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FedBIP: A Federated Learning Based Model for
Wind Turbine Blade Icing Prediction

Dongtian Zhang, Weiwei Tian, Xu Cheng, Fan Shi, Hong Qiu, Xiufeng Liu, Shengyong Chen

Abstract—Prediction of icing on wind turbine blades is crucial,
particularly in high-latitude areas where ice accumulation is
a frequent occurrence. Traditional centralized data-driven ap-
proaches for predicting blade icing have demonstrated promising
performance, but they require a large amount of storage and
computational resources and may also raise concerns about data
privacy. Federated Learning (FL) presents a potential solution to
address these issues. These challenges include redundant features
in the collected data, a highly imbalanced data distribution
between normal and icing samples, and slow model convergence
during FL training. To tackle these challenges, we proposed
a novel FL model called FedBIP. FedBIP employs a feature
selection approach enhanced with human knowledge to select
relevant features, a segmentation-based oversampling method
to alleviate class imbalance, and a new aggregation method
that takes into account data size, timestamps, and offsets of
each participating client. In addition, knowledge distillation
is employed in the local model training to accelerate model
convergence and speed up the overall training process. The
results of comprehensive experiments demonstrate that FedBIP
outperforms state-of-the-art FL methods, aggregation methods,
and feature extractors. Ablation and sensitivity analysis were also
conducted to validate the importance of each component and key
parameters in FedBIP.

Index Terms—Federated learning, wind turbine, icing detec-
tion, class imbalance, model aggregation.

I. INTRODUCTION

W IND energy has the potential to play a significant role
in meeting the growing demand for clean energy due

to its abundance and lack of cost. In fact, it is the largest
contributor to the renewable energy category, alongside hy-
droelectric power [1]. However, wind farms are often located
in high-altitude areas with cold climates, which can lead to ice
accumulation on the blades of wind turbines during the winter
season. This can result in a loss of power generation and, in
some cases, a reduction of up to 30% in electricity production
over the course of a year [2]. In addition, ice accumulation on
wind turbines poses a safety risk to nearby facilities. As such,
predicting and addressing icing on wind turbines has become
an important area of research.
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There are three main approaches for predicting icing on
wind turbine blades: human observation, direct methods, and
indirect methods. Human observation relies on the experience
of experts and can be subjective. Direct methods involve
measuring the attributes of ice, such as ultrasonic damping
[3], piezoelectric sensors [4], [5], or temperature changes [6].
However, some of these methods are impractical or difficult
to use in a timely manner. Indirect methods include using
double anemometers [7], measuring visibility and cloud base
height [8], or monitoring engine room mechanical vibration
and power curves [9]. However, these methods may be prone
to machine errors and may require the use of weather forecasts
to be more accurate. In recent years, model-driven and data-
driven methods have emerged as alternatives to these tradi-
tional approaches. Model-driven methods use mathematical
models, such as the one proposed by Pedersen et al. [10],
which combines weather forecasts with a conventional CFD
model to predict the power loss caused by icing on wind tur-
bines. However, these methods require assumptions about the
icing conditions and may require external tools such as wind
tunnels for experimentation. In contrast, data-driven methods
utilize the data collected from sensors on wind turbines and
do not require a deep understanding of the icing process [11].

Traditional centralized data-driven approaches for model
training rely on the consolidation of data in a single location,
such as a cloud. However, this requires a significant amount of
storage and computing resources and may also raise concerns
about data privacy [12]. In addition, the network bandwidth
between the server and each wind turbine must meet certain
requirements. Federated learning (FL), a new distributed learn-
ing paradigm, was developed as a solution to these challenges
[13]. It allows the training process to be distributed across
multiple clients, such as individual wind farms, rather than
being centralized on a server. This not only protects the data
from being accessed by others, but also reduces the computing
resources required compared to centralized methods. In FL, the
model weights are updated by synchronizing with the clients,
rather than training on the entire dataset. This enables each
wind farm to act as a “data island,” protecting their data while
still contributing to the overall model training.

However, there are several challenges to using federated
learning (FL) for predicting whether wind turbine blades are
in icing condition:

1) Feature redundancy: Numerous sensors are installed
to monitor the status of wind turbines, and some, such as
temperature sensors, may be more important than others
for detecting blade icing. Training a model on all available
features without selecting the most relevant ones can be



computationally burdensome.

2) Class imbalance: Wind turbines typically operate most
of the time and only occasionally shut down due to ice
accumulation, which leads to an imbalanced dataset with a
disproportionate number of normal data samples compared to
abnormal ones. If a model is trained on this imbalanced dataset
without addressing the imbalance, it may be biased towards
the majority class.

3) Model convergence: Although FL distributes the training
process across multiple clients, the training process on each
client can still be seen as centralized. The convergence speed
of the local models on each client may vary, and their par-
ticipation in the federated training process may be uncertain.
This can affect the convergence speed of the aggregated global
model and slow down the overall training process.

