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Abstract—This article investigates the use of hybrid machine
learning (HML) for the detection of anomalous multivariate time-
series (MVTS). Focusing on a specific industrial use-case from
geotechnical engineering, where hundreds of MVTS need to be
analyzed and classified, has permitted extensive testing of the
proposed methods with real measurement data. The novel hybrid
anomaly detector combines two means for detection, creating
redundancy and reducing the risk of missing defective elements
in a safety relevant application. The two parts are: 1) anomaly
detection based on approximately 50 physics-motivated key per-
formance indicators (KPIs) and 2) an unsupervised variational
autoencoder (VAE) with long short-term memory layers. The
KPI captures expert knowledge on the properties of the data
that infer the quality of produced elements; these are used as a
type of auto-labeling. The goal of the extension using machine
learning (ML) is to detect anomalies that the experts may not
have foreseen. In contrast to anomaly detection in streaming data,
where the goal is to locate an anomaly, each MVTS is complete in
itself at the time of evaluation and is categorized as anomalous or
nonanomalous. The article compares the performance of different
VAE architectures [e.g., long short-term memory (LSTM-VAE)
and bidirectional LSTM (BiLSTM-VAE)]. The results of using a
genetic algorithm to optimize the hyperparameters of the differ-
ent architectures are also presented. It is shown that modeling
the industrial process as an assemblage of subprocesses yields
a better discriminating power and permits the identification
of interdependencies between the subprocesses. Interestingly,
different autoencoder architectures may be optimal for different
subprocesses; here two different architectures are combined to
achieve superior performance. Extensive results are presented
based on a very large set of real-time measurement data.

Index Terms— Artificial intelligence in measurement and
instrumentation, hybrid learning, key performance indicator
(KPI), long short-term memory (LSTM)-variational autoencoder
(VAE), outlier detection, time-series.
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I. INTRODUCTION

HIS article investigates the use of hybrid machine learn-

ing (HML) [1] to infer the quality of industrially pro-
duced elements, for which final quality control is not possible.
In the specific use-case analyzed and presented here, under-
ground foundation columns are being produced; however,
since they are subsurface their final quality cannot be inspected
directly. Consequently, the quality must be inferred through
the analysis of measurement data acquired in real-time from
the instrumented rig. This requires the analysis of large sets of
multivariate real-time measurement data (MVRTD), emanating
from instrumented industrial equipment. This is a pertinent
topic since industrial IoT [2] is making ever-increasing vol-
umes of measurement data available for analysis. Furthermore,
HML, for example, physics-informed neural networks [3],
is an emerging research topic and is considered the best
approach to obtaining reliable results in conjunction with the
analysis of the measurement data from physical systems [4],
[51, [6]. Although this article is focused on a specific use-case,
many of the results are relevant in other applications; in partic-
ular, the examination of different autoencoder architectures for
the unsupervised analysis of multivariate time-series (MVTS)
data and the combination with a genetic algorithm to optimize
the hyperparameters.

The importance of machine learning (ML) in the field
of instrumentation and measurement [4], [7] is increasing
with the growing volumes of measurement data recorded
in industrial processes. However, as shown in [5], the two
communities, i.e., the machine learning and the instrumenta-
tion and measurement community, use different terminologies.
As a result, we feel it is important to have interdisciplinary
publications that bridge both the topics.

As described in [7], ML architectures should be chosen with
care when applied in safety-relevant applications, as is the case
here. For this reason, an HML approach was chosen, which
augments an outlier detection technique based on multiple
physics-based metrics, with unsupervised ML. The HML
techniques were successfully applied in other fields related to
instrumentation and measurement, e.g., in [8] and [9]. Many
ML approaches presented in literature use publicly available
datasets to perform ablation studies [10] and performance
benchmarking of different architectures. A survey on different
methods for time-series forecasting [11] on publicly available
time-series datasets suggested that hybrid approaches are supe-
rior to pure statistical or ML approaches. The same study

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0001-8699-1367
https://orcid.org/0000-0002-1367-8270
https://orcid.org/0000-0002-1811-5266
https://orcid.org/0000-0001-8385-9635
https://orcid.org/0000-0002-5212-4908
https://orcid.org/0000-0002-7562-6206

2503711

concluded that more complex models do not necessarily lead
to higher accuracy. This is important, since high accuracy,
in the field of instrumentation and measurement, is a highly
desirable feature [5], [6].

Especially in anomaly detection, benchmarks need to be
treated with care, since most suffer from one or all the
following issues [12]: the problem is too trivial and can be
solved in a few lines of code; the anomaly density is too high;
if supervised learning is used, the ground truth is mislabeled
and often there are no data available after the anomaly has
occurred, and Wu and Keogh [12] called this as the run
to failure bias. The study done on the comparison of the
classical pure ML methods, pure (deep) ML methods, and the
combination of both, HML, suggests that there is no pure ML
method that can outperform a hybrid system [13].

