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Abstract—Binary feature descriptors have been widely used in
various visual measurement tasks, particularly those with limited
computing resources and storage capacities. Existing binary de-
scriptors may not perform well for long-term visual measurement
tasks due to their sensitivity to illumination variations. It can
be observed that when image illumination changes dramatically,
the relative relationship among local patches mostly remains
intact. Based on the observation, consequently, this study presents
an illumination-insensitive binary (IIB) descriptor by leveraging
the local inter-patch invariance exhibited in multiple spatial
granularities to deal with unfavorable illumination variations.
By taking advantage of integral images for local patch feature
computation, a highly efficient IIB descriptor is achieved. It
can encode scalable features in multiple spatial granularities,
thus facilitating a computationally efficient hierarchical matching
from coarse to fine. Moreover, the IIB descriptor can also apply
to other types of image data, such as depth maps and seman-
tic segmentation results, when available in some applications.
Numerical experiments on both natural and synthetic datasets
reveal that the proposed IIB descriptor outperforms state-of-the-
art binary descriptors and some testing float descriptors. The
proposed IIB descriptor has also been successfully employed in
a demo system for long-term visual localization. The codé€’| of the
IIB descriptor will be publicly available.

Index Terms—Binary descriptors, illumination-insensitive de-
scriptors, light invariant descriptors, low-level features, visual
measurement.

I. INTRODUCTION

EATURE point descriptors could provide precise corre-

spondences between different images of the same scenes.
They lay the foundation for a wide range of visual measure-
ment tasks, including localization [[1]], odometry [2], simultane-
ous localization and mapping (SLAM) [3]], three-dimensional
reconstruction [4], and servoing systems [5]. In these tasks,
feature points are first detected by using predefined operators
[6]-[8]] or learning policies [9]-[11]]. Then, the neighborhood
pixels, called point region of support (ROS), around feature
points are used to form corresponding feature descriptors [6]—
[8]], [12]-[21]], which can be viewed as the signature of feature
points. Feature descriptors should be compact, distinctive, and
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Fig. 1. The example demonstrates the key observation in the IIB descriptor.
When image illumination changes dramatically, the relative relationship
among local patches mostly remains intact. Taking the channel for pixel
intensity as an example, let @ (denoted as [z1,z2,x3,24]) be the average
pixel intensity of the corresponding local patches. For point A and point
B in the same location of pictures with different illumination conditions,
although each value in a with respect to point B is larger than that
associated with point A, the relative relationship regarding x (denoted as

— mean(x),t = 1,2,3,4) mostly remains intact, i.e., the corresponding
descriptor bits for both points (A and B) are exactly the same as ”0110” and
71010 for the channels of pixel intensity and horizontal gradient magnitude,
respectively. Note that O represents that ] has a value smaller than zero,
while 1 represents that x, has a value larger than zero.

computationally efficient to facilitate processing, such as in
feature matching [22].

Feature descriptors can be classified into float and binary
descriptors. As the term suggests, float and binary descriptors
are expressed using float and binary bit vectors, respectively.
Compared with float descriptors [6]—[11]], [23[], [24], binary
descriptors [12]-[21] have attracted increasing attention in
visual measurement tasks because of their excellent storage
and computation efficiency. They are more suitable for sys-
tems and platforms with limited computation and storage
resources, such as mobile phones, drones, and robots. In
addition, considering feature descriptor matching, descriptor
similarity can be calculated using Hamming distanceE| for
binary descriptors, which is computationally more efficient

Zhttps://en.wikipedia.org/wiki/Hamming_distance
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Fig. 2. Formulation mechanism of the proposed IIB descriptor. (a) Feature
point with corresponding ROS in a test image. (b) Multiple channels of image
data (i.e., pixel intensity C;,, horizontal & vertical gradient magnitudes Cg &
CY, and gradient orientation C3)- (c) Local patches split by a quadtree with
multiple spatial granularities in feature point ROS. (d) Binary bit formulation
based on the local inter-patch invariance. The IIB descriptor with binary bits d
has long-term matching capability because the mapping function f(x) on the
quadruple of local patches can effectively exploit the relative illumination-
insensitive relationship among them. The z;,7 = 1,2,3,4 is the average
image data value in the corresponding local patch, which can be calculated
efficiently by integral images.

than Euclidean distanceE| for float descriptors.

Binary descriptors use fewer bits to encode feature points,
indicating that they lose some information, and more trunca-
tion errors are introduced. Generally, in terms of performance,
they are mediocre compared with float descriptors, particularly
when image illumination changes considerably, which is a gen-
eral case of long-term visual measurement tasks. As mentioned
in [25]], problems still exist in illumination-insensitive image
feature detection, description, and matching for many long-
term visual measurement tasks.

This study proposes an illumination-insensitive binary
(IIB) descriptor based on the local inter-patch invariance
presented in multiple spatial granularities to address the
feature description and matching problems under drastic
illumination variations. Fig. [2| depicts the formulation mech-
anism of the proposed IIB descriptor. As shown in Fig. [
existing binary descriptors generally use pairs of sampled
points [14], [15], or sampled local patches [12], [13],
in feature point ROS to form descriptors. Instead, the
quadruple inter-patch invariance of all local patches in feature
point ROS is used to formulate the IIB descriptor. As shown
in Fig. [T, when image illumination changes drastically, the
image appears brighter or darker entirely. However, the relative
relationship among local patches in feature point ROS mostly
remains intact. The relative relationship among local patches

3https://en.wikipedia.org/wiki/Euclidean_distance
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Fig. 3. Examples of matched points using mutual brute-force matching of the
AKAZE binary descriptor (top row) and proposed IIB descriptor (bottom
row) for test images with similar (first column) and poles apart (second
column) illumination conditions. Fig. |§| shows more visual comparisons.

can be exploited by analyzing their local inter-patch invari-
ance, which is critical for the illumination-insensitive ability
of the IIB descriptor.