To tackle the challenges mentioned above, a federated
learning-based model for blade icing prediction (FedBIP) is
proposed. Specifically, a feature selection approach enhanced
with human knowledge is used to reduce feature redundancy,
and a segmentation-based class imbalance method is employed
to address the issue of imbalanced data. To improve model
convergence, a new model aggregation method is implemented
that takes into account the importance of data size, timestamps,
and offsets of each participating client. Additionally, a knowl-
edge distillation (KD) mechanism is used to accelerate the
training process and improve the performance of the global
model.

The contributions of this paper are listed below:

1) A novel FL-based model, FedBIP, is proposed for wind
turbine blade icing prediction. FedBIP addresses the chal-
lenges of applying FL to blade icing prediction by incorpo-
rating the proposed human-knowledge-enhanced feature selec-
tion, segmentation-based oversampling, and a new aggregation
method. Through the use of these techniques, FedBIP can
select informative features, reduce communication rounds, and
consider the importance of data size, timestamps, and offsets
of each participating client during FL training.

2) Thorough evaluations have been conducted to assess
the effectiveness of the FedBIP model using real-world wind
turbine data from two different wind farms. The results of
the comparison with state-of-the-art FL methods, aggrega-
tion methods, class imbalance processing methods, and lo-
cal feature extractors, clearly demonstrate the superiority of
the FedBIP model. Furthermore, the ablation and sensitivity
analysis have been conducted to verify the importance of
key components and parameters in the FedBIP model. These
evaluations provide strong evidence of the effectiveness and
practical value of the proposed FedBIP model for wind turbine
blade icing prediction.

The remainder of the paper is structured as follows. Section
II presents an overview of the existing literature on turbine
blade icing prediction and federated learning. The proposed
methods FL-based model is presented in Section III. In Section
IV, experimental results are provided to demonstrate the effec-
tiveness of the proposed model. Finally, section V concludes
the paper.

II. RELATED WORK

A. Data-Driven Wind Turbine Blade Icing Prediction

In recent years, researchers have explored various machine
learning and deep learning techniques for this task. One
common approach is to use supervised learning algorithms
to learn a mapping from sensor data to icing conditions. For
example, Chen et al. introduced a deep neural network-based
model with a bypass component for detecting wind turbine
faults [14]. Yuan et al. used a wavelet-enhanced autoencoder
model to identify icing conditions [15], while Tian et al.
combined wavelet transformation with a multilevel convolu-
tional recurrent model for turbine icing detection [16]. Tong
et al. proposed a sample distribution-aware adaptive weighted
kernel extreme learning machine algorithm [17], and Cheng
et al. developed a temporal attention convolutional model
for icing estimation [18]. Wang et al. proposed a wavelet-
based multiscale long short-term memory network for wind
turbine blade icing detection [19], and Xiao et al. proposed a
group method of data handling technique-based selective deep
ensemble model [20]. Another direction is to use semi/un-
supervised learning algorithms to identify patterns in the
sensor data that may indicate the presence of icing. Examples
include a statistical model for predicting icing-induced energy
losses for wind turbines [21], a clustering-based approach to
identify icing patterns in wind turbine blades [11], and a semi-
supervised model for blade icing detection [22].

Many existing works have trained models for wind turbine
icing prediction by centralizing data from different wind farms,
typically in a cloud, and training a model on this data. How-
ever, this centralized data-driven approach requires significant
storage and computational resources, and wind farm owners
may be hesitant to share their data for commercial reasons.
In this study, we propose using FL as a distributed training
approach to bypass these issues associated with training the
model.

B. Federated Learning

FL is a distributed machine learning approach introduced
in [13] that allows participants to train a local model using
their data, with the global model aggregated on the server
without the data being uploaded. FL has been applied to a
range of tasks [23]. Cheng et al. were the first to apply FL
with a heterogeneous structure between the client and server
for detecting wind turbine in icing conditions [12]. They later
proposed an improved version that integrates Blockchain with
FL for blade icing detection [24], and a version that empha-
sizes class imbalance learning [25]. Jiang et al. implemented a
multi-scale residual attention network enhanced FL framework
for wind turbine fault diagnosis [26]. The results of these
studies suggest that FL can produce a good performance in
these tasks. There are some works of applying FL for fault
diagnosis other than wind turbine blade icing detection [27]–
[29].

Few existing works have applied FL to wind turbine ic-
ing prediction and have used different aggregation strategies,
which can impact the effectiveness of the training process.
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Fig. 1. Overview of the proposed FL-based wind turbine icing prediction. The model consists of three parts: data analysis, local model training, and global
model aggregation.

In this paper, we address the issue of inactive and poorly-
trained clients with varying amounts of data by considering
the importance of data sizes, timestamps, and offsets of each
participating client in the model aggregation process.

III. METHODS

In this section, we first describe the overview of the whole
proposed structure, and then each procedure’s detail is sepa-
rately described.

