two local datasets containing video-oculography (VOG)
images. They validated the framework on different datasets
and achieved the highest median value of the Dice coefficient
as 0.978. Moreover, the approach in [31] is validated on two
different datasets, consisting of a close-up view of the eye
and the full facial image. In the case of the full image, the
authors first extracted the eye region, which is then passed to
the pupil segmentation network. In [32], another deep CNN
called DeepEye is proposed for pupil detection based on atrous
convolutions and spatial pyramids.

Furthermore, Whang et al. [33] used a lightweight CNN
architecture to segment the pupil from the video sequences.
They predicted the size of the pupil using the major and
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minor axes of an ellipse. Besides, Shi et al. [34] proposed an
end-to-end deep learning framework for pupil detection and
tracking. They used a CNN approach to detect the pupil and
the long short-term memory (LSTM) model to predict pupil
motion. Similarly, Ou et al. [35] employed the pretrained deep
learning-based detector for pupil-center detection and tracking
in the visible-light mode.

B. Contributions

The existing research for ocular biometrics is typically
based on a single (mostly iris) or two ocular traits (mostly
iris and pupil). The authors have implemented different deep
learning-based algorithms to detect, segment, and recognize
these ocular traits. Compared to previous methods, the pro-
posed convolutional transformer-based framework, SIPFormer,
can simultaneously segment all three ocular biometric features
(sclera, iris, and pupil) and will also improve the accuracy of
multimodal biometric systems for unconstrained conditions.
The notable contributions of this research are twofold, as sum-
marized in the following.

1) This article presents a novel end-to-end deep learn-
ing model called SIPFormer, comprising an encoder,
decoder, and transformer blocks to perform joint seg-
mentation of multiple ocular traits (sclera, iris, and
pupil). Besides, to the best of our knowledge, the
SIPFormer framework is the first attempt to utilize
transformers with convolutional blocks to perform joint
ocular traits segmentation.

2) Moreover, SIPFormer, due to its discriminative multi-
head self-attention, possesses the intrinsic capacity to
segment multiocular traits irrespective of the scanner
artifacts and noisy shadows produced due to the presence
of eyelashes, eyelids, and spectacles. The SIPFormer
has been rigorously tested on five diversified datasets,
demonstrating comparable segmentation performance
with 136.21% fewer parameters than state-of-the-art
deep learning-based segmentation methods.

The remaining of this article is organized as follows.
Section II gives the description of the dataset used in
this research and the proposed framework in detail. Next,
Section III presents the experimental setup. Furthermore, the
simulation results are presented in Section IV, followed by a
discussion and conclusion in Section V.

II. MATERIALS AND METHODS

A. Dataset Details

In this study, we have opted for the Chinese Academy
of Sciences, Institute of Automation (CASIA) database [36]
mainly because it is one of the largest datasets with a lot
more subjects and intraclass variations and our prime focus is
toward the segmentation and extraction of ocular modalities
for which this database is well suited. In this study, we used
a total of 52 034 images of about 2800 subjects for training
and validation purposes. These images are retrieved from five
subsets of the CASIA-IrisV4 database, which are CASIA-
Iris-Interval (CII), CASIA-Iris-Syn (CIS), CASIA-Iris-Lamp

Fig. 2. Sample images from CASIA-IrisV4 subsets and corresponding
ground-truth labels. (a) CII. (b) CIS. (c) CIL. (d) CITW. (e) CIT.

(CIL), CASIA-Iris-Thousand (CIT), and CASIA-Iris-Twins
(CITW). The statistics and features of each of these five
subsets are shown in Table I. Fig. 2 shows the sample images
and the corresponding ground-truth labels.

We randomly divided each of the five subsets of the
CASIA-IrisV4 database in the ratio of 60:20:20 for training,
validation, and testing purposes, as shown in Table II. The
proposed SIPFormer model is trained using 60% of the images
in each subset, while for both validation and testing, we used
20% of the images in each subset.

B. Data Preprocessing

In our study, we have used five different subsets of the
CASIA-IrisV4 database that vary extensively in terms of
environment, illumination, and camera sensor, as shown in
Table I. Hence, before feeding to the CNN architecture, data
processing is required to scale, convert, and standardize these
images according to the dimension, activation shape, and
size specified by the network input specifications. Therefore,
preprocessing is the first stage of the proposed SIPFormer
system, where we first performed the intensity transformation
to adjust and increase the intensity differences in the ocular
region, as shown in Fig. 3(b). For this purpose, we employed
two intensity transformation functions, gamma transformation,
and contrast stretching, to pick out the details, such as limbus
(iris–sclera boundary) in the ocular region.

Next, we enhanced the images using the local enhancement
technique. First, we improved the dynamic range of the images
using histogram equalization to evenly distribute the pixel
intensities across the entire range. The histogram equalization
process improved the contrast level, especially in images
where the intensities are clustered predominantly around the
lower or middle range. We further enhanced these images
using the contrast-limited adaptive histogram equalization
technique, as shown in Fig. 3(c).