The local inter-patch invariance is collected hierarchically
in multiple spatial granularities to encode feature points from
coarse to fine, as shown in Fig. [2| (c). This formulation
mechanism can be used to perform computationally efficient
hierarchical matching from coarse to fine instead of brute-
Jorce matching by assuming that two IIB descriptors are
similar only if their binary bits in each granularity are similar.

The proposed IIB descriptor is scalable. By default, pixel
intensity and gradients (i.e., gradient orientation and horizontal
& vertical gradient magnitudes) of gray images serve as
channels for the IIB descriptor formulation. As shown in Fig[5]
other types of image data, which are essentially illumination-
insensitive, can be used as additional channels to enhance
the performance of the IIB descriptor if available in specific
visual measurement tasks. Examples of these image data could
be depth, texture [26]], and semantic segmentation maps from
other sensors and algorithms.

Numerical experiments on both natural and synthetic
datasets show that the proposed IIB descriptor outperforms
other state-of-the-art (SOTA) binary descriptors and some
testing float descriptors. Fig. 3] shows visualization examples
of matched points using the AKAZE and IIB descriptors.
The corresponding fast hierarchical matching policy can sig-
nificantly reduce matching costs compared with the brute-force
matching policy while maintaining competitive performance.
Using additional channels of image data can further improve
the performance of the IIB descriptor if available in specific vi-
sual measurement tasks. The IIB descriptor is highly efficient
because of the usage of integral images [27], particularly
when the rotation of point features is not considered, which
is a general case for many visual measurement tasks, e.g.,
visual SLAM for robots.

The contributions of this paper are summarized as follows.

1) This study proposes an illumination-insensitive binary
descriptor by leveraging the local inter-patch invariance
exhibited in multiple spatial granularities to deal with
unfavorable illumination variations. It is based on the
observation that when image illumination changes dra-
matically, the relative relationship among local patches
mostly remains intact.



2) The IIB descriptor can encode feature points in multiple
spatial granularities, thus facilitating a computationally
efficient hierarchical matching from coarse to fine.

3) The IIB descriptor is scalable and can be extended using
additional image data if available.

4) Numerical experiments reveal the superiority of the IIB
descriptor over other state-of-the-art descriptors in terms
of both extraction efficiency and performance.

The remainder of this paper is organized as follows. Section
introduces related work, particularly those SOTA binary
descriptors. Section[[Tl|describes the proposed IIB descriptor in
detail. Section [[V| presents numerical experiments and related
discussions, where the proposed IIB descriptor is compared
with some SOTA binary and float descriptors from multiple
aspects using natural and synthetic datasets. Section [V]presents
a demo system for long-term visual localization in visual mea-
surement using the proposed IIB descriptor. Finally, Section
[V1l summarizes the conclusion.

II. RELATED WORK

As mentioned in Section [, many binary descriptors have
been proposed over the past two decades. A comprehensive
review of these studies is beyond the scope of this study.
Here, only related SOTA representations, particularly those
integrated into OpenCVﬂ and used for the comparison in this
study, are briefly reviewed. Please refer to [28]-[30] for more
reviews of binary descriptors.

The binary robust independent elementary feature (BRIEF)
[14] is the most representative binary descriptor. The following
binary descriptors are based on it, to an extent. As shown
in Fig. ] (a), pairs of sampled points in feature point ROS
obeying a particular distribution around feature points are first
selected in the BRIEF descriptor. The intensities of these pairs
of sampled points are then compared to formulate binary
descriptors. Because the BRIEF descriptor is not rotation-
invariant, Rublee et al. proposed the steered BRIEF descriptor
[21] based on the orientation in feature point ROS. With
orientated features from accelerated segment test (FAST) [31]],
the combined feature is called oriented FAST and rotated
BRIEF (ORB) [21] feature, which is widely used in visual
measurement systems, e.g., visual SLAM [32] systems. In
binary robust invariant scalable keypoints (BRISK) [15]], sam-
pled points lying on scaled concentric circles of feature points
are selected to construct the BRISK descriptor, exhibiting
remarkable performances on the benchmark [33]]. Alahi et
al. proposed a fast retina keypoint (FREAK) [17]] descriptor,
which was inspired by the human visual system and formu-
lated based on retinal sampled points.

Generally, to make descriptors insensitive to noise, the
information on sampled points is smoothed with a Gaussian
kernel [[14], [[15], [17], [21]], which can improve the robustness
of descriptors to an extent. In [[19]], the authors proposed a local
difference binary (LDB) descriptor, in which pairs of sampled
patches in feature point ROS instead of sampled points are
used to construct a binary descriptor. With the help of an
integral image [27]], the computational efficiency is remarkable

“https://opencv.org/
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Fig. 4. (a) Two pairs of sampled points in the BRIEF descriptor; (b) Two
pairs of sampled local patches in the BEBLID descriptor; (c) Local patches
at the first and second granularities in the proposed IIB descriptor. Compared
with the first two descriptors using only sampled image data in feature point
ROS, the proposed approach leverages all image data in corresponding ROS.
In addition, instead of using pairs of sampled points and local patches shown
in (a) and (b), quadruples of local patches are used in the proposed approach
to better encode feature points.

compared with other descriptors, particularly when features are
upright. Alcantarilla et al. proposed a modified LDB descriptor
for the AKAZE feature [12], in which sampled patches are
sub-sampled again according to the scale of features. Except
for pixel intensity, orientated local gradients at multiple spatial
granularities are used to construct the descriptors in the LDB
[19] and AKAZE [12]. In boosted efficient binary local image
descriptor (BEBLID) [13]], a learned generation scheme for
pairs of sampled patches was introduced. Fig. f] (b) shows an
example of sampled patch pairs for the BEBLID descriptor.