A. Overview

The schematic representation of the FedBIP framework is
illustrated in Figure. 1. The framework is composed of three
main components: data analysis, local model training, and
global model aggregation.

In the data analysis, raw data acquired from the wind
turbines’ Supervisory Control and Data Acquisition (SCADA)
systems are preprocessed to mitigate potential risks associated
with these data. The data analysis mainly includes data label-
ing, feature selection, normalization, and egementation.

The local model training phase involves each wind farm
training a local model using the preprocessed data. A sequen-
tial structure, comprising a long short-term memory (LSTM)
and a three-layer densely connected convolutional neural net-
work (CNN), is utilized for feature extraction on each client.
During each communication round, the local clients train their
model with local data and upload their model’s parameters to
the server.

In the global model aggregation phase, the server aggregates
the parameters of all participating clients using the proposed
aggregation method, which takes into account the importance
of data sizes, timestamps, and offsets of each participating
client. The aggregated model is then broadcast back to each

client for the next communication round. A KD mechanism
is employed in the local training process to enhance the per-
formance of local models and accelerate the training process.
Once communication rounds have been completed, the final
server model is used for icing prediction.

B. Data Analysis

In this work, all of the data are labeled by experienced
experts. If there are some uncertain periods in which the
experts hard to decide if it is icing or not, these periods are
removed.

Considering the large number of features that can be ob-
tained from the SCADA system, we employ a feature selection
approach enhanced with human knowledge. With the aim of
selecting the same features for different wind turbines, experts
first remove most of the irrelevant features, and then the chi-
square test is used to calculate and rank the relevance score
between the collected features and the labels. As the wind
turbines are selected from two different wind farms, the data
may vary in different distributions and certain features may be
deemed important for one farm but not for the other. Even for
turbines on the same farm, relevant features may vary to some
extent. In this situation, we try our best to select the common
features from the ranking list.

To eliminate the negative impact of individual data samples
and reduce the disparity between data values and feature
dimensions, the original data undergo a normalization process
to transform their numerical range into [0, 1].

C. Segmentation-based Sample Balancing

As mentioned above, wind turbines typically operate for
the majority of the time, but may occasionally shut down
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due to ice accretion or other faults. This results in a large
imbalance between normal and abnormal data samples. Imbal-
anced training data can negatively impact the performance of
the trained model, particularly in terms of predicting minority
classes [30]. To mitigate the impact of imbalanced data on
training processes, we introduce a segmentation-based sample
balancing method.

To address the issue of imbalanced data in training, we
propose using a segmentation-based sample balancing method
instead of traditional oversampling and undersampling tech-
niques. These traditional methods can alter the original timing
structure of time-series data, whereas the segmentation-based
method preserves the timing structure while still addressing the
class imbalance. Specifically, we use a sliding window without
overlap for normal samples and a sliding window with overlap
for icing samples, as shown in Fig. 2.

During the data balancing process, only the samples used for
training undergo re-sampling, while the data used for testing
remains unchanged in order to preserve the authenticity of the
model testing. After the balancing procedure, we segment the
data into fixed-length samples, as the raw data collected from
wind turbine SCADA systems contains time series trends over
consecutive time periods.
D. Local Model Training

1) Model Structure: The collected data from the SCADA
system is time series data essentially, and therefore we propose
using a combination of LSTM and CNN to learn both temporal
and spatial information. The raw time series data is first input
into an LSTM to learn temporal information, and then three
sequential CNN layers are used to learn spatial information. In
order to account for the harsh and variable working conditions
of wind turbines, the CNN layers are equipped with dense
connections and Squeeze-and-Excitation (SE) modules [31] to
capture multi-scale features and emphasize important features.
Additionally, each CNN layer includes a Batch normalization
layer and a SiLU layer after the SE module. The SiLU layer,
also known as the Swish activation function, is differentiable,
which makes it suitable for use in back propagation and then
enhances the capability of learning complex features. It is
worth noting that the client and server models both share this
same structure in our approach.
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Assume the output of the LSTM is Xl ∈ RC×L, where C
represents the channels, and L is the time window size of each
sample. For the input Xin of each CNN layer, the output of
each component of each CNN layer can be formulated as:

Xconv = Conv1d(Xin) (1)

Xse = SE(Xconv) (2)

Xnorm = Norm1d(Xse) (3)

Xout = SiLU(Xnorm) (4)

where Xconv denotes the output of the Conv1d layer, Xse

denotes the output of SE layer, Xnorm denotes the output of
Norm1d layer, and Xout denotes the output of SiLU layer.
These outputs have the same shape, RH×L, where H denotes
the number of filters in the CNN. The three CNN layers are
sequentially connected, and the input of the latter CNN layer is
the output of the previous CNN layer and the input of the first
CNN layer is the output Xl of the LSTM layer. The outputs of
these CNN layers are denoted as X1, X2, and X3. Together
with Xl, these four outputs are concatenated by the feature
columns.