After enhancing the images, we removed two types of
reflections from the images: reflection in the ocular region
mainly due to cornea and aqueous humor and reflection in
the periocular region mainly due to flashlights. We used the
adaptive thresholding scheme to identify the bright white spots
in the images and filled regions using the morphological recon-
struction technique. Compared to the conventional algorithms
based on the global threshold value, the adaptive thresholding
scheme utilizes the dynamic threshold value for each pixel in
the image, computed using the local mean intensity in the pixel
neighborhood. Finally, we resized the preprocessed images
to a common resolution of 576 × 768. Fig. 3(d) shows the
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TABLE I

SPECIFICATIONS OF CASIA-IRISV4 DATABASE

TABLE II

DETAILS OF TRAINING, VALIDATION, AND TEST SETS

Fig. 3. Data preprocessing. (a) Pristine images. (b) Intensity transformation.
(c) Image enhancement. (d) Reflection removal.

preprocessing stage results on randomly selected images from
all five CASIA-IrisV4 subsets.

C. Proposed SIPFormer Architecture

The proposed SIPFormer model is designed to perform
the joint segmentation of the sclera, iris, and pupil from
the periocular scans. The high-level overview of the pro-
posed SIPFormer model is shown in 4. As evident from
Fig. 4, the SIPFormer architecture consists of three units
dubbed: the SIPFormer encoder, SIPFormer decoder, and the
SIPFormer transformer. When the input scan is preprocessed,
it is passed through the SIPFormer encoder, which generates
the latent feature representations to distinguish the multiocular
traits. Moreover, the SIPFormer encoder also serves as a
backbone to generate latent projections from the nonover-
lapping sequenced patches obtained from the candidate scan.
Afterward, the latent projection and the flattened projections
of the positional embeddings (generated through normalized
cross correlation) are added and passed to the three-layered
SIPFormer transformer. The SIPFormer transformer computes

Fig. 4. High-level overview of the SIPFormer model.

the contextual multihead self-attention distribution from the
scan projections, enabling the SIPFormer encoder to amplify
the discrimination of ocular traits through the fusion between
the SIPFormer encoder and transformer features via convolu-
tion. The resultant latent space distribution is passed to the
SIPFormer decoder that generates the segmented scan with
multiocular trait representations. Moreover, Fig. 5 shows the
detailed SIPFormer architecture with layerwise configuration
and connections. The detailed description of each unit within
the proposed SIPFormer architecture is presented in the fol-
lowing.

1) SIPFormer Encoder: The SIPFormer encoder is respon-
sible for generating the distribution of the latent feature fe(x)
to extract the multiocular traits from the periocular scans x ∈
R

(R×C×Ch ), where R denotes the rows, C denotes the columns,
and Ch denotes the channels of x . Unlike the conventional pre-
trained networks, the SIPFormer encoder consists of multiple
trait preservation (TP) and residual (Res) blocks, as shown
in Fig. 5. These blocks enable the SIPFormer encoder to
produce an accurate contextual and semantic representation
of the ocular traits during the scan decomposition to yield
distinct feature maps. In total, there are four TP blocks
and 12 Res blocks within the SIPFormer encoder, where
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Fig. 5. Architectural details of the proposed SIPFormer model.

each TP block consists of four convolutions (C), four batch
normalizations (BNs), two rectified linear units (R), and one
max pooling (MP), whereas each Res block contains three C,
three BNs, and three R’s along with a skip connection. The
latent features fe produced by the SIPFormer encoder (after
tuning its learnable weights) effectively discriminate the ocular
trait representations from the noisy eyelashes regions and the
background skin. However, it also results in false positives
toward differentiating between sclera and iris regions as their
features are very well correlated. To overcome this, we boost
the separation of interclass distributions by convolving fe with
the transformer projections pt , which yields the fused feature
representation fd = fe ∗ pt . These fused features are passed
to the SIPFormer decoder to extract ocular traits.

2) SIPFormer Transformer: As mentioned above, after gen-
erating fe from the SIPFormer encoder, we fuse them with
the transformer projections pt , generated by the SIPFormer
transformer unit to increase the interclass separability between
the well-correlated trait distributions. The SIPFormer trans-
former consists of three encoders that are coupled together
in a cascaded fashion to generate transformer projections
pt . The architectural depiction of the transformer encoder
in the SIPFormer transformer is similar to the vision trans-
former (ViT) [37] in terms of hidden layer size and self-
attention mechanism. However, unlike in ViT, the input to the
SIPFormer transformer is not the standard positional embed-
dings generated by the multilayer perceptron (MLP). Instead,
we generated the positional embeddings through normalized

cross correlation. Moreover, in the ViT, the linear embeddings
from the image patches are generated again using MLPs,
whereas in the SIPFormer transformer, the linear embeddings
are generated using the SIPFormer encoder. The encodings
from the positional embeddings and linear embeddings are
then concatenated to pass on to the transformer encoder,
as shown in Fig. 5.