The sampled points mentioned in [[14], [15]], [17], [21] are
generated according to handcrafted rules, such as a Gaus-
sian or uniform distribution. Some studies generated sampled
points/patches based on learning policies [13], [16[, [18].
Trzcinski et al. proposed BOOST [16], which is computed
using a boosted binary hash function. Instead of learning
pairs of sampled points, the descriptor based on learned
arrangements of three patch codes (LATCH) was proposed in
[18]. In [13]], the authors used BoostedSSC with an improved
weak-learner training strategy to form the BEBLID descriptor.
Similarly, AdaBoost has been used in the LDB descriptor [[19]
and the AKAZE feature [12]] to sample local patches.

Other studies have not depended on sampled points or
patches. In [20]], the authors proposed a descriptor based on
permutation distances of the ordering of RGB values. Some
deeply learned binary descriptors [34]—[37]] have recently been
proposed. Although some of them outperform SOTA hand-
crafted binary descriptors on their evaluation datasets, they
are not widely applied in visual measurement tasks because
of their high computational cost. Many of these methods are
hard to achieve real time feature extraction, even with the help
of GPU devices.

Compared to existing SOTA binary descriptors, e.g., the
AKAZE [12]], the IIB descriptor presents some improvements.
They are as follows: (1) instead of using pairs of sampled
local patches, all local patches split by a quadtree in multiple
spatial granularities of feature point ROS are used to construct
the IIB descriptor; (2) unlike using the binary comparison
based on pairs of sampled local patches, the local inter-patch
invariance is analyzed among every four local patches, which
exploits their relative relationship to reach the illumination-
insensitive characteristic of the IIB descriptor; and (3) the I1IB
descriptor can be extended using more channels of image data,
if available in specific visual measurement tasks, and can be



Algorithm 1 The IIB descriptor formulation procedure.
Input:
A test image Z € RW>*#H
Detected feature points p* € R**' k=1,2,..,K in T
Output:
Extracted IIB descriptors d* € {0,1}M*! bk =1,2, ... K

1: Obtain image data C € R"W > in N different channels,
e.g., C; shown in Fig. [2| based on the test image Z;
2: for k=1 to K do
3:  Obtain the ROS for feature point pk;
4:  Generate local patches in multi-spatial granularities g =
1,2, ..., G from the point ROS (Subsection [[II-A));
5:  for local patches in each granularity g do
: for image data C in each channel do
7: Calculate the IIB descriptor bits dé? according to
mapping functions f(x) based on image data C
(Subsection [[II-B));
8: end for
: end for
10:  Concatenate a series of the IIB descriptor bits dé?, j=
1,2, ..., M obtained in /N image channels and G spatial
granularities as the final descriptor vector d*;
11:  return dF
12: end for

Note: d* can be matched hierarchically (Subsection [[II-C) and
sampled optionally (Subsection [[TI-D})

matched using computationally efficient hierarchical matching
instead of brute-force matching.

III. IIB DESCRIPTOR

As shown in Fig. 2] the two critical formulation steps of the
[IB descriptor can be summarized as follows: (1) local patch
generation in feature point ROS and (2) binary bit formulation
according to the local patches generated. The local patch
generation mechanism can be further analyzed to perform fast
hierarchical matching instead of brute-force matching. Binary
bit formulation can be performed using multiple channels of
image data and extended using additional image data, such
as depth maps for visual measurements. Algorithm [I] shows a
procedure for the IIB descriptor formulation.

A. Local Patch Generation

The local patches of the IIB descriptor are generated ac-
cording to a recursive quadtree split in feature point ROS,
which may be rotated according to feature point orientations
if they are considered. In particular, each local patch in the
current granularity is equally split into four local mini-patches
in the next granularity with more fine-grained features. Fig. 2]
(c) and Fig. [ (c) show examples in which the local patches
of the first granularity are generated by equally splitting
the feature point ROS, and four mini-patches for each local
patch are generated by splitting it again into the second
granularity. Local patches with a larger granularity can be

pixel intensity

gradient orientation semantic segmentation

horiz. gradient magnitude vertical gradient magnitude
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Fig. 5. Image data for the IIB descriptor formulation, in which the channels
of pixel intensity and related gradients (i.e., gradient orientation and hori-
zontal & vertical gradient magnitudes) are default, as in [38]], and semantic
segmentation and depth maps are optional.

created in the same manner. The number of local patches at
each granularity is 49,9 = 1,2, 3, ..., G, where g denotes the
level of granularity and, G is the maximal level of granularity.
Using the process described above, local patches with
multiple granularities correspond to different local patch sizes.
The ones with large patch sizes (coarse granularity) could
represent more general features by using fewer descriptor
bits, while the ones with small patch sizes (fine granularity)
consider more detailed features by employing more descriptor
bits. Local patches at multiple granularities can be used to
encode feature points from coarse to fine, which is critical for
the fast hierarchical matching described in Subsection

B. Binary Bit Formulation

Existing binary descriptors generally use pairs of sampled
points or local patches in feature point ROS to construct
descriptors. In contrast, the inter-patch invariance among every
four local patches exhibited in multiple spatial granularities of
feature point ROS is used to formulate the IIB descriptor. In
particular, as shown in Fig. [2] (¢) and (d), four nonoverlapped
local patches in the neighborhood are used to calculate the
IIB descriptor bits according to the mapping function f(x),
where x (denoted as [r1,x2,3,24]) is the average value
of pixel intensity or gradient features in corresponding local
patches. As shown in Fig. 5} « can also be the average value
of additional image data, such as from semantic segmentation
results and depth maps for visual measurements. Using four
overlapped local patches can theoretically improve the IIB
descriptor performance to an extent. However, the descriptor
size would be significantly increased.