2) Knowledge Distillation: ‘Cumbersome’ networks re-
quire a significant amount of training time to reach their global
or local optima, and also require a large amount of computa-
tional resources [32]. The outputs of a model are probabilities
indicating the likelihood of an input being classified into each
class. However, the highest probability of an input does not
necessarily mean that the input belongs to that class, but rather
that it resembles that class closely. This is knowledge that can
be transferred from a teacher model to a student model through
the process of knowledge distillation.

In FL, the model is trained distributively by splitting the
centralized server training into collaboration among clients.
Although each local client training procedure can be con-
sidered as an individual centralized training, the number of
samples on each client is typically smaller than if all the
samples were centralized on one server. As a result, training
from scratch can take a long time to reach the ‘global’
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optimum. Additionally, model updates can be extremely large 
if they contain a large number of parameters, and many com-
munication rounds may be needed to generate a high-quality 
global model [33]. However, using knowledge distillation can 
accelerate the training process.

In this paper, the procedure of KD is shown in Fig. 3. 
By introducing the teacher model into the training process, 
we first calculate the Kullback-Leibler divergence loss (LKL), 
then, combined the LKL with the originally used loss function 
cross-entropy loss (LCE ), to get the total loss (LKD) for local 
model training. The mathematical processing are given below:

LKL = KL(log(
ps
T
)||pt

T
) = log(

ps
T
) ·

log(ps

T )
pt

T

(5)

LCE = −y · log(ps) + (1− y) · log(1− ps) (6)

LKD = α · T 2 · LKL + (1− α) · LCE (7)

where ps is the value of a student model’s prediction and pt
is the value of a teacher model’s prediction, and y is the true
value. α is hyperparameter and T resembles the temperature
that is used to distil the ‘soft target’.

In this paper, each client trains its local model using
traditional centralized training methods, such as using the
collected data and the Adam optimization algorithm to update
the model’s parameters via gradient descent. For a client with
the learning rate of ϵ and local gradient gi, the local client
update, W i

c is calculated by:

W i
c−1 − ϵ · gi −→ W i

c (8)

E. Global Model Aggregation

In FL, the server is tasked with aggregating model pa-
rameters from multiple clients. This process presents several
challenges. Firstly, clients with more data tend to be better
trained, and if all clients are treated equally, those with fewer
data may negatively impact the training procedure. To address
this, it is necessary to assign different weights to each client
based on the number of data they contain. Secondly, the clients
participating in each communication round are randomly se-
lected from the entire group, which may result in some clients
not participating in training for extended periods of time. This
can lead to a lack of fitness in these clients and may slow
the training process [34]. To address this, the server should
also consider the amount of time each participating client
has been involved in training. Finally, during each federated
communication round, not all updates may be effective, and
some models may not perform as well as previously. In this
case, if a client’s model update is better than the previous
one, it is defined as ”positive,” otherwise it is ”negative.” When
calculating the final global updates by adding the value of each
parameter, those with larger absolute values may significantly
impact the aggregation process. As such, the server should
update in the direction of the majority of participating models’
updates.

To address these challenges, we propose a novel aggregation
method that takes into account the data size, timestamp, and

offset of each participating client. The data size is used to give
different weights to the model updates from different clients.
The timestamp is used to determine how recently the client
has participated in the training process. The offset is used
to measure the improvement or decline of the client’s model
performance compared to the previous communication round.
By considering these three factors, the proposed aggrega-
tion method can effectively address the challenges mentioned
above and improve the performance of the global model.

The procedure of the central server aggregating the client
models is as follows. For each communication round c, first,
there are K client models randomly selected from all the
clients. K is calculated with K = pr · NC, where pr is the
participation rate and NC is the total number of clients. Then,
the local model of each participating client is trained using its
own local data that consists of Ni samples where i is the index
of the i-th participating client. During the training process,
the server together with all the client models is randomly
initialized in the beginning.

After each participating client calculated the local gradient
and used the before gradient to minus this one, the server then
aggregates all the weights of participating client models to
generate a new global model Wc. The aggregation processing
can be presented mathematically as below:

η · sign(
K∑
i=i

Ni

N
· (e

2
)−(c−tsi) · sign(W i

c)) → Wc (9)

where c denotes the current round, whereas tsi denotes the
round of i-th client’s previous participation. The logarithm
base e is used to represent the time effect. And η is the
hyperparameter. The data size weights of participating clients
are calculated using Ni

N , which represents the ratio of the
sample size of a particular client, denoted as Ni, to the total
sample size N . Clients with larger sample sizes are assigned
higher weights. ( e2 )

−(c−tsi) will determine the time weights,
the clients that are newer participated in the federated training
will be set with larger weights. Finally, sign(W i

c) will help
the global model update towards the positive or negative base
on the update direction of most of the participating clients.
The sign function’s definition is as follows:

sign(x) =


1, x > 0

0, x = 0

−1, x < 0

(10)