In the SIPFormer transformer, the periocular scan x is first
divided into nonoverlapping squared patches x p ∈ R

(P×P×Ch),
where P denotes the resolution of x p, such that P =
((RC/n p))

1/2 and n p denotes the number of patches. Also,
each patch is cross-correlated with x to generate the posi-
tional embeddings xe ∈ R

(P×P×Ch). Afterward, we obtain
the flattened projections of the positional embedding xe

i (cor-
responding to the patch x p

i ), i.e., f p(xe
i ), and the latent

projection for the patch x p
i , i.e., lt (x p

i ) through the SIPFormer
encoder backbone, as shown in Figs. 4 and 5. Then, we resize
f p(xe

i ) and lt (x p
i ) to k dimensions and compute the sequenced

embeddings (for the patch x p
i ) by summing lt (x p

i ) with f p(xe
i ),

i.e., qi = lt (x p
i ) + f p(xe

i ). Moreover, repeating the same
workflow for all the n p patches yields combined projections
qo, as expressed in the following:
qo =

[
lt
(
x p

0

); lt
(
x p

1

); . . . ; lt

(
x p

(n p−1)

)]

+
[

f p
(
xe

0

); f p
(
xe

1

); . . . ; f p

(
xe
(n p−1)

)]
(1)

or

qo = [
q0; q1; . . . ; q(n p−1)

]
. (2)
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The combined projections qo are passed to the first trans-
former encoder, where head j , qo

j , is normalized to produce
q ′o

j . Afterward, q ′o
j is linearly decomposed into query (Q j),

key (K j), and value (Vj) pairs via learnable weights such
that Q j = q ′o

j wq , K = q ′o
j wk , and V = q ′o

j wv . To compute
the contextual self-attention at head j , i.e., A j , Q j , and K j

are combined via scaled dot product, their resultant scores are
fused with Vj , as formulated in the following:

A j
(
q ′o

j ; Q j , K j , Vj
) = σ

⎛
⎝

(
Q j K T

j

)
√

k

⎞
⎠Vj (3)

where σ(.) denotes the sigmoid function. Apart from this, the
proposed contextual self-attention maps from multiple heads
are concatenated together to produce contextual multihead
self-attention distribution ∅CMSA(q ′o), as expressed in the
following:
∅CMSA

(
q ′o) =

[
A0

(
q ′0

j ; Q0, K0, V0
); A1

(
q ′1

j ; Q1, K1, V1
); . . .

Ah−1

(
q ′h−1

j ; Qh−1, Kh−1, Vh−1

)]
. (4)

We also want to highlight here that, in contrast to the
conventional multihead attention mechanism proposed in [37]
and [38], which uses softmax as an attention operator, the
proposed contextual multihead self-attention scheme employs
sigmoid as an operator to compute self-attention, which allows
the transformer encoders to generate more vibrant attention
maps without biasing itself to one particular segmentation
category out of the rest within the similarly structured scans.
This results in the generation of better latent projections
allowing the SIPFormer decoder to accurately extract the
multitrait information. Moreover, the self-attention distribution
∅CMSA(q ′o) is added with qo, where the resultant embeddings
are normalized and are passed to the normalized feedforward
block to produce the first transformer’s latent projections (pT 1)

pT 1 = ϕ f

((
∅CMSA

(
q ′o) + qo

)′) + (
∅CMSA

(
q ′o) + qo

)′
. (5)

pT 1 is passed to second transformer encoder, which produces
pT 2 in a similar manner, and pT 2 is passed to the third trans-
former encoder, which produces pT 3 projections. Since within
the SIPFormer architecture, we injected three transformer
encoders, so pt = pT 3, and after computing fd , they are
passed to the SIPFormer decoder to segment multiocular trait
representations. Table III shows the SIPFormer transformer
parameters used in this study.

3) SIPFormer Decoder: After convolving fe with pt ,
we obtained fused feature representations fd that are passed to
the SIPFormer decoder to segment the multiocular traits. The
SIPFormer decoder consists of three upsampling blocks, where
each block includes the transposed C, BN, and R activations,
and the skip connections (between the SIPFormer encoder and
decoder). Besides, at the head of the decoder lies the softmax
layer that classifies each pixel into one of the four categories
(representing the background periocular, sclera, iris, and pupil
regions).

Moreover, Fig. 6 shows the channel activation maps learned
by the proposed SIPFormer model with and without integrating

TABLE III

SIPFORMER TRANSFORMER PARAMETERS

Fig. 6. Visualization of channel activation maps. (a) Input images. Nine
most strongest activation channels extracted (b) without integrating SIPFormer
transformer and (c) with SIPFormer transformer. (d) Class activation maps at
the scorer layer of the SIPFormer decoder.

the SIPFormer transformer module. The proposed model,
when combined with the SIPFormer transformer module,
focuses mainly on the ocular traits in the images by neglecting
the noise effects, such as eyelashes, eyelids, spectacles, and
shadows, which are inherent in unconstrained acquisition
settings. In contrast, when the SIPFormer transformer module
is not integrated, the model is seriously affected by these
noises, resulting in poor feature learning. Therefore, we can
say that our proposed SIPFormer model is intrinsically robust
in segmenting the multiocular traits attributed to its multihead
self-attention mechanism based on the sigmoid function and
the positional embeddings generated using the normalized
cross correlation. Moreover, we have presented the class
activation maps at the scorer layer of the SIPFormer decoder,
which influenced the model to classify pixels belonging to four
different classes in this study.