The mapping function f(x) fully exploits the relative rela-
tionship among local patches in the neighborhood to make the
descriptor robust to illumination variations. It is based on the
assumption that when image illumination changes drastically,
the relative relationship among local patches in feature point
ROS mostly remains intact. Five mapping functions f(x), in
which « is computed using integral images [27]], were intro-
duced and compared experimentally. They can be described
as follows, where « is the vector of x;,7 = 1,2, 3,4.

1) Mean Mapping:

. {1’
0,

x; > mean(x) 0

otherwise



This straightforward and effective mapping rule is recom-
mended/default mapping function. The mean mapping of pixel
intensity can directly indicate which local patches in the
neighborhood are brighter or darker. It can also report which
local patches in the neighborhood include more structured
features using image gradients. In addition, mean(x) can be
obtained directly from the previous granularity, and computing
them again is unnecessary.

2) Max/Min Mapping: Similar to the mean mapping, in
max/min mappings, the x; > mean(x) for mean mapping
is replaced by x; = maxz(x) for mar mapping and x; =
min(x) for min mapping.

3) Quartile Mapping:
maz(x) — min(x). Then,

In quartile mapping, let R =

11, x; — min(x) > 0.75R
i — 10, 0.5R < x; — min(x) <= 0.75R )
" )01, 0.25R < x; —min(x) <= 0.5R

00, Otherwise

The quartile mapping can be viewed as an extension of the
mean mapping as it uses two bits to encode d;.

4) Sort Mapping: In sort mapping, x is sorted first. Then,
similar to quartile mapping, two bits are used to encode d;
according to their order of x;.

C. Fast Hierarchical Matching for the IIB Descriptor

According to the IIB descriptor formulation mechanism,
binary bits increase exponentially with increasing granular-
ity. The IIB descriptor size is N X Z?Zl 49, where G is
the maximal level of granularity, and N is the number of
image data channels. Performing brute-force matching of two
sets of the IIB descriptors involves massive bit comparisons.
Because the IIB descriptor is constructed in multiple spatial
granularities of feature point ROS, which encodes feature
points from coarse to fine, two IIB descriptors are similar
only if their binary bits in each granularity are similar. The
binary bits of the IIB descriptor with low granularity can be
first compared to reduce matching costs and eliminate many
dissimilar descriptors. The remaining parts use binary bits with
high granularity to perform precise matching. In particular,
only descriptor pairs with a Hamming distance smaller than
a certain percentage of bit numbers in current granularity are
further delivered to the following granularity for comparison.

D. Reduction of the IIB Descriptor Size (Optional)

As aforementioned, the IIB descriptor can be customized in
multiple spatial granularities and image data channels. The size
of the IIB descriptor changes according to these parameters.
Therefore, an intuitive manner of reducing the IIB descriptor
size is to choose an economic parameter combination scheme,
such as using less granularity and image data channels.

Inspired by other SOTA methods [12], [13]l, [[19], another
alternative is to perform sampling for the quadruple of local
patches (shown in Fig. (c)) based on machine learning
techniques instead of using all of them. Here, Adaboost [39]]
was used to learn the weight of these quadruples, which can

be further analyzed in the sampling process. The quadruples
of local patches with top-M weights, where M is the desired
size, were used to calculate the IIB descriptor.

IV. NUMERICAL EXPERIMENTS

The performance of the proposed IIB descriptor was thor-
oughly evaluated on both natural and synthetic datasets from
multiple aspects to demonstrate its superiority over popular
descriptors, which are widely used in many visual measure-
ment tasks. In particular, various SOTA OpenCV integrated
feature descriptors were compared with the proposed IIB
descriptor because these descriptors have been widely veri-
fied and validated both in academia and industry for visual
measurement applications. These compared descriptors were
BEBLID [13], ORB [_21]], BRISK []15], BOOST [16]], BRIEF
[14], LATCH [18], AKAZE [12], FREAK [17]], SIFT [6],
SUREF [7]], and KAZE [8]. In addition, some deep learning-
based methods, including a binary descriptor called L2-Net
[34] and three float descriptors, SUPERPOINT [9]], ASLFEAT
[10], and ALIKE [11]], were also considered in numerical
experiments to demonstrate the superior performance of the
[IB descriptor.

A. Datasets and Metrics

Comparisons were conducted on both natural and synthetic
datasets. The natural dataset comprised 906 test images with
illumination variations extracted from the VggAffine [33],
HPatches [40], and Webcam [41]] datasets. The synthetic
dataset comprised 2087 test images with illumination varia-
tions selected from the Apollo Synthetic datasetﬂ Furthermore,
related depth and semantic segmentation images were provided
in the synthetic dataset, which was used to further validate the
scalability of the IIB descriptor. The homography matrices for
all testing image pairs were available to provide point-to-point
correspondences, as described in [33].

The precision and recall defined in the benchmark [33]]
were adopted as the principal criteria, which are widely used
for evaluation purposes in visual measurement tasks. They
were formulated as follows

F£correct matches

precision =

3)

#putative matches’

and
#correct matches

4)

recall =

#correspondences’

The two descriptors are considered a putative match only when
they are the mutual best match for each other using brute-force
matching. A putative match is considered a correct match only
when the corresponding two points satisfy geometry validation
according to the homography matrix [33[]. The definition of
correspondence is given in [33]].