A. New Contributions

The initial results of this work were published in [14];
however, since then, significant modifications have been made
and improved results obtained. This article presents these
extensions and new results.

1) An HML framework that captures a priori knowledge in
the form of key performance indicators (KPI), which
is used to implement autolabeling, permitting a truly
unsupervised learning. Furthermore, the combination of
two means for anomaly detection, KPI and ML, is intro-
duced; this leads to a redundant anomaly detection
system and a higher likelihood for detecting anomalies.

2) The conceptual framework for handling MVTS measure-
ment data in an object-oriented way is presented; cover-
ing all the tasks from data ingestion to outlier detection.
The data are handled together with the pertinent meta-
data, events, and segments. The concept that industrial
processes can be described as consisting of subprocesses
is discussed. KPIs are defined for the subprocesses sepa-
rately and this leads to a hierarchical anomaly detection
in the subprocesses. Aggregating the results yields a
more granular classification of anomalies and reveals
possible interactions between the subprocesses.

3) A clear definition and algorithmic implementation for
the outlierness is provided, i.e., a metric for the extent
to which a time-series is considered to be an outlier by
the KPI-based anomaly detector.

4) The statistical analysis of the performance of autoen-
coders with LSTM and BiLSTM layers for the sub-
processes is presented.

5) The implementation of the autoencoder training has been
modified, to significantly reduce the amount of padding
required within the mini-batches during training.

B. Organization of the Article

This article is organized as follows: in Section I, an intro-
duction to the topic of HML for anomaly detection in mul-
tivariate time-series is given; in Section II, insights into the
use-case are presented; Section III discusses the structured
data handling for large amounts of industrial real-time data.
The first part of the hybrid framework based on KPI is
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shown in Section IV, whereas the anomaly detection based
on ML can be found in Section V, and the results of the
comparison of architectures are presented in Section VI. The
article is concluded with insights gained and further work in
Section VII.

II. USE-CASE AND NATURE OF THE DATA

The vibro-ground improvement techniques are used for
almost 100 years to support buildings and infrastructure
works; however, there is still no standardized method for
quality control for ground improvement techniques [15]. The
increasing economic pressure in the construction industry
and a higher risk awareness accelerated the change process
of traditional, mostly manually performed techniques, toward
automated solutions for quality control [16]. The produced
foundation columns are subsurface, and therefore, the quality
control needs to be based on indirect methods and reliable
labeling for supervised ML is not a feasible solution. For
the last 30 years monitoring KPIs, which were derived
from the recorded data from instrumented production rigs,
built the basis for geotechnical and quality evaluations of the
process [17]. These data are also utilized in installation reports
which to this day are the core of quality control. For each
foundation column, an installation report is created, which
needs to be manually evaluated by geotechnical experts [15].
However, evaluating hundreds, if not thousands, of installation
reports with limited human resources increases the risk that the
controls are not performed with the due-diligence required. For
this reason, our framework is used to support the geotechnical
expert at this task and refining the KPI definitions to cover
as many anomalies as possible. The KPI refinement is driven
by new process insights, gained by the knowledge discovery
process, performed after ML anomaly detection, to increase
the interpretability of the anomaly detection framework,
which is essential in critical infrastructure and safety-relevant
applications [18]. The opportunity costs of false negative are
much higher than of false positive detection. Therefore, the
two anomaly detection results are combined with a logical
or—if an MVTS is flagged by one of the means for anomaly
detection as anomalous it is considered as anomalous and
undergoes further investigations by geotechnical experts.

In more detail, the use-case presented here is the vibro
ground improvement process. The goal is to improve the
bearing capacity of the ground so that more stable foundations
can be produced for a building. However, this leads to a
safety-relevant system, since failure to detect an anomalous
foundation column can lead to a local instability of a building.
The process consists of four phases: run-in, process prepa-
ration is performed; penetration, whereby a rig penetrates
the ground with a large vibrator until a predefined bearing
capacity is reached; compaction, is the repetitive process of
withdrawing the vibrator, introducing gravel into the ground
and compacting with the vibrator; and run-out finalizing the
process.

A typical building site may have between 250 < m <
1500 such foundation columns. Fusing the location data
with machine data enables the georeferenced viewing of the
data associated with the foundation columns. This supports
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KPI: Max Depth m

Fig. 1. Georeferenced data from an exemplary building site. Each point
corresponds to the location of an underground foundation column. The color
of the point represents the value of some specific KPIs; in the case shown
here, it is the depth required to achieve a specific load-bearing capacity. There
is a real-time MVTS associated with each of these foundations, and for this
site, there are m = 637 points.