4) Postprocessing: The segmented images by the deep
learning model are often noisy. As a result, we designed



HASSAN et al.: SIPFormer: SEGMENTATION OF MULTIOCULAR BIOMETRIC TRAITS WITH TRANSFORMERS 5001914

Fig. 7. Postprocessing results. (a) Original image. (b) Segmented image
by the SIPFormer model. (c) Undersegmented/oversegmented pixels in (b).
(d)–(f) Extract ocular masks from (b). (g)–(i) Postprocessed ocular regions
mask. (j) Reconstructed segmented image after postprocessing. (k) Ground-
truth image. (l) Undersegmented/oversegmented pixels in (j).

a postprocessing phase to remove stray pixels and smooth
the segmented labels. For this purpose, we first extract the
masks of all ocular traits (sclera, iris, and pupil) separately to
perform the erosion operations using disk-shaped structural
elements. Following that, we use nonlinear median filter-
ing and 2-D convolutional blurring to minimize the noisy
pixels while preserving the boundary of the ocular region.
Next, we binarized these ocular masks using the thresholding
technique and concatenated them to acquire a single image.
The resultant image in this way may also contain some
unclassified areas represented by pixels with a value of 0.
Finally, we determine the locations of these empty pixels and
assign the closest label (having the least Euclidean distance)
to them to achieve the postprocessing images. Fig. 7 shows the
illustration of the postprocessing steps to clean the segmented
pixels by the proposed SIPFormer model.

5) Training Loss Function: The cross-entropy (Lc) [39] or
Dice loss (Ld ) [40] functions are often used to train the deep
learning models for the semantic segmentation tasks [41],
[42]. Lc has gained popularity due to its ability to generate
desirable gradients by subtracting the expected probability
from the actual labels. Moreover, it greatly improves network
convergence and is a suitable option for datasets with uni-
formly distributed classes and explicit mask annotations [43],
[44], [45]. However, Ld and Tversky loss (Lt ) [46] are the
preferable option for the sparse or unbalanced segmentation
pixels [47]. Besides, Ld assists the model in achieving more
precise segmented regions with high overlap with the corre-
sponding ground truths (especially for cases with unbalanced
classes or unclear annotations) [41], [42]. In addition, Lt offers
high resilience to unbalanced classes, which further contributes
to improving semantic segmentation performance [47].

Given the above, we hypothesize that synergizing two
loss functions may attain the best segmentation performance.
Therefore, we employed a multiobjective hybrid loss function
(Lh) in this research to improve the capacity of the proposed
SIPFormer model for better recognizing the three ocular
regions. We linearly combined two-tiered objective functions

(Ld and Lt ) to calculate Lh , as expressed in the following:

Lh = 1

N

N∑
i=1

(
α1 Ld,i + α2 Lt,i

)
(6)

Ld,i = 1 − 2
∑C

j=1 ti, j pi, j∑C
j=1 t2

i, j + ∑C
j=1 p2

i, j

(7)

Lt,i = 1 −
∑C

j=1 ti, j pi, j

∑C
j=1

(
ti, j pi, j + β1t ′

i, j pi, j + β2ti, j p′
i, j

) (8)

where ti, j shows the ground-truth labels of i th example belong-
ing to the j th ocular class, whereas pi, j denotes the predicted
labels of the i th example for the j th ocular class. The terms
t ′
i, j and p′

i, j represent the false predicted labels, where t ′
i, j are

the ground-truth labels of the i th example belonging to the
non- j th class and p′

i, j are the predicted labels marking the i th
example for the non- j th class. N is the training batch size,
and C specifies the total classes. The terms α and β represent
the experimentally established loss weights for achieving the
best performance of the model.

III. EXPERIMENTAL SETUP

The proposed SIPFormer framework has been implemented
using the MATLAB R2022a simulation platform installed on
a 64 bits Windows OS. The machine is configured as Intel
Core i7-11700 @2.5 GHz, with 32-GB memory and Nvidia
GeForce RTX 3090. The SIPFormer model is trained using
31 220 images, randomly chosen from the five subsets of the
CASIA-IrisV4 database, as mentioned in Table II. Moreover,
we augmented the data at each epoch to prevent overfitting and
improve the classifier performance against the unseen data.
We adopted four types of transformations to augment the data
(reflection, rotation, scaling, and translation) to enable better
generalization characteristics in the model.