Both feature descriptors and detectors influence the
precision and recall metrics. For all experiments, the pa-
rameters of feature detectors were the same for compared
descriptors to eliminate the influence of feature detectors and
only consider the performance of feature descriptors.

Shttps://apollo.auto/synthetic.html



TABLE I
mAP, mAR, AND DESCRIPTOR SIZE OF THE IIB DESCRIPTORS WITH
DIFFERENT IMAGE DATA CHANNELS, IN WHICH THE C;’, Cg, Cg, AND C;',
DENOTES THE HORIZONTAL GRADIENT MAGNITUDE, VERTICAL
GRADIENT MAGNITUDE, GRADIENT ORIENTATION, AND PIXEL
INTENSITY, RESPECTIVELY.

Descriptor Natural dataset Synthetic dataset Descriptor

mAP mAR mAP mAR size (bits)
1IB-CY 0.8282 | 0.6568 | 0.8365 | 0.6382 340
IIB-C;c 0.8391 0.6678 | 0.8318 | 0.6365 340
1IB-C;, 0.8303 | 0.6710 | 0.7818 | 0.5709 340
1IB-C{ 0.7417 | 0.5896 | 0.7570 | 0.5681 340
IIB—(C;+C;) 0.8596 | 0.7232 | 0.8425 | 0.6553 680
IIB-(C;+C§) 0.9012 | 0.7515 | 0.9008 | 0.7275 680
IIB-(C7+CH+C)) 09134 | 0.7918 | 0.9129 | 0.7465 1020
1IB-(C+CY+Cy) 0.9181 0.7863 | 0.9188 | 0.7644 1020
IIB-(C;+C'§+C;+C;) 0.9187 | 0.8041 | 0.9210 | 0.7655 1360

The level of granularity is 4.

In addition to precision and recall metrics, to evaluate
fast hierarchical matching for the IIB descriptor, the match
cost was defined as MC' = Npicrarchical / Norute— force, Where
Nhierarchical and Npryie— force are the numbers of descriptor
bit comparisons of fast hierarchical matching and brute-force
matching strategies, respectively.

B. Parameter Settings of the IIB Descriptor

According to the IIB descriptor mechanism, some critical
parameters significantly affect the performance of the IIB
descriptor. They were determined based on the experimental
configuration described in Subsection [[V-C|

1) Choice of Image Data Channels: As mentioned in
Subsection [[II-B] multiple image data channels can be used to
construct the IIB descriptor. TABLE [[| lists the mean average
precision (mAP), mean average recall (inAR), and descriptor
sizes of the IIB descriptors with different image data channels.
When considering single channels, the C; or CZ channels
outperform the C; and C; channels. Both pixel intensity
(C;) and related gradients (i.e., gradient orientation CZ and
horizontal & vertical gradient magnitudes C; & C¥ in TABLE
) were used to construct the IIB descriptor by default.

The proposed IIB descriptor is scalable. More illumination-
insensitive image data can be used to further improve the
IIB performance. Fig. [6] shows two examples of this, in
which two IIB descriptors extended using depth and semantic
segmentation data are compared with the standard IIB descrip-
tor. Evidently, using additional image data can improve the
performance of the IIB descriptor, particularly for the recall
metric.

2) Choice of Mapping Function f(x): As mentioned in
Subsection [II-B] in the framework of the IIB descriptor,
different mapping functions f(x) can formulate diverse 1B
descriptors. TABLE lists the mAP, mAR, and descriptor
size of the IIB descriptors with five mapping functions f(x)
mentioned in Subsection The results show that the
recommended mean mapping function is best in summary.
It is also the default mapping function of the IIB descriptor.
Although the quartile mapping function slightly outperforms
the mean mapping function, it requires twice of descriptor size
compared with the mean mapping function.
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Fig. 6. Performance comparison of the IIB descriptors with additional image
data, in which the level of granularity is 4. The results show that the IIB
descriptor is scalable.

TABLE I
mAP, mAR, AND DESCRIPTOR SIZE OF THE IIB DESCRIPTORS
WITH FIVE MAPPING FUNCTIONS f(x).

Descriptor Natural dataset Synthetic dataset Descriptor
mAP mAR mAP mAR size (bits)
1IB-mean 0.9187 | 0.8041 0.9210 | 0.7655 1360
I1B-max 0.8639 | 0.7270 | 0.8568 | 0.6771 1360
1IB-min 0.8629 | 0.7238 | 0.8584 | 0.6787 1360
1IB-quartile | 0.9270 | 0.8139 | 0.9314 | 0.7796 2720
1IB-sort 09148 | 0.7948 | 0.9122 | 0.7529 2720

The level of granularity is 4.

3) Overlap vs. Nonoverlap Mapping: As mentioned in
Subsection and Fig. [] (c), every nonoverlapped four
local patches in the neighborhood are used to calculate bits
for the IIB descriptor by default. Using four overlapping local
patches in the neighborhood can improve the performance
of the IIB descriptor to an extent, as shown in TABLE
M However, the descriptor size will significantly increase.
Therefore, nonoverlapped mapping is recommended setting for
IIB descriptor formulation.

4) Choice of Granularity: As mentioned in Subsection
the IIB descriptor is formulated in multiple granular-
ities of feature point ROS. The IIB descriptor with a larger
granularity performs better, as shown in TABLE [IV] However,
the descriptor size increases exponentially. To balance the
descriptor size and performance, the recommended granularity
for the IIB descriptor was empirically set to 4, which is
the acceptable descriptor size for many visual measurement
applications, such as in SLAM [32]. However, it can be
adjusted according to specific visual measurement tasks in
practice.