Fig. 2. Here a series of three instrumented rigs can be seen on a building
site. This gives an impression of the scale of operations and the relevance of
location registered data.

the geotechnical experts in establishing an overview of the
geotechnical properties and enables an automatic detection of
changing the subsurface properties. An example of such a view
is shown in Fig. 1; this site has m = 637 foundation columns.
The georeferencing permits the identification of systematic
changes in the subsurface ground properties over a site. This
is important since reliable detection of anomalies requires
the separation of systematic changes from local anomalous
behavior.

A series of instrumented rigs work in parallel on a single
building site; see Fig. 2, producing the required foundation
columns. The instrumented rigs have n = 9 sensor channels
used in this process. The sensor data acquired in real-time
are sampled at f; = 1 Hz. This yields an MVTS for each
foundation column; an example of such data can be seen
Fig. 3. Due to changes in the subsurface properties, the time
required to produce the foundation may vary significantly; as
a result, the time-series have strongly varying lengths. For
the site data shown in Fig. 1, there is a median number of
time-steps per foundation of #,eq = 345 and an interquantile
range (IQR) of figr = 169. A tpeq of 345 time-steps with
1-Hz sampling frequency corresponds to an average lead time
of 345 s. Consequently, the computational methods must be
capable of analyzing, the execution of the production process
with strongly varying lead time, which leads to recordings
of the process with widely varying lengths. To summarize,
there are approximately 1000 MVRTD associated with a single
building site, each of these time-series having n = 9 sensor
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Fig. 3. Example of the real-time data acquired from the rig while producing
a single foundation column. One such MVTS is acquired per foundation
column. The four phases of the process can be seen: run-in (white), penetration
(red), compaction (green), and run-out (white). Only the penetration and
compaction phases are relevant for the quality of the foundation column.

channels and several hundred time-steps recorded per sensor.
Furthermore, there are multiple building sites to be monitored.

III. STRUCTURED HANDLING OF DATA

A significant portion of this project is associated with
managing such volumes of multivariate measurement data,
together with the corresponding metadata, in a systematic
manner. There are tens of thousands of MVRTD that need to
be handled. Consequently, a systematic data ingestion process
has been defined. In this process, each of the MVTD is
ingested. In the same step, events and segments are determined
by applying a rule-based system. By performing data fusion,
the data from computer-aided design (CAD) are merged with
machine data for each of the foundations. This provides for
the georeferencing of the data and enables the comparison of
planned versus executed work. An object class for an MVTS
has been defined. It provides a container for the MVRTD
and augments this with the respective metadata, events, and
segments. In this manner, all data required to segment and
process the data from a specific foundation column are con-
tained in a single MVTS object. These objects are saved in
binary HDF5 [19] format and made available via a standard
interface. This facilitates the exchange of data and fast loading
into memory.

In addition, an index has been implemented with one
column per foundation element and one row per indexing
value, e.g., KPI. This permits the identification of MVTS from
either its metadata or the values of the associated KPI or by an
indexing value emanating from the ML evaluation of the data.

IV. KEY PERFORMANCE INDICATORS

Given the collection of MVTS, the task now is to individ-
ually characterize them by a series of metrics, called KPIs
here. The goal of the technical KPI is to capture expert
knowledge about the process and physical properties that can
be expressed in terms of scalar metrics computed from the
real-time machine data. These provide the physics-based side
of the hybrid learning process.
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The penetration and compaction phases are definitive for
the quality of the executed foundation column, whereas the
complete process, including run-in and run-out, may be rel-
evant for the efficiency. Consequently, KPIs are defined for
and categorized according to: penetration, compaction, and
complete element. The categorization is achieved via metadata
and not hard coded. In previous work [14], these phases were
analyzed together. However, defining KPI in separate cate-
gories provides the possibility of a more granular classification
of the MVTS according to the subprocesses. For example, the
penetration phase may be anomalous, whereas the compaction
is not. Currently, there are more than p = 50 different KPIs
computed.

A. Exemplary Technical KPI

Here, two new exemplary KPIs' are presented. They are
physics-based metrics and permit the identification of certain
types of anomalies. Furthermore, they can be computed using
the map-reduce paradigm [20], opening the door to parallel
computation, if required.