Furthermore, the Adam optimizer [48] is employed in the
proposed research to update the SIPFormer parameters during
the training phase. The batch size and epochs are set to
32 and 120, respectively, allowing the network to train over
117 120 iterations with 976 iterations per epoch. Furthermore,
10 407 separate images are used for validation purposes of
the SIPFormer model. We specified the validation frequency
every ten epochs, enabling the SIPFormer model to validate the
unseen data 12 times. In an attempt to minimize the training
error on the validation set, the hyperparameters for training the
SIPFormer model are determined via Bayesian optimization on
30 objective function evaluations.

IV. SIMULATION RESULTS

In this section, we first present different ablation studies
relevant to the proposed SIPFormer model. Next, we evaluated
the performance of the proposed model both subjectively and
objectively, as explained in the following.

A. Ablation Study

The ablative aspects of this research comprise: 1) deter-
mining the best weights for the α and β parameters in the
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TABLE IV

PERFORMANCE COMPARISON WITH DIFFERENT LOSS FUNCTION
WEIGHTS. THE RESULTS ARE PRESENTED IN THE MEAN DSC

SCORE. THE BOLD FONT REPRESENTS THE COMBINATION OF THE

OPTIMAL WEIGHTS

loss function; 2) training the network with different optimizers
and loss functions to find the best combination by measuring
the segmentation performance on the validation set; and 3)
identifying the best backbone network for extracting features
and getting the best segmentation results.

1) Tuning the Loss Parameters: In this experiment,
we experimented with different values for loss weight para-
meters to determine the best combination for training the
network. The α1 and α2 terms in (6) reflect the contribution
of each loss function component toward the total loss, where
α1 and α2 regulate the contributions of Ld [see (7)] and
Lt [see (8)], respectively. Table IV shows the performance
of the SIPFormer model for different combinations of the
α1 and α2 parameters, revealing that setting α1 = 0.4 and
α2 = 0.6 yields the best segmentation performance on the
validation set with the mean Dice similarity coefficient (DSC)
of 0.9023.

Similarly, the β factor in (8) defines the contributions of
falsely predicted labels in the Traverky loss, where β1 and
β2 control the contribution of false positives and false nega-
tives. It can be observed from Table IV that the SIPFormer
achieved the best segmentation results when considering
the equal contribution of false positives and false negatives
(β1 = β2 = 0.5).

2) Selection of Optimizer and Loss Function: In this experi-
ment, we trained the model using various optimizers [48], [49],
[50] and loss functions [39], [40], [46] to evaluate the seg-
mentation performance, as shown in Table V. The SIPFormer
model fared best on the validation set with the ADAM + Lh

configuration, achieving a mean DSC score of 0.9023. Besides,
with mean DSC scores of 0.8935 and 0.9257, the ADAM+ Lh

arrangement achieved the best performance for segmenting the
iris and pupil regions. However, the ADAM+Lh configuration
obtained the second-best results for the sclera, following
the best setting (SGDM + Lh) by just 0.43%. Furthermore,
compared to the second-best results (SGDM + Lh), the mean
DSC score with the ADAM + Lh configuration improves by
1.86% in ocular regions segmentation, rising from 0.8858 to
0.9023. The RMSP + Lc setup, on the other hand, exhibited
the least accurate performance, with a mean DSC score of
0.7836 for segmenting the ocular regions.

3) Selection of Backbone Network: In this experiment,
we employed different backbone networks to determine the
optimal structure for extracting features and achieving the best
segmentation performance on the validation set. The results are
reported in Table VI, where it can be seen that the proposed
SIPFormer model achieves a mean DSC score of 0.9023 for
joint segmentation of the three ocular regions and exceeds the

TABLE V

PERFORMANCE COMPARISON FOR OCULAR REGIONS SEGMENTATION
USING VARIOUS OPTIMIZERS AND LOSS FUNCTIONS. THE MEAN DSC

SCORE METRIC IS USED TO PRESENT THE RESULTS. THE TOP PER-
FORMANCE IS HIGHLIGHTED IN BOLD, WHILE THE SECOND-

BEST PERFORMANCE IS UNDERLINED

TABLE VI

PERFORMANCE COMPARISON FOR OCULAR REGIONS SEGMENTATION

USING DIFFERENT BACKBONES STRUCTURES. THE MEAN DSC SCORE
METRIC IS USED TO PRESENT THE RESULTS. THE TOP PERFOR-

MANCE IS HIGHLIGHTED IN BOLD, WHILE THE SECOND-BEST

PERFORMANCE IS UNDERLINED

second-best results by 3.21%. Moreover, the SIPFormer model
produced 2.35% and 2.90% better performance for segmenting
the iris and pupil regions, whereas for segmenting sclera, the
proposed framework achieves the second-best results with a
mean DSC score of 0.8878, lagging the best results by 0.75%.

