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Development of An Adversarial Transfer Learning 

Based Soft Sensor in Industrial Systems 
 

Dong Li, Yiqi Liu, Senior Member, IEEE, Daoping Huang, Chun Fai Lui, Min Xie Fellow, IEEE 

Abstract—Data-driven soft sensors are usually used to predict 

quality-related but hard-to-measure variables in industrial 

systems. However, the acceptable prediction performance mainly 

relies on the premise that training data are sufficient for model 

training. To acquire more training data, this paper proposes an 

adversarial transfer learning (ATL) methodology to enhance soft 

sensor learning. Firstly, a hierarchical transfer learning 

algorithm, which integrates a feature extraction method with 

model-based transfer learning, is proposed to refine the useful 

hidden information from both historical variables and samples. 

Then, a novel adversarial learning network is designed to prevent 

the deterioration of transferred results at each transfer learning 

stage. Thirdly, a Granger causality analysis (GCA)-based 

rationale analyzer is added to unfold the internal causality among 

input variables and between input and output variables 

simultaneously. Finally, the effectiveness of the proposed soft 

sensor and the rationale analyzer is validated in a simulated 

wastewater plant, Benchmark Simulation Model No.2 (BSM2), 

and a full-scale oxidation ditch (OD) wastewater plant. The 

experimental results demonstrate that the ATL-based soft sensor 

can achieve more accurate prediction in terms of RMSE and R, 

and the GCA-based rationale analyzer can provide a visual 

explanation for the corresponding model and prediction results. 

 
Index Terms—Soft sensor, Adversarial transfer learning, 

Granger causality analysis, Historical data, Industrial systems 

I. INTRODUCTION 

N recent years, accurate prediction for hard-to-measure 

variables has received widespread attention in industrial 

systems, such as biopharmaceutical, petrochemical, metal 

smelting and wastewater treatment, especially quality-

related variables that can describe the operational and safe 

conditions [2, 3]. However, neither the offline analysis methods 

nor online measurement devices can meet the real-time 

prediction requirements totally [4-6]. Soft sensor technology 

provides an alternative way to address this issue [7, 8]. Soft 

sensor modeling methods are mainly categorized into data-
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driven modeling [9], mechanism modeling [10] and hybrid 

modeling [11]. Up to date, data-driven soft sensors are the most 

popular and powerful tools for prediction due to the ability that 

they can build proper soft-sensor models without having the 

necessary insight into hidden mechanism knowledge deeply. 

But prediction performance of data-driven soft