The incremental work as a function of time w(¢) is com-
puted from the amperage a(¢t) multiplied with the operating
voltage (electrical work) and the product of force f(¢) and
penetration rate dd(t)/dt (mechanical work). This computa-
tion has the same temporal resolution as the MVTS data and
corresponds to the map step in map-reduce. Then the total
work W, required to perform penetration, is the integral over

w(t)
W =/ w(t)dt (1)

1
where by #; and 7, correspond to the start and end times
for penetration, respectively, and this aggregation corresponds
to the reduce step. The total work required to complete
penetration W is used as a metric to characterize each MVTS.
The second KPI presented L is the ratio of the traversed
length to the depth penetrated. Given d(¢) the depth as a
function of time, L is computed as follows:

_ Jild@)ldr
~ [fd@wdr”

Consider the exemplary MVTS shown in Fig. 4: this cor-
responds to a straightforward penetration of the ground and
yields L = 1. In contrast, consider Fig. 5: as can be seen,
there were difficulties penetrating the ground and the vibrator
had to be retracted several times and the process restarted. This
behavior is considered anomalous; however, it has predictive
value, since together with the georeferencing it can be used
to determine whether this is a local random anomaly, or if the
subsurface properties are changing systematically over a site.

2

B. Heat-Maps and Outlier Detection via KPI
Currently, more than p = 50 KPI are computed, in three cat-
egories, for each foundation column. The KPI can be organized

't is not possible to present details on more of the KPIs due to the limited
space available in this article.
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Fig. 4. Depth d(t), force f(t), and amperage a(r) are the channels that form
the MVTS of a single foundation column. The work channel w(¢), underlayed
in blue, is a derived variable, computed from the above three channels and
has the same temporal resolution as the real-time data from the machine. The
integral over w(t) yields the total work required to perform penetration. This
dataset corresponds to the almost ideal process of creating a column. The L
ratio, indicated in the header, refers to the ratio of traversed distance to depth
penetrated.
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Fig. 5. Data similar to Fig. 4 but for an anomalous foundation column. This
is an example where the operator had difficulties penetrating the ground with
the vibrator. Both the L ratio and the total work performed are physics-relevant
metrics and are suitable to identify this type of anomaly.
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Fig. 6. Heat-map and outlierness for the KPI relevant to the compaction
phase of the process, and the data are for all the foundation columns on the
building site. Top: Heat-map, whereby the horizontal dimension refers to the
number of the individual points shown in Fig. 1; the KPIs are mapped to
the vertical axes. The coloring of the elements on each row corresponds to
the relative value of that KPI at each point. Bottom: The outlierness for each
foundation column.

as a matrix T'(J, k), whereby each row j corresponds to a KPI
and each column £ to a specific foundation point. Normalizing
the KPI matrix 7', using min—max normalization, by row pro-
vides a uniform scaling for the graphical representation, e.g.,
in Fig. 6 the KPI heat-map for the compaction phase and in
Fig. 7 the heat-map of the KPI relevant for all phases is shown.

In addition, the KPI matrix T is used to detect MVTS
that are statistical outliers; this infers the possibility of an
anomalous foundation column. The foundation columns are
subsurface, the precludes access to the ground-truth, and
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Algorithm 1 Pseudo/Code for the Computation of Outlierness

procedure OUTLIERNESS(T)
> Given the matrix T of KPI compute the outlierness for each
foundation column.
B < false(size(T))
[o, p] < size(T)
for j=1,...,0 do
> For each row compute upper and lower bounds
t<T(j,:) > Extract row vector ¢
> ¢o5(t) and g75(¢)) refer to the 25% and 75% percentiles of the
vector t), whereas I QR refers to the interquantile range.
bu <~ CI75(t) + 1.5 IQR(t)

> Initialize binary matrix

> Compute upper bound b,
by < qas(t) — L.SIQR(t)
> Compute lower bound b,
for k=1,...,p do > For each column
> Detect individual outliers if » is outside the bounds
v <« T(j,k)
if not(h, <v <b,) then
B(j, k) < true
end if
end for
end for
> Sum up each column to obtain the result vector r
for k=1,...,p do
rk) < X%_, B(j.k)
end for
return r
end procedure

> The vector of outlierness values.
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Fig. 7. Heat-map and outlierness for the KPI relevant to the complete element
produced; see also Fig. 6.

consequently, an inference must be used at this point. The
term outlierness is coined here, and it is a relative measure
of the degree to which the MVTS can be considered to be
an outlier. It is the number of KPI for which the column data
are a statistical outlier divided by the total number of KPI
being considered. The pseudocode for the computation of the
outlierness is shown in Algorithm 1.