IV. EXPERIMENTS

A. Dataset

The study employs a wind turbine dataset from 20 turbines
across 2 different farms. One is in Yanling, Henan province
and the other is in Hongshimao, Shaanxi province around
600 kilometres of distance. The dataset contains raw data
gathered with a 30-second granularity from two different wind
farms for around 15 days from 11st, Feb 2019 to 26th, Feb
2019. In Yanling, there have been two days of icing status
and in Hongshimao, there is only one day of icing status,
which makes the dataset imbalanced and the imbalance ratio



TABLE I
SPECIFICATION OF SELECTED PARAMETERS

No. Parameter No. Parameter
1 Generator speed 18 Torque of generator
2 Speed of pithc1 19 Temperature of shaft cabinet1
3 Speed of pithc2 20 Temperature of shaft cabinet2
4 Angle of pitch1 21 Temperature of shaft cabinet3
5 Angle of pitch2 22 Temperature of stator of generator U1
6 Angle of pitch3 23 Temperature of stator of generator U2
7 Yawing angle 24 Temperature of stator of generator V1
8 Temperature of hub1 25 Temperature of stator of generator V2
9 Temperature of hub2 26 Temperature of stator of generator W1

10 Temperature of hub3 27 Temperature of stator of generator W2
11 Power performance1 28 60s mean of wind speed
12 Power performance2 29 Current1
13 Power performance3 30 Current1
14 Temperature of pitch motor1 31 Current1
15 Temperature of pitch motor2 32 Temperature of cooling pad1
16 Temperature of pitch motor3 33 Temperature of cooling pad2
17 Active power 34 Temperature of cooling pad3

of data collected from the wind farm in Yanling is around
7:1 and around 15:1 in Hongshimao. Before labeling, all raw
data underwent consultation with experienced engineers. The
sensor data columns consist of approximately 300 variables,
falling into three categories: string, floating-point, and boolean.
Table I shows the final selected columns. The training set and
test set were partitioned in a ratio of 7:3. The 70% of data
in each client is utilized for the local model training. The left
30% of data is combined into a big testing dataset for the
performance evaluation of the learned global model.

B. Experiment Settings

In the data analysis process, the size of the time window
TW is 128 and the stride for over-sampling the minority class
is 70. During segmentation, the time window slides three times
to over-sample the data of the minor class. 20 clients are
involved with an initial participation rate of 0.5, implying that
for each communication round the server randomly selects 10
clients to participate in the federated training. Each client loads
the data of a single turbine. The optimization algorithm used is
Adam with a learning rate of 0.01. During each experiment, a
server went through 100 communication iterations to generate
an optimal global model. The learning rate ϵ in the local
client update is set to 0.01. The hyperparameter η in model
aggregation is set to 0.04. As for KD, the hyperparameter α
is set to 0.9 and the temperature T is set to 20. The details
of the experimental settings can be found in TABLE II. All
methods are repeated five times with different random seeds.

C. Evaluation Metrics

The proposed methods are evaluated using two metrics:
Fβ Score and Balanced Accuracy (BA). The choice of these
metrics is motivated by the imbalanced nature of the testing
dataset used in the research, which has an imbalance ratio
of 8:1, and the focus on the sensitivity of icing prediction.
The accuracy metric alone may not be effective in evaluating
the performance of the proposed model, as predicting all test
samples as normal can still result in high accuracy due to the
class imbalance. Therefore, Balanced Accuracy (BA) is used
as the evaluation metric. The equations are listed below:

TABLE II
EXPERIMENTAL SETTINGS

Description Setting or value
Time window size 128

Stride for over-sampling the minority class 70
Number of LSTM layer’s hidden nodes 34

p in Dropout layer 0.5
Convolutional layers’ filter sizes 128,256,128

Convolutional layers’ kernel sizes 9,5,3
Number of communication rounds 100

Number of clients 20
Participation rate 0.5

Learning rate of optimizer Adam 0.01
Learning rate in local client update 0.01

η in model aggregation 0.04
α in KD 0.9

Temperature T in KD 20
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Fig. 4. Comparison of state-of-the-art FL methods on over-sampled dataset

Fβ = (1 + β2)
Precision ·Recall

β2 × Precision+Recall
(11)

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(12)

where TP, FP, TN and FN represent True Positive, False
Positive, True Negative and False Negative. β here is set to 2
and then the Fβ is called as F2.

D. Comparison with state-of-the-art FL methods

The following state-of-the-art FL methods are utilized for
the evaluation of our proposed FedBIP. The details of these
models are as follows:

• Federated averaging (FedAVG): FedAVG aggregates
the parameters of all the participating models through
averaging based on the loaded sample size of each client
[13].