4) Effects of Image Resolution and Patch Size: In this
experiment, we studied the effect of image resolution and
patch size (PS) for the proposed SIPFormer model on the val-
idation set. We tested our model performance based on three
image resolutions (320 × 512, 576 × 768, and 640 × 832)
and three PSs (8 × 8, 16 × 16, and 32 × 32), as shown
in Fig. 8. Furthermore, the performance of the model is
analyzed in terms of two parameters: segmentation accuracy
using the mean Dice score and model inference time in terms
of frames per second (FPS). From the results in Fig. 8,
we can see that increasing the image resolution and the num-
ber of patches improves the segmentation accuracy slightly
[see Fig. 8(a)]. However, the SIPFormer model efficiency is
inversely proportional to the image resolution and PS. Thus,
variants with smaller PSs and higher image resolution are
computationally far more expensive [see Fig. 8(b)]. Therefore,
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TABLE VII

CATEGORIES OF OCULAR OCCLUSIONS FOR SUBJECTIVE EVALUATION

Fig. 8. Effects of image resolution and PS on (a) segmentation accuracy and
(b) model inference time.

we opted for moderate settings (576 × 768 image resolution
with 16 × 16 PS) in the proposed research.

B. Subjective Evaluation

Periocular components, such as eyelashes, eyelids, and spec-
tacle reflection, often obstruct the ocular region. Therefore,
we analyzed the performance of our trained SIPFormer model
subjectively against the various occlusion categories, as shown
in Table VII. To conduct this experiment, we randomly
selected 200 images for each occlusion category from the
testing dataset.

Fig. 9 compares the segmentation results of the SIPFormer
with other state-of-the-art methods [37], [54], [55], [56],
[57], [58]. To demonstrate the results, we randomly selected
200 images from each occlusion category, as mentioned in
Table VII. Here, we can observe that the segmented pixels by
the proposed SIPFormer model [see Fig. 9(j)] are more precise
in general compared to other methods [see Fig. 9(c)–(i)],
producing a lesser number of false positive and false negative
pixels, as highlighted with the green and red, respectively.
Moreover, the first two rows in Fig. 9 show clear images,
which do not contain occlusion in the sclera, iris, and pupil
regions. The SIPFormer model achieved the best results
for images in this category, where the segmented regions
are nearly identical to the corresponding ground truths [see
Fig. 9(b)]. The higher accuracy in such cases is perhaps due
to the discernible and clear contours of each ocular component.

The following two rows present the segmentation results
for images containing obstructions in the ocular regions due to
eyelashes. The proposed framework showed a good generaliza-
tion for such images and classified the majority of ocular pix-
els correctly, with some false negatives (undersegmentation).
Similarly, the proposed SIPFormer model produced promising
results for images predominated with eyelids occlusion, which
mainly truncates the contour and symmetry of the iris region.
The SIPFormer model preserved the symmetry of the ocular
regions as in the ground truths for these images by precluding
the obstructed sclera and iris regions, as evident from the
segmentation results.

Furthermore, we evaluated the segmentation performance
for images in the heavily occluded category. The ocular region
in this category is occluded through multiple obstructions
such as eyelashes, eyelids, and reflections. Compared with the
other categories, the segmentation performance of SIPFormer
for this set is not as accurate, producing some false positive
and false negative pixels, as evident from Fig. 9. Moreover,
we validated the performance of the SIPFormer model for
images containing spectacle reflections, as shown in the ninth
and tenth row of Fig. 9. The proposed model generally
produced good results for such images. However, it segmented
some pixels around the contours of ocular regions as false
positives and negatives.

Finally, we computed the segmentation accuracy of
SIPFormer for poorly acquired images having truncated ocular
regions, as shown in the final two rows of Fig. 9. We cate-
gorized images as poorly acquired if: 1) the ocular region is
not entirely visible due to spectacle frame or poorly aligned
shooting angle and 2) the ocular region is partially or wholly
dark due to shadow or illumination differences. Generally, the
SIPFormer demonstrated superior segmentation accuracy for
such cases with some false negative pixels for the iris and
sclera regions. The prime reason for these false negatives is the
incomplete and irreconcilable contours of the iris and sclera
regions in this category. To summarize, the segmented pixels
by the SIPFormer model for pupil class overlap well with the
corresponding ground-truth pixels. However, the segmented
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Fig. 9. Performance comparison for ocular regions segmentation. (a) Original images. (b) Ground-truth labels. (c) AUnet. (d) RefineNet. (e) Segnet.
(f) SegFormer. (g) FCN-Resnet101. (h) ViT + SIPFormer ED. (i) DeepLabv3+. (j) SIPFormer.

pixels near the sclera–iris boundary are slightly less accurate.
Next, we measure the exact overlap per class for each of the
above-discussed occlusion categories.

C. Objective Evaluation

In this section, we present the objective evaluation of the
proposed SIPFormer framework for jointly segmenting the
sclera, iris, and pupil. We objectively evaluated the perfor-
mance of SIPFormer via three main experiments, as explained
in the following.