V. ML-BASED ANOMALY DETECTION

As described in [18], autoencoders are a popular choice
for anomaly detection in critical infrastructure. The task of
identifying patterns that are not present in data from nor-
mal operations is called anomaly detection [18]. Anomaly
detection can also be described as a binary classification
problem with one class containing the anomalous data and one
class containing the nonanomalous samples [21]. Modeling the
normal behavior in physical systems is often not a feasible
solution, if it is unknown or simply too complex. In ML
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Fig. 8. Interplay of the components of our hybrid framework. (a) Files are
recorded at different sites and mapped to a storage location. From these data,
the KPIs are calculated as part of the data-ingestion process. (b) From KPI
visualizations—e.g., the heat-map is created and the outlierness—rank of the
MVTS—is calculated. Based on the outlierness, the files are separated in a
training and validation set. (c) Process of getting the autoencoder anomaly
score for the data of the validation set using a trained ML model. By passing
the validation set through the autoencoder, the reconstruction error can be
calculated. In the end, the two anomaly scores per MVTS for the KPI-based
anomaly detection and the autoencoder-based anomaly detection are combined
in a bivariate histogram as a starting point for the knowledge discovery
process.

approaches for anomaly detection, this normal behavior is
learned/inferred from provided data samples [21]. A simplified
drawing of the architecture used is shown in Fig. 8.

Most of the lately invented architectures for anomaly detec-
tion in time-series data are designed for streaming data for the
multivariate [22], [23] or univariate case [24] using sliding
window approaches. The industrial use-case presented in this
article, however, deals with a high number of MVTS data files
with recordings of varying length. Each MVTS is complete at
the time of evaluation. In this manner, it is more closely related
to boundary value problems, than locating a changing pattern
in streaming data.

To apply the autoencoder to the samples of varying length,
a novel resampling approach was developed (see Section V-D),
which reduces the effects of resampling to a minimum.



2503711

This approach differs from the previously mentioned, since
the goal is not to localize the position of the occurrence of
an anomaly, but to detect whether a built column, an MVTS,
is anomalous as a whole. In contrast to approaches (e.g., [25])
which apply ML on KPI data, in this framework the KPI
data are used as a separate mean for anomaly detection and
for the unsupervised training set construction. The learning
algorithm, however, is applied on the recorded time-series
data. In addition, the available process knowledge should
be incorporated into the hybrid anomaly detector to acquire
explainable and physically consistent results.

A. Objective-Based Preprocessing

To meet different objectives, different preprocessing steps
need to be performed to extract and enhance the special
characteristics of the data. The objective can also be dependent
on the subprocess monitored. In this section, the preprocessing
steps regarding outlier detection in terms of the quality of the
foundation columns are shown.

1) Feature Selection: Using the whole set of channels is in
most cases not beneficial for the ML performance. A higher
number of features used results in a higher number of learnable
parameters, increased model complexity, and training time.
The goal is to reduce the number of features used while
preserving the relevant information and eliminating redundant
features [26].

Despite using unsupervised ML, knowledge about the mon-
itored system and the different recorded channels should be
used when deriving the subset of channels. In this approach,
the channels from which the work performed as a function
of time (see Figs. 4 and 5) can be derived were chosen.
Depending on the goal that should be archived with ML,
a different subset of channels may be required as input to
the ML model. Two possible examples of goals that require
a different channel selection are anomaly detection regarding
the foundation column quality or anomaly detection regarding
the production efficiency of the ground improvement process.

2) Rule-Based Segmentation: Based on the definition of
rules and events using expert knowledge, the MVTS are seg-
mented into subprocesses. This is done because separate ML
models are trained for the separate phases. The subprocesses
are indicated in Fig. 3 with different colors.

3) Data Trimming: The objective of anomaly detection for
the case study is to detect anomalies in the sense of quality.
The ground improvement process contains process pauses,
e.g., logistical difficulties in gravel delivery. These pauses do
not have an impact on the effectiveness of the performed
process but the process efficiency. To meet our objective, these
pauses when no drilling is performed are removed from the
MVTS used for ML. After trimming the data by removing the
process pauses, in MVTS with anomalous process behavior
discontinuities can occur. These discontinuities caused by
operating errors and other process anomalies can be detected
using appropriate techniques [27], [28]. This is done to use
these anomalous cases in a knowledge discovery process. This
is based on previous work published in [29].
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Fig. 9. Schematic representation of an autoencoder with the encoder
that encodes the input features into latent variables and the decoder that
reconstructs the lower dimensional representation available in the latent space.

B. Architecture Selection

An autoencoder is an ML structure performing two map-
pings [30].

1) Encoder: Mapping ¥ from the original data to the latent
variables in the latent space.

2) Decoder: Mapping X from the latent space to the
reconstructed signal.

The goal is to extract latent variables that allow for a mini-
mal amount of distortion in the reconstructed signal [30], [31].
The dimension of the latent space n, is for anomaly detection
chosen to be n, < b, b being the dimension of the encoded
data [32]. Autoencoders and variational autoencoders (VAESs),
which differ in the regularization of their cost function, were
successfully used for anomaly detection in time-series in the
past [33]. A schematic representation of the ML architecture
is shown in Fig. 9.