• Blade Icing Federated Learning (BiFL): BiFL proposed
a heterogeneous FL model for blade icing detection. In
this model, the exchange between clients and server is
the encoded feature map rather than gradient [12].

• Federated Learning Batch Normalization (FedBN):
FedBN is proposed to overcome the feature shift between
clients. In this work, batch normalization is integrated
into FL to alleviate the feature shift [35].
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All methods are performed on the over-sampled dataset pro-
cessed by our processed segmentation-based sample balancing
method. All methods were tested using the default settings,
with the exception of the use of our proposed local model in
FedBIP.

Our proposed method, FedBIP, outperforms other methods
in terms of both F2 and BA measures, as shown in Fig. 4.
When compared to BiFL, which ranks second in performance,
FedBIP shows a 2.92% improvement in F2 and a 1.50%
improvement in BA. In comparison to FedBN, FedBIP demon-
strates a 7.49% improvement in F2 and a 4.25% improvement
in BA. Additionally, FedBIP outperforms FedAVG, which
showed the worst performance, with a 9.38% improvement
in F2 and a 5.03% improvement in BA.

BiFL addresses class imbalance through prototype learning,
which is heavily dependent on the local model’s ability to
learn. Additionally, the global model learned through BiFL
is trained on the learned feature map, which means that the
imbalance ratio may vary among clients and may not be well-
handled by BiFL. FedBN was designed to address feature shift
rather than class imbalance, and FedAVG simply aggregates
model parameters based on sample size, which also lacks the
ability to effectively address class imbalance. This may be
due to the fact that the data remains class imbalanced even
after balancing efforts. In contrast, our model performs better
because it incorporates a class balancing method, knowledge
distillation, and a new aggregation method.

E. Comparison with state-of-the-art centralized method

The following centralized methods are included for evalu-
ating our proposed FedBIP. The details of these models are as
follows:

• MCRNN: This method utilized discrete wavelet decom-
position to extract multilevel features from both the
time and frequency domains. It also proposed a parallel
structure that combines an LSTM branch and a CNN
branch for feature extraction [16].

• TACNN: This model integrated a convolutional neural
network with a temporal attention module, enabling the
identification of discriminative features from raw sensor
data [18].

• WaveletLSTM: This method integrated wavelet-based
multiscale learning into the conventional LSTM struc-
ture, enabling simultaneous learning of global and local
temporal features from multivariate SCADA signals [19].

Since these models are trained in a centralized way, we
combine all the data on the local client to get one training
dataset for these methods, and the results are shown in Fig. 5.

According to the results, FedBIP has shown significant
improvements compared to other models. When compared
to MCRNN, which ranked second in performance, FedBIP
demonstrated an improvement of 0.88% in F2 and 1.08% in
BA. Compared to WaveletLSTM, FedBIP displayed a 4.31%
improvement in F2 and a 2.24% improvement in BA. In
comparison with TACNN, which demonstrated the worst per-
formance, FedBIP showed an impressive 14.26% improvement
in F2 and a 9.24% improvement in BA.

Although MCRNN and WaveletLSTM employed wavelet
decomposition for feature extraction from both the time and
frequency domains, they do not tackle the issue of imbalance
while training the model. TACNN incorporates a temporal
module to learn temporal information from data, but its perfor-
mance may not be satisfactory when the data is imbalanced,
and the imbalance ratio varies for different wind turbines.

F. Comparison of class imbalance processing method
To demonstrate the effectiveness of our proposed method

for addressing the class imbalance, we compare it with two
commonly used imbalance learning methods. The descriptions
are as follows:

• Imbalance: In this study, the model was evaluated on
raw, class-imbalanced data without utilizing any methods
specifically designed to address the class-imbalance issue.

• Focal (focal loss): Focal loss is a well-known method
for addressing the class imbalance in machine learning.
In our study, we replaced the cross entropy loss function
in each client with focal loss to evaluate its effectiveness.

• SMOTE: SMOTE is an over-sample method that is based
on each minority class sample and creates synthetic
samples along the line segments joining any/all of the
k nearest neighbors from the minority class [36]. In this
scenario, k is set to 5.

Model performance comparisons are shown in Fig. 6. The
results show that all three methods (SMOTE, Focal loss, and
FedBIP) improve upon the model trained on original, imbal-
anced data. SMOTE generates synthetic samples to balance
the number of samples in each class, which may not accu-
rately represent the real icing condition and could affect the
authenticity of the experiment. Focal loss demonstrates some
effectiveness for addressing class imbalance, but it is heavily
dependent on the selection of hyperparameters. Additionally,
there is no guarantee that every client will be able to effectively
synchronize to address the imbalance using Focal loss. In
contrast, FedBIP utilizes the existing icing data and achieves
higher performance without requiring oversampling of the
minority class. Oversampling the minority class too much may
lead to overfitting to the icing data, which can have negative
effects on training.
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Fig. 7. Comparison of model aggregation method

G. Comparison of model aggregation methods

For the evaluation of the proposed model aggregation men-
tioned above, we compare it with other aggregation methods,
including:

• Federated averaging (FedAVG): FedAVG aggregates
the parameters of all the participating models through
averaging based on the loaded sample size of each client
[13].