5) Fast Hierarchical vs. Brute-force Matching: As men-
tioned in Subsection [[II-C| the IIB descriptor formulation
mechanism can be used to perform coarse to fine fast hierar-
chical matching. Fig. [/| shows the performance and matching
cost (MC) of brute-force and fast hierarchical matching with
different thresholds for the IIB descriptor. With decreasing
thresholds, the match cost decreases. However, the correspond-

TABLE III
mAP, mAR, AND DESCRIPTOR SIZE OF THE IIB DESCRIPTORS
WITH OR WITHOUT OVERLAP MAPPING.

Descriptor Natural dataset Synthetic dataset Descriptor
mAP mAR mAP mAR size (bits)
IIB-nonoverlap | 0.9187 | 0.8041 0.9210 | 0.7655 1360
1IB-overlap 0.9269 | 0.8180 | 0.9326 | 0.7872 4544

The level of granularity is 4.



(NP iR v |

mAP, mAR, and MC of the 1IB descriptors with different matching policies in the natural dataset.

I I I

IIHII |

0
Brute-force H-t-1/8 H-t-2/8 H-t-3/8 H-t-4/8 H-t-5/8 H-t-6/8 H-t-7/8
| mAP, mAR, and MC of the IIB descriptors with different matching policies in the synthetic dataset.
I I I I I —
Brute-force H-t-1/8 H-t-2/8 H-t-3/8 H-t-4/8 H-t-5/8 H-t-6/8 H-t-7/8

Fig. 7. Performance of brute-force matching vs. fast hierarchical matching with different thresholds for the IIB descriptor on natural and synthetic datasets,
where H-t-* indicates hierarchical matching with thresholds of * X descriptor size in each granularity.

TABLE IV
mAP, mAR, AND DESCRIPTOR SIZE OF THE IIB DESCRIPTORS WITH
DIFFERENT GRANULARITIES.

Descriptor Natural dataset Synthetic dataset Descriplor
mAP mAR mAP mAR size (bits)
1IB-g2 0.5764 | 0.3902 | 0.5453 | 0.3502 80
1IB-g3 0.8368 | 0.6808 | 0.8163 | 0.6129 336
1IB-g4 09187 | 0.8041 | 0.9210 | 0.7655 1360
1IB-g5 0.9414 | 0.8368 | 0.9473 | 0.8251 5456

ing performance will be degraded accordingly. In practice, a
trade-off between matching cost and performance for the IIB
descriptor should be attained.

6) Reduction of Descriptor Size Using Adaboost Weights:
As mentioned in Subsection [[II-D} instead of controlling
relative parameters for the IIB descriptor size reduction shown
in TABLE[[ to TABLE [[V] an alternative method is to sample
the quadruple of local patches to save the IIB descriptor size
based on machine learning techniques. Here, the default IIB
descriptors extracted from two-thirds of images in the natural
dataset were used to construct the learning dataset, which
is a typical binary classification dataset with a 1:1 ratio of
positive to negative samples. The learning dataset was used
to train the AdaBoost classifier, in which the weights of the
quadruple of local patches can be learned accordingly. The
learned weights for the quadruple of local patches were used to
perform the sampling process for the IIB descriptor. As shown
in TABLE [V] the sampling scheme based on learned weights
can significantly reduce the descriptor size while maintaining
the performance of the IIB descriptor competitively.

C. Experiments Using Predefined Feature Points with ROS

Inspired by [40]], various feature points were first extracted
from the reference image and then projected onto the test im-
age according to corresponding homography matrices. Thus,
every feature point in the reference image has a precise

TABLE V
mAP, mAR, AND DESCRIPTOR SIZE OF THE IIB DESCRIPTORS
WITH OR WITHOUT SAMPLINGS OF LOCAL PATCHES USING

ADABOOST.
Descriptor Natural dataset Synthetic dataset Descrigtor
mAP mAR mAP mAR size (bits)
1IB-s128 0.7060 | 0.5328 | 0.6611 0.4640 128
1IB-s256 0.8221 0.6590 | 0.7837 0.5816 256
1IB-s512 0.8775 0.7388 | 0.8594 | 0.6706 512
1B 0.9157 | 0.8005 | 0.9173 | 0.7556 1360

The level of granularity is 4.

correspondence with the test image. Because these predefined
feature points with ROS are the same for all descriptors,
the effect of feature detectors can be excluded, and only the
performance of descriptors was considered in experiments.

Here, the FAST corners were chosen to generate
seed points for descriptor calculation. One thousand FAST
corners were sampled uniformly in the reference image and
then projected onto the test image according to corresponding
homography matrices. The scale and orientation of all corners
were not considered to eliminate the effect of feature scale
and orientation estimation errors. Neighborhood pixels with a
radius of 32 around the seed points were considered feature
point ROS and used to construct feature descriptors. Nine
SOTA binary descriptors, eight OpenCV-integrated and one
deep learning-based descriptors, were compared in experi-
ments. They are ORB [21]}, BRISK [15], BOOST [16], BRIEF
[14], LATCH [18]], AKAZE [12], FREAK [17], BEBLID
[13]], and L2-Net [34]. Note that, unless stated otherwise, the
parameters of compared descriptors were set to default values
as suggested in corresponding references or in OpenCV.

Fig. [§] visualizes the matched points using eight existing
binary descriptors and the proposed IIB descriptor using
mutual brute-force matching strategy. Intuitively, the inlier cor-
respondences of the IIB descriptor are much denser than those
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Fig. 8. Matched points (sampled using a ratio of 10 for better visualization) on nature test images (the first and second columns) and synthetic test images
(the third column) based on different binary descriptors.



TABLE VI
mAP, mAR, AND DESCRIPTOR SIZE OF FOUR IIB DESCRIPTORS
vs. VARIOUS SOTA BINARY DESCRIPTORS.