The assumption behind anomaly detection using VAEs
is performing some kind of dimensionality reduction and
the assumption that anomalies contain nonrepresentative fea-
tures which cannot be encoded into the lower dimensional
space [34], [35]. As described previously, the three-channel
MVTS used for ML is converted into a lower dimensional
latent representation. The degree of dimensionality reduction
is determined by the dimension of the latent space, the latent
dimension 7n,; in this work, n, = 1 was chosen to archive a
sufficiently high degree of dimensionality reduction.

A recurrent neural network (RNN) was incorporated into
both, the encoder and the decoder, to handle the sequential
data [36], namely, a long short-term memory (LSTM) [37]
layer. Unidirectional LSTM is processing the input data in
the forward direction, whereas bidirectional LSTM (BiLSTM)
is processing it in a forward and backward direction [38].
Bidirectional models can only be used when the whole data
sample that they are applied to is available [36]. This condition
is fulfilled in the use-case presented here, since the data
analyzed are not streaming data. BiLSTM performs well,
especially when the value of time-step ¢ depends on both,
prior and past time-steps [39]. This is the case in boundary
value problems. The drilling process described in this article
can be seen as a (homogeneous) boundary value problem since
the drilling starts at the surface and ends at the surface.
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Fig. 10. Process from ML-MVTS to trained ML model incorporating HPO.

C. KPI-Supervised Training

As described in Section V, most of the data, gathered with
physical systems, are unlabeled and reliable labeling is hard to
archive [21]. Because of these circumstances, an unsupervised
anomaly detection approach was chosen. Unsupervised anom-
aly detection is done under the assumption that the training
set ' C @, whereas @ is the set of all available samples,
contains mostly samples from normal operations but could
contain a small number of still unknown anomalies [13],
[40]. This training set is constructed using the outlierness
calculated with the KPI [13] for this reason, and we call it KPI-
supervised training as the anomalous samples are excluded
and autolabeled using the outcome of the KPI classifier. This
excludes the already known anomalies covered by the KPI
framework.

The training set is constructed using the outcome of KPI
anomaly detection. The proposed framework does not require
human labeling, since it uses the results gained with the KPI
classifier to construct a training set only consisting of MVTS
which are considered to be nonanomalous. The whole process
of preprocessing and training is illustrated in Fig. 10.

D. Length-Preserving Training

The training procedure based on stochastic gradient descent
was adjusted to apply on MVTS of different time-series
lengths and minimize the effects of resampling to a common
length which is required for gradient calculation. During
training, the samples are sorted according to their time-series
length and only resampled to a common length, downsampled
to the shortest length of the samples forming a mini-batch; see
Fig. 11. After training the autoencoder in this new way, it can
reconstruct samples while preserving their real length. This
is desirable since an unusual time-series length, the process
length of an industrial process, can be a sign of anomalous
process execution. This avoids the necessity to resample the
time-series to a common time-series length [41], [42] or to pad
the data with zeros to the length of the longest time-series [43],
[44], which adds information and has an impact on the learning
performance, especially when used with LSTM [45].

The cost function optimized with stochastic gradient descent
is a regularized [46] version of the least-squares cost function
minimizing the reconstruction error. Being Y the kth sample
of a mini-batch and l?k the reconstructed MVTS, i.e., the
output of the autoencoder the reconstruction error E, of a
mini-batch of size m is given as?

E, =2 Y=Yl 3)
k=1

2||A|lr denotes the Frobenius norm of the matrix A.
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Fig. 11. Samples forming a mini-batch of the training dataset are down-
sampled to the shortest time-series length of the mini-batch and the training
dataset is not resampled to a common time-series length.

In the VAE, the regularization is based on the
Kullback—Leibler divergence® between two distributions
Q and IT given as Dy (Q|IT) [47], [48]. The loss function
of a VAE can be written as [47] and [48]

E; = E, — BDgL(Q]IT) 4)

with Q being a prior chosen by the user, often a multi-
variate Gaussian distribution with zero mean and a diag-
onal covariance matrix. The second distribution II is the
learned distribution in the latent space. In the formulation
introduced by [48] A = 1, in this case, the objective of the
learning algorithm is minimizing the evidence lower bound
(ELBO) [47]. In our approach, we use a so-called f-VAE
[49] where the Lagrangian multiplier § is a hyperparameter
that is optimized during hyperparameter optimization (HPO),
described in Section V-E, to ensure that the balancing between
the two terms of the loss function is optimal.

E. Hyperparameter Optimization

The hyperparameters have a significant impact on the per-
formance of the network [50]. The optimal performance of
an ML architecture on a dataset is obtained by optimizing the
hyperparameters. The available hyperparameters depend on the
architecture chosen and their optimal value on the problem and
the corresponding data. The search space of the HPO grows
exponentially with the number of parameters optimized. This
combined with the long training times of ML architectures
mostly heuristics or meta-heuristics are used [36], [43].