• Temporally weighted aggregation asynchronous
(ASTW): ASTW is modified based on FedAVG and
takes timestamp into consideration. Since our built model
does not have that many layers, so during the comparison
experiment, we only take temporally weighted (TW)
module into account. The code is programmed base on
the equations given in the paper [34].

• Majority vote (MV): MV aggregates the model param-
eters base on the positive or negative values of most of
the participating clients [37].

The results are shown in Fig. 7. According to the results,
our aggregation method gets the best performance compared
with the other aggregation algorithms. Compared with MV,
which ranks second place, our method gains an improvement
of 1.88% on F2 and 1.09% on BA. Compared with TW, our
method gains an improvement of 3.27% on F2 and 2.4% on
BA. As for the FedAVG, which gets the worst performance,
our model gains an improvement of 4.28% on F2 and 2.68%
on BA.

Each of these aggregation methods has its own strengths, but
they all only consider a single aspect of the problem. FedAVG
focuses on sample size, ASTW only considers the temporal
order of model aggregation, and MV is only concerned with
reducing the amount of data transmitted during aggregation.
In contrast, our aggregation method takes all of these factors
into account.

H. Comparison of the local feature extractor

To evaluate the designed local feature extractor’s perfor-
mance, we select seven baseline methods to conduct the
comparison experiment, including 1) BiLSTM: a bidirectional
LSTM implemented by adding a backward LSTM. The hidden
nodes is set to 128; 2) CNN LSTM: a CNN layer followed
by one LSTM layer. The filter size of both CNN and LSTM
is set to 128; 3) SSENET: a strong baseline for classify-
ing multivariate time series data. The model is built with
dense connections. During the comparison experiment, the
attention mechanism is removed since the comparison is to
testify model structure’s performance [38]; 4) FCN: a fully
convergent network in time series classification [39]. The filter
sizes of each layer are set to {128, 256, 128}; 5) Gated
Recurrent Unit (GRU): a light-weight variant of LSTM, but
its performance is not inferior to LSTM. Hidden nodes are
set to 128; 6) LSTM: commonly used networks in time series
data classification, hidden nodes are set to 128; 7) MultiLayer
Perceptron (MLP): a three-layer model with a dropout layer
added between every two consecutive layers. Each MLP layer
has 128 hidden nodes. During this comparison, seven different
models were tested as a replacement for the local model that
we designed. The result is shown in TABLE III.

The results show that FedBIP outperform other models
on the oversampled dataset, but is slightly outperformed by
FCN on the original, imbalanced dataset. On the oversampled
dataset, FedBIP shows a 1.91% improvement in F2 and a
0.74% improvement in BA compared to the best baseline,
CNN LSTM. On the imbalanced dataset, FCN performs sim-
ilarly to FedBIP in terms of F2, but shows a slight absolute
improvement of 0.04% in BA. Among the models tested,
SSENET, which has a complex model structure and requires
a longer training time, performs the worst on the original
imbalanced dataset and not so well on the over-sampled
dataset. This suggests that when solving real-world problems,
it is important to choose a model structure that is appropriate
for the task, rather than simply opting for a more complex
model. Complex models may not necessarily lead to better
performance and can require more computing resources and
longer training times to reach optimal performance.

I. Ablation and sensitivity analysis

To illustrate the importance and study the key parameters in
the FedBIP, the ablation and sensitivity analysis are performed
in this section.

1) Influence of KD: To evaluate the effectiveness of the
KD module, we compare the models’ results with/without
KD. First, a model that gets an overall optimum performance
is trained on the imbalanced and over-sampled dataset from



TABLE III
PERFORMANCE COMPARISON OF LOCAL MODEL

Imbalanced dataset Over-sampled dataset
F2(%) BA(%) F2(%) BA(%)

BILSTM 43.27±0.25 69.55±0.25 43.34±0.41 69.57±0.37
CNN LSTM 43.08±0.22 69.41±0.22 43.94±0.55 70.31±0.45

SSENET 42.21±0.48 68.54±0.52 43.48±1.21 69.79±1.19
FCN 44.00±0.48 70.32±0.47 43.13±0.37 69.44±0.29
GRU 42.36±0.63 68.64±0.67 40.08±0.46 66.37±0.48

LSTM 42.87±0.67 69.15±0.62 43.32±0.22 69.62±0.20
MLP 43.59±0.16 69.86±0.15 42.94±0.34 69.26±0.34

FedBIP 43.99±0.22 70.28±0.15 44.78±0.58 70.83±0.44
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Fig. 8. Ablation study of KD module

scratch. Then, this model is used as the teacher model to help
the other models’ training. The results are shown in Fig. 8.