1) Evaluation on Test Datasets: In this experiment, we first
present the performance of the SIPFormer model against all
of the five CASIA-IrisV4 test sets using different metrics. The
results are reported in Table VIII, where it can be observed that
our proposed framework generally performed well for all five
CASIA-IrisV4 subsets, achieving the mean intersection over
union (IoU) and DSC scores of 0.8226 and 0.9025, respec-
tively. Also, we can analyze that the SIPFormer performed
slightly better on the CIS and CIL datasets compared to the
other three datasets (CII, CITW, and CIT). This is perhaps
because the CII dataset contains close-up eye images, while
all the other datasets contain images captured from a distance.
Also, the ratio of CII images is low compared to other datasets.

In addition, the CIT dataset comprises the most complex
images with more intraclass variances, including spectacles
and specular reflections. Moreover, the CIT dataset with 20 000

TABLE VIII

DATASETWISE SEGMENTATION PERFORMANCE OF THE SIPFORMER
MODEL USING VARIOUS METRICS. THE BOLD AND UNDERLINED

VALUES REPRESENT THE BEST AND SECOND-BEST RESULTS,
RESPECTIVELY

images is the biggest, and achieving the best precision for such
a huge dataset is challenging. In addition, the images in the
CITW dataset were shot during the annual festival in Beijing,
and it is the only dataset where images were captured in an
outdoor setting. This dataset was distinct from other datasets
due to the variation in lighting, which is why our proposed
model obtained the lowest accuracy for CITW. However, it is
essential to note that despite these differences in the datasets,
the segmentation results for each dataset change by a small
margin, which affirms the resilience and reliability of the
SIPFormer framework regardless of the datasets.
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TABLE IX

CLASSWISE SEGMENTATION PERFORMANCE OF THE SIPFORMER MODEL
USING VARIOUS METRICS. THE BOLD AND UNDERLINED VALUES

REPRESENT THE BEST AND SECOND-BEST RESULTS,
RESPECTIVELY

Moreover, we computed the classwise performance of the
proposed model on the complete test data containing 10 407
images, as shown in Table IX. Considering the classwise
performance, we can see that the SIPFormer model performed
best for pupil class followed by iris, as shown in Table IX.
The higher IoU and DSC scores for both pupil and iris classes
represent the higher overlapped region and similarity index
between the ground-truth and predicted labels of these classes.
In contrast, the same metrics gave relatively low scores for
the periocular and sclera classes. This can be because the
CASIA-IrisV4 datasets are in grayscale. The pixel intensities
in the periocular and sclera region are relatively close and
are not distinguishable from the other two classes (iris and
pupil). As a result, the network performance slightly declined
in predicting the periocular and sclera labels. Similarly, the
higher values of Nice1 and Nice2 metrics for both periocular
and sclera classes reflect the higher ratio of false predicted
labels for these classes compared to iris and pupil.

Furthermore, we analyzed the performance of the
SIPFormer using the receiver operating characteristic (ROC)
and precision–recall curves of each class, as shown in Fig. 10.
We generated the ROC and precision–recall curves for each
class by varying the pixel classification threshold between
0 and 1 with a step size of 0.005. It can be observed from
the ROC curves in Fig. 10(a) that our proposed SIPFormer
model is trained skillfully in correctly predicting the positive
labels in each class. The higher area under the curve (AUC)
value for each class also quantifies the superior predictive per-
formance of the SIPFormer model. Since, in our study, there
is a considerable imbalance between the classes. Therefore,
precision–recall curves [Fig. 10(b)] show the advantages of
the SIPFormer algorithm more intuitively due to the absence
of true negatives in precision and recall equations. The higher
mean average precision (mAP) values for each class show that
the SIPFormer is trained precisely, returns accurately (high
precision), and correctly predicts the most positive results
(high recall).

2) Evaluation Based on Ocular Occlusion Categories:
In this experiment, we evaluated the performance of the
SIPFormer model for different kinds of occlusion using var-
ious metrics. We used 200 randomly selected images from
each occlusion category, as defined in Table VII. Fig. 9 and
Table X show that the SIPFormer worked best with clear

Fig. 10. (a) ROC curve and (b) precision–recall curve for each class.

TABLE X

IMAGES CATEGORYWISE SEGMENTATION PERFORMANCE OF THE

SIPFORMER MODEL USING VARIOUS METRICS. THE BOLD AND

UNDERLINED VALUES REPRESENT THE BEST AND SECOND-BEST

RESULTS, RESPECTIVELY

category images, followed by those with eyelid and eyelash
obstruction, whereas its performance relatively declined for
images in the truncated and reflection categories. Furthermore,
the proposed framework performed the least accurately with
heavily obscured images. The latter three categories can be
termed challenging cases in our study. In addition, fewer
images belong to these categories in the whole dataset. Con-
sequently, this lack of data may have resulted in insufficient
network training to manage such exceptions properly.