In this framework, a genetic algorithm is used for the HPO,
and the following hyperparameters were optimized.

1) Trained epochs: e € [50, 150].

2) Mini-batch size s € [2, n].

3) Number of neurons encoder n,. € [10, 100].

4) Number of neurons decoder n,q € [10, 100].

5) Learning rate o € [0.003,0.1].

6) Regularization factor f € [0, 50].

The genetic algorithm adjusted for this framework is described
in more detail in [51] and was executed with the following set-
tings: 15 individuals per generation, threefold cross-validation
for the fitness estimation, and a maximum of ten generations.
Moreover, a combination of two crossover functions was used
to obtain a better exploration of the search space.*

3The Kullback-Leibler divergence is not symmetric and therefore cannot
be used as a measure.

“4Further information on the genetic algorithm and implementation details
can be found in [51].
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TABLE I
RESULTS OF THE HPO
Architecture sub-process e Nne Nng a*10° s 53
VAE-LSTM penetration 69 40 56 1998 11 5
VAE-LSTM compaction 132 39 47 3689 15 8
VAE-BiILSTM  penetration 117 28 39 5987 17 9
VAE-BiLSTM  compaction 132 39 47 3689 15 8

F. Anomaly Detection Using Autoencoders

The last step of anomaly detection using autoencoders is
performing the binary classification task. In this step, the
model trained on the subset I' is applied to the whole available
dataset ©.

When using autoencoders, the output is the reconstructed
signal from which the reconstruction error can be derived [33],
[44], [52]. From the reconstruction error, the anomaly score
is calculated. The anomaly score used here for the sample y
with a time-series length ¢ is calculated as follows:

t
E= Y1y =59,
c=1

with y© denoting the measurement taken at time-step ¢ and
$© the reconstructed measurement at time-step c. Because
of the changing time-series length, the anomaly score E, is
normalized by the number of time-steps ¢, which leads to a
normalized anomaly score E,

)

Eq

Ey=—*. (6)

To get the classification, a threshold u is needed to represent
the boundary between the classes. Since the distribution of
reconstruction errors is positive semi-definite, a skewness
adjustment needs to be performed [53], [54], [55]. The MVTS
with E, < u get assigned to the class of nonanomalous
samples and MVTS with E,, > u are marked as anomalous.

VI. ARCHITECTURE COMPARISON AND RESULTS

The novel hybrid framework was applied to the case study
introduced in Section II. Separate autoencoders were trained
for the analyzed subprocesses, compaction, and penetration.
The following architectures were compared.

1) VAE-LSTM: VAE with one LSTM layer in the encoder

and the decoder.

2) VAE-BiLSTM: VAE with one BiLSTM Ilayer in the

encoder and decoder.

A. HPO Results

The HPO was executed four times to cover all the two
compared architectures; the two phases and the results are
shown in Table 1.

B. Architecture Comparison

In this section, different architectures are evaluated phase-
wise with metrics based on the anomaly score which is
derived from the reconstruction error of trained autoencoders.
Because of the nature of ML problems, random initialization
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Fig. 12. Visualization of the fluctuation in the anomaly scores E, of MVTS
of a site when the training procedure is repeated r = 125 times for the
subprocesses compaction (left) and penetration (right).

TABLE II
SUBPROCESSWISE ML ARCHITECTURE COMPARISON

penetration | compaction

statistical quantity VAE-LSTM  VAE-BILSTM ‘ VAE-LSTM  VAE-BILSTM
mean(mean(Enn)) 0.1997 0.2175 0.1986 0.2319
median(median(Enn)) 0.1883 0.1992 0.1966 0.2247
mean(mean(Ena)) 0.3918 0.4303 0.3161 0.2880
median(median(Ena)) 0.3821 0.4053 0.2353 0.2483
mean(distance means) 0.1921 0.2128 0.1251 0.0550
median(distance medians) 0.1932 0.2110 0.0516 0.0275

of learnable parameters, and an overdetermined solution space,
their performance varies when executing them multiple times
on the same dataset using the same hyperparameters. These
observations were previously described in [51].

The visualization of the anomaly score of the trained
architectures is shown in Fig. 12. The performance fluctuation
of the training on the same data with the same hyperparameters
can be observed on the vertical lines. The horizontal lines
indicate that the sample was reconstructed with a similar
anomaly score in the majority of the ¢ trained autoencoders.

To get an estimate of the performance of the architectures,
r = 125 instances of each ML architecture were trained
and then an outlier detection was performed. The goal was
to identify the best architecture in terms of reliability, the
variance of the outcome should be low, and at the same time
the distance between the two groups should be maximized.
The obtained results are shown in Table I1.°

The results of the comparison of the ML architectures as
shown in Table II are interpreted as follows.