According to Fig. 8, it can be seen that the introduction
of knowledge distillation (KD) during training consistently
improves model performance on both imbalanced and over-
sampled datasets. Specifically, on the imbalanced dataset,
there are improvements of 5.97% in F2 and 3.55% in BA,
while on the oversampled dataset, there are improvements of
3.32% in F2 and 1.65% in BA. These results demonstrate the
effectiveness of KD in improving model performance for both
F2 and BA measures on both types of datasets.

In addition to evaluating model performance, we also
compare the number of communication rounds required to
train the global model until it reaches a target balanced
accuracy (BA) of 63%. This allows us to assess the impact
of the KD procedure on convergence speed. To eliminate the
randomness introduced by the Adam optimizer, we run the
experiment multiple times and calculate the average number
of communication rounds for each model with and without the
KD module. TABLE IV lists the results.

Looking over the table, all of the models require fewer com-
munication rounds to reach the target BA when KD is used.
Specifically, LSTM shows the greatest improvement, requir-
ing 71.21% fewer communication rounds with KD activated.
SSENET also shows a significant reduction in communication
rounds, with a 42.27% decrease. While FedBIP only shows a
5.16% reduction in communication rounds, KD still helps to
speed up the training process. Overall, the use of KD leads to
a significant decrease in the number of communication rounds
required to reach the target BA for all models.

TABLE IV
THE AVERAGE NUMBER OF COMMUNICATION ROUNDS TO REACH THE

TARGET BA OF 10 TIMES WITH OR WITHOUT KD ON THE OVER-SAMPLED
DATASET (THE FEWER COMMUNICATION ROUNDS, THE FEWER

COMMUNICATION COSTS)

w/o KD w/ KD
BILSTM 48.2±28.7 32.0±12.6

CNN LSTM 41.8±24.0 26.6±12.9
SSENET 63.4±20.6 36.6±21.5

FCN 50.6±22.0 47.5±23.1
GRU 54.0±33.5 48.5±28.0

LSTM 64.6±17.6 18.6±9.98
MLP 51.1±13.0 45.3±25.3

FedBIP 31.0±12.4 29.4±22.9
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Fig. 9. Ablation analysis of local model on over-sampled dataset

2) Influence of the modules in local model: We undergo the
ablation experiments to verify the effectiveness of the proposed
model by comparing it with the following architectures: 1)
FedBIP ReLU: where ReLU is used as the activation function;
2) FedBIP noSE: where SE blocks are removed from the
model; The results are shown in Fig. 9.

According to the figure, when SE blocks are equipped , the
model performance increased by 7.46% of F2 and 4.28% of
BA. And when changing the activation function from ReLU
into SiLU, the performance rose around 7.26% of F2 and
4.13% of BA.
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Fig. 10. Comparison on over-sampled dataset with different imbalance ratios
(The first row is the imbalance ratio of data of Hongshimao, and the second
row is the imbalance ratio of data of Yanling)



3) Impact of data balancing with different imbalance ratios: 
To investigate the effect of the over-sampling method sliding 
window, we conduct experiments on the data with different 
imbalance ratios by generating a different number of samples 
with the sliding window. There is the same number of icing 
samples as the number of icing samples of the imbalanced 
dataset generated each time. And the results are shown in Fig. 
10.

According to the results, the performance gradually rises 
when the data tend to be more balanced. When the imbalance 
ratios are 19:5 on the Hongshimao dataset and 9:5 on the 
Yanling dataset, FedBIP reaches the highest performance. 
However, with more icing data generated, the performance 
starts to fall. This is mainly because the over-sampling tech-
nique mostly depends on the minority data. Moreover, when 
additional icing samples are generated based on the original 
icing samples, the model may exhibit overfitting towards 
these icing data, which can negatively impact the model’s 
performance in predicting icing conditions.

V. CONCLUSION

This paper presents an FL structure FedBIP for predicting 
wind turbine blade icing. It comprises a feature selection 
approach enhanced with human knowledge, a segmentation-
based class imbalance method, and a new aggregation method. 
And it allows individual clients to train their local models 
using their own data, which are then uploaded to the server 
without sharing any data. The server aggregates all the partici-
pating clients’ models with weighted formulations to generate 
the final g lobal m odel. W hat’s m ore, k nowledge distillation 
helps improve our proposed model’s performance. To assess 
the effectiveness of our methods, we conduct our experiments 
through turbine data from 20 turbines on 2 different farms and 
compared our proposed model with others. The results demon-
strate that our proposed model achieves better performance.

For our future work, there are several directions. First, we 
will try to address the imbalance problem on the algorithm 
level, while in this paper we focused on the data level. 
Furthermore, the feature selection method employed in this 
study prioritizes the correlation of individual columns to the 
class. However, hidden correlations might exist within these 
data columns. Thus, another of our future works is to develop 
an algorithm for finding connections among data columns.
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