3) Comparison With State-of-the-Art Literature: In this
experiment, we evaluated the segmentation accuracy of the
SIPFormer model to other state-of-the-art models, as shown
in Table XI. With a mean DSC score of 0.9018, the proposed
framework provides the best segmentation results for the sclera
class, exceeding the second-best results by 0.92%. In contrast,
it demonstrated the second-best performance in segmenting the
iris and the third-best performance in segmenting the pupil,
trailing the best results by 0.97% and 1.12%, respectively.
In addition, the proposed SIPFormer framework outperforms
the second-best method for segmentation of all ocular classes
by 0.26%.

Furthermore, we have evaluated the computational com-
plexity of the proposed framework with other state-of-the-
art methods using the consistent simulation environment,
as shown in Table XII. All the models in Table XII have been
trained and evaluated using the same system and hardware
specifications. The computational complexity of the models is
evaluated using an Intel Core i7-11700 CPU @2.5 GHz, with
32-GB memory and Nvidia GeForce RTX 3090. Moreover,
the training hyperparameters for all models in Table XII are
adjusted using the Bayesian optimization on 30 objective
function evaluations to ensure the best training performances.
Here, it can be observed that with 37.2 million parameters,
the SIPFormer framework requires 92.13% fewer parameters
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TABLE XI

SEGMENTATION PERFORMANCE COMPARISON WITH THE STATE OF THE
ART USING MEAN DSC SCORE. THE BOLD AND UNDERLINED

VALUES REPRESENT THE BEST AND SECOND-BEST

RESULTS, RESPECTIVELY

TABLE XII

COMPUTATIONAL COMPLEXITY ANALYSIS WITH THE STATE OF THE ART
USING NVIDIA GTX 3090 GPU. THE BOLD AND

UNDERLINED VALUES REPRESENT THE BEST AND SECOND-BEST

PERFORMANCES, RESPECTIVELY

than the second-best performing method [58]. Besides, it can
process 37 FPS and requires 26.70 milliseconds only to
process a single image, making it suitable for real-world
biometric applications.

V. CONCLUSION AND DISCUSSION

The motivation of this work is to segment multiple ocular
traits simultaneously toward devising a multimodal ocular
segmentation framework. For this purpose, we employed a
novel framework called SIFormer, which fuses the transformer
projections with the deep features at the encoder side to
boost the separation between interclass distributions. Besides,
the proposed SIPFormer model obviates the need for high
computational resources due to its lesser number of parameters
(around 30 million), unlike in other popular semantic segmen-
tation architectures such as RefineNet [55], SegNet [56], and
DeepLabv3+ [58].

Moreover, for several images in the datasets, we observed
the difference between the black intensities in the ocular region
to be very small and clustered predominantly around the
lower or middle range. Therefore, in this work, we enhanced
the ocular traits using preprocessing stage and subsequently
suppressed the information on the periocular components.
In addition, we removed various reflections in the pristine
images via an improved holes filling strategy to achieve the
preprocessed scans, as shown in Fig. 3. Furthermore, the

classes in the training data are highly imbalanced, with the
periocular being the dominant class having over 75% of the
labels. On the contrary, the pupil class had the least labels
(less than 5%). This kind of bias can lead the network to
ignore marginalized classes. Therefore, we used the inverse
frequency weighting approach to balance the classes by assign-
ing increased weights to the underrepresented classes (sclera,
iris, and pupil). Also, we used the hybrid loss function to
account for both the Dice and Tversky losses, enabling the
model to train more precisely and converge quickly.

Furthermore, we conducted several experiments to evaluate
the performance of the SIPFormer framework. We computed
the segmentation accuracy of each class for various occlusion
categories, as shown in Fig. 9 and Table X. Moreover, the pro-
posed framework is tested over multiple challenging datasets
using various evaluation metrics, as shown in Table VIII.
Besides, we present the comparative analysis between the
proposed SIPFormer and existing state-of-the-art algorithms,
as shown in Tables XI and XII. We have also compared
the performance of the proposed SIPFormer model with the
standard ViT [37] + SIPFormer ED unit. We trained the ViT
(with three transformer encoders) from scratch on the CASIA
datasets, and the segmentation results are reported in Table XI.
Here, we can observe that the SIPFormer achieved higher
segmentation accuracy compared to the ViT variant. This
is perhaps because the positional embeddings in SIPFormer,
unlike in standard ViT, are generated through normalized cross
correlation between the original image and image patches. Fur-
thermore, the latent projections of the decomposed image are
obtained through the SIPFormer encoder and combined with
the flattened positional encodings to feed to the SIPFormer
transformer. It provides the SIPFormer model with better
and more robust feature learning capability resulting in high
accuracy in segmenting the multiocular traits in the proposed
study.

The simulation results in this research demonstrate the opti-
mal performance of the SIPFormer framework in segmenting
the multiocular biometric traits. The proposed model can be
refined in the future using more publicly available datasets
with more challenging and unique ocular images (both from
near and far). Also, the segmented results from the SIPFormer
model can be used for implementing a multiocular biometric
recognition system.
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