1) The mean of the means of the reconstruction errors of
samples classified by the autoencoder architectures as
nonanomalous is lower for VAE-LSTMs in both the sub-
processes; the corresponding results occur calculating
the median of medians.

2) The mean of the means of the anomaly scores of samples
classified by the autoencoder architectures as anomalous
is higher for BiLSTM in the penetration subprocess.
This can also be seen in the box-plot shown in Fig. 13.
A higher mean of the distance between nonanomalous
and anomalous samples is desirable, since it makes the
two groups better distinguishable.

Based on the results, the following selection of architectures

was made: for the two subprocesses, different architectures

3 Enn indicates the normalized anomaly score of samples that are assigned
to the class nonanomalous; correspondingly, E,, indicates the normalized
anomaly score of samples that are assigned to the class anomalous.
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Fig. 14.  Bivariate histogram of the anomaly score E, for the two sub-
processes gained by training a population of r = 125 autoencoders with
optimized hyperparameters for each of the subprocesses.
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Fig. 15. Probability density function of the reconstructions of a trained
VAE-BIiLSTM architecture for the compaction phase; the two sets of MVTS
were constructed using the KPI classifier.

were chosen; for penetration, autoencoders incorporating
BiLSTM layers outperformed autoencoders using LSTM lay-
ers; for compaction, the architectures using LSTM layers
performed significantly better.

C. Subprocesswise Anomaly Detection

The bivariate histogram shown in Fig. 14 indicates that a
high anomaly score in one of the two phases does not correlate
with a high anomaly score in the other phase. A correlation
coefficient r = —0.0628 <« —0.3 indicates a very weak
negative linear relationship [56] between the anomaly scores of
the two phases. This is consistent with the experts’ institution
of this case study; if the penetration phase is anomalous, this
does not result in an anomalous compaction subprocess.
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Fig. 16. Bivariate histogram of the anomaly score E, for a trained

VAE-BIiLSTM and the KPI outlierness for the penetration phase.

D. Results KPI-Supervised Training

As described in Section V-C, the training sets were con-
structed using the outlierness. However, when analyzing the
distribution of the anomaly scores of both the groups, MVTS
which are considered, based on the KPI analysis, to be
anomalous and those considered to be no-anomalous, the
distributions shown in Fig. 15 of the anomaly score were
obtained. It can be seen that the outcome is two nearly iden-
tical probability density functions. Based on these results the
KPI-supervised training needs further refinement to produce
meaningful, distinctive results. This could be caused by the
KPI covering all the sensor channels or by the fact that the
KPI classifier and autoencoder anomaly detection cover other
anomalies; see Fig. 16.

However, summed up it can be said that a high recon-
struction error of an optimized and trained autoencoder does
not lead to a high outlierness and vice versa. This can
be seen in Fig. 16, where the best performing architecture
for compaction (VAE-BiLSTM) was trained with optimized
hyperparameters to obtain the anomaly score and the KPIs
covering the penetration phase were used to calculate the out-
lierness. As already reported in [14], the two methods identify
a common set of MVTS having both low anomaly scores
and low outlierness. Based on these, two means of anomaly
detection two classifications can be derived and combined
to cover a wider variety of anomalies; since the application
shown is safety-relevant, every additionally detected anomaly
is strengthening the process safety.

VII. CONCLUSION

A new framework for the handling of MVTS data recorded
in industrial applications was presented. The presented frame-
work standardizes the data handling and makes the HML
classifier applicable to a wide variety of use cases. Mul-
tiple technical KPIs that capture physical knowledge were
developed. Furthermore, additional refinements of (Bi-)LSTM
autoencoders were performed to make them better suitable for
MVTS data with varying lengths. This permits the construction
of ML architectures that preserve the real length of the MVTS
after applying ML.

A new approach of unsupervised training set construc-
tion using the outcome of the KPI anomaly detection was
investigated, which needs further refinement. A comparison
of LSTM-VAE and BiLSTM-VAE was performed and led to
using different recurrent layers for the present subprocesses of
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the investigated case study. It can be concluded that training
separate ML models for the subprocesses is beneficial since
the anomaly scores of the two phases are not correlated and it
also gives insights into which of the subprocesses the recorded
data are anomalous.

Further work should be done in the direction of unsu-
pervised training set construction and evaluation metrics for
unsupervised ML architectures and training functions which
are robust against outliers in the training set. The comparison
shows that different architectures of different sizes are optimal
for the different subprocesses. It should be noted that it is
concluded after this study that due to the extensive knowledge
discovery process and the derived preprocessing techniques,
only a low number of not excluded anomalies is still present
in the compaction phase. One indicator for that is the overall
low number of detected anomalies and the overall low anomaly
score of the subprocess.
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