Descriptor Natural dataset Synthetic dataset Descriptor

mAP mAR mAP mAR size (bits)
11B 0.9187 | 0.8041 0.9210 | 0.7655 1360
1IB-(C_+CY) 680
1IB-s512 512
1IB-g3 336
ORB 0.6096 | 0.4193 | 0.5737 | 0.3622 256
BRISK 0.4138 | 0.2537 | 0.3708 | 0.2178 512
BEBLID-256 0.7697 | 0.5756 | 0.7283 | 0.4824 256
BEBLID-512 0.7914 | 0.5951 0.7514 | 0.4990 512

BOOST-64 0.3645 0.2184 | 0.3681 0.2107 64

BOOST-128 0.5375 0.3546 | 0.5194 | 0.3150 128
BOOST-256 0.6499 | 0.4553 | 0.6389 | 0.4054 256
BRIEF-128 0.5480 | 0.3664 | 0.5166 | 0.3193 128
BRIEF-256 0.5968 | 0.4068 | 0.5634 | 0.3505 256
BRIEF-512 0.6215 0.4272 | 0.5860 | 0.3657 512
LATCH-128 0.5878 | 0.4091 0.5397 | 0.3423 128
LATCH-256 0.6599 | 0.4682 | 0.6202 | 0.3956 256
LATCH-512 0.7082 | 0.5112 | 0.6748 | 0.4364 512
AKAZE-128 0.5698 | 0.4109 | 0.5251 0.3599 128
AKAZE-256 0.6491 0.4901 0.6043 | 0.4302 256
AKAZE-488 0.6922 | 0.5342 | 0.6545 | 0.4706 488
FREAK 0.6120 | 0.4216 | 0.4791 0.2769 512
L2-Net-HP 0.7265 0.5245 | 0.6890 | 0.4398 512
L2-Net-LIB 0.7253 0.5239 | 0.6963 | 0.4349 512
L2-Net-ND 0.7214 | 0.5180 | 0.6962 | 0.4334 512
L2-Net-YOS 0.7057 | 0.4923 | 0.6596 | 0.4054 512

Colored values are the top four performance rankings.

of other descriptors, which shows the remarkable performance
of the IIB descriptor qualitatively in terms of feature matching
under drastic illumination variations. TABLE reports the
quantized comparison results, in which IIB descriptors with
different configurations are compared with nine SOTA binary
descriptors. Evidently, the IIB descriptor outperformed other
descriptors in terms of mAP and mAR, followed by the
BEBLID and L2-Net descriptors. Even for the IIB-g3 and IIB-
8512 descriptors with sizes similar to other descriptors, they
show superiority over other SOTA descriptors.

D. Experiments Combined with Feature Detectors

Because descriptors are always used with specific feature
detectors, the IIB descriptor was adapted with nine well-
known feature detectors inspired by [13|] and compared with
corresponding feature descriptors. In experiments, the detected
points were the same for the IIB descriptor and compared
descriptors to eliminate the influence of feature detectors.

The nine well-known feature suits were AKAZE [12],
ORB [21], BRISK [15], SIFT [6], SURF [7], KAZE [8],
SUPERPOINT [9]], ASLFEAT [10], and ALIKE [11]]. The
descriptors were binary for ORB, AKAZE, and BRISK, float
for SUREF, SIFT, and KAZE, and deep learning-based float for
SUPERPOINT, ASLFEAT, and ALIKE. All descriptors were
upright to eliminate the effect of feature orientation estimation
errors. The parameters of nine feature suits were default values
recommended by OpenCV or by the author’s implementation.

Similar to the BEBLID descriptor integrated into OpenCYV,
to adapt the proposed IIB descriptor to these feature detectors,
the feature point ROS of the IIB descriptor was rescaled for
these feature detectors. The rescaled factors were 12, 2, 4,
20, 20, and 4 for the AKAZE, ORB, BRISK, SIFT, KAZE,
and SURF feature detectors, respectively. The radii of feature

TABLE VII
COMPUTATIONAL COMPLEXITY COMPARISON BETWEEN THE PROPOSED
IIB DESCRIPTOR AND THE ULTRAFAST AKAZE/LDB DESCRIPTORS,
WHERE M 1S THE INTENDED DESCRIPTOR SIZE.

Method No. of algebraic operations No. of relational operations
AKAZE/LDB 6 X M M
1B 4x M M

ROS for SUPERPOINT, ASLFEAT, and ALIKE were set
to 64 pixels. The correctly matched numbers, recall, and
1 —precision curves with different matching thresholds, as in
[15]], were plotted to demonstrate the performance.

Fig. [9] and Fig. show performance comparisons of the
IIB descriptors with nine feature suits on natural and synthetic
datasets, respectively. Evidently, the IIB descriptor shows an
overwhelming advantage over other descriptors, even for float
descriptors and deep learning-based float descriptors.

E. Computational Cost of the IIB Descriptor

The computational cost for the key component of the 1IB
descriptor is analyzed in this subsection, referring to [42].
Regarding the key component, i.e., binary descriptor bit formu-
lation, each IIB descriptor requires 4 x M basic algebraic op-
erations and M relational operations, where M is the intended
descriptor size. The proposed IIB descriptor demonstrates
competitive extraction efficiency compared to the ultrafast
AKAZE/LDB descriptors, as indicated in TABLE How-
ever, the memory requirement of the IIB descriptor is slightly
higher than that of the memory-economic AKAZE/LDB de-
scriptor because the IIB descriptor requires four channels of
image data by default, while the AKAZE/LDB descriptor
requires three instead.

In many visual measurement applications, descriptors do not
require rotation invariance, rendering the computational com-
plexity of the IIB descriptor inconsequential due to the usage
of an integral image for all feature points. However, when
the rotation invariance of the IIB descriptor is considered, the
computational complexity increases due to re-computing the
integral image for each rotated feature point ROS.

F. Discussion of Experimental Results

The experimental results demonstrate that the IIB descriptor
outperforms other SOTA binary and float descriptors in the de-
signed experiments. Moreover, it offers competitive computa-
tional efficiency, even compared to the ultrafast AKAZE/LDB
descriptors. The superior performance of the IIB descriptor is
due to its ability to encode the illumination-invariant char-
acteristic effectively. Specifically, the quadruple inter-patch
invariance among local patches in multiple spatial granularities
is a key factor to achieve this feature.

It has been reported that deep learning-based descriptors
have shown powerful feature representation ability. In addition
to comparing the illumination-insensitive ability of descrip-
tors, the IIB descriptor offers three additional key merits
over deep learning-based descriptors. (1) Deep learning-based
methods require abundant and carefully labeled data covering
images under different lighting conditions that are difficult
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to obtain in practice. Instead, the proposed IIB descriptor
has no requirement for such training data and still achieves
excellent illumination insensitivity, making the IIB descriptor
an attractive option for scenarios where acquiring labeled data
is difficult or impractical. (2) Deep learning-based methods
usually require powerful hardware configurations and GPU
devices. Instead, the proposed IIB descriptor can be effec-
tively applied in resource-constrained systems and platforms.
(3) Deep learning-based methods typically require extensive
computational resources and are challenging to execute in real
time, even with the assistance of GPU devices. Instead, the
efficiency of the IIB descriptor is competitive with the ultrafast
AKAZE/LDB descriptors due to the usage of integral images.
The merits of (2) and (3) make the IIB descriptor a practical
and versatile solution for a wide range of applications, espe-
cially for those with limited resources.

V. APPLICATION FOR LONG-TERM VISUAL LOCALIZATION

In this study, the proposed IIB descriptor was used to per-
form a typical visual measurement task, i.e., long-term visual
localization in [43]] based on the Ford AV dataselﬁ] (route “Log
5”). The major challenge is the drastic illumination variations
of image data. The dataset included seasonal images of the
same roads recorded in different months. A visual localization
database was created using images recorded in August. Visual
localization was performed using images recorded in October
by matching image features with those in the pre-built visual
localization database.

In the visual localization system, the ORB [21]] and AKAZE
[12] point features with IIB descriptors and the line feature
[44] with descriptors [45] were used to perform robust match-
ing between the test image and the pre-built visualization
localization database. The localization system with the IIB
descriptor has a centimeter-level positioning accuracy and
high orientation accuracy. This is a remarkable performance
compared with other SOTA methods. TABLE lists some
examples, in which IMU, GNSS, and WSS are the inertial
measurement unif’, global navigation satellite systenﬂ and
wheel speed sensorl’} respectively. The supplementary material
provides a video demonstration of the localization system
using the IIB descriptor.

VI. CONCLUSION AND FUTURE WORK

This study presented an illumination-insensitive descriptor
to address the feature point matching problem under drastic
illumination variations in the view of feature description.
The local inter-patch invariance exhibited in multiple spatial
granularities of feature point ROS was fully exploited to
encode feature points from coarse to fine, thus facilitating
computationally efficient hierarchical matching. Except for
pixel intensity and related gradient data of the gray image,
the proposed IIB descriptor can be extended by using ad-
ditional illumination-insensitive image data, such as depth,

Shttps://avdata.ford.com/
https://en.wikipedia.org/wiki/Inertial_measurement_unit
8https://en.wikipedia.org/wiki/Satellite_navigation
9https://en.wikipedia.org/wiki/Wheel_speed_sensor

TABLE VIII
REPORTED PERFORMANCE COMPARISON OF EIGHT CAMERA-BASED
LOCALIZATION SYSTEMS IN THEIR STUDIES.

Positioning Accuracy (Mean)
Method Inputs Lateral L(;gngitudinaly Altitude

Proposed Camera, IMU, DB Scm Scm 2cm
[ [46] Camera, DB 9cm 19cm 15cm
[ [47] | Camera, GNSS, WSS, IMU, DB | 4cm 17cm \
[ 48] Camera, GNSS, DB 30cm (two-dimensional) \
[ 49] Camera, WSS, GNSS, DB 12cm 43cm \
[ 150] Camera, WSS, DB Tem 73cm 6cm
[ [51] Camera, GNSS, WSS, IMU, DB | 58cm 143cm
ﬁSZ] Camera, GNSS, IMU, DB 73cm (three-dimensional)

- IMU means inertial measurement unit.
- GNSS means global navigation satellite system.
- WSS means wheel speed sensor.

texture, and semantic segmentation maps from other sensors
and algorithms. The IIB descriptor has an inconsequential
computational cost owing to the usage of integral images.
Numerical experiments show that the IIB descriptor performs
remarkably compared to SOTA binary descriptors and some
testing float descriptors and can be successfully employed in
a long-term visual localization system.

This study aims to design a highly efficient and
illumination-insensitive binary descriptor. Although the IIB
descriptor exhibits impressive performance in illumination
variance scenarios, it has a major limitation due to the omis-
sion of time-consuming processes, e.g., feature point ROS
normalization, to ensure excellent extraction efficiency. These
processes are essential for achieving viewpoint invariance. As
a result, the IIB descriptor may not perform optimally in sce-
narios with significant viewpoint variances, e.g., wide baseline
image matching [53]]. To address this, incorporating viewpoint
invariances through these processes could be explored in the
future, provided that efficiency requirements are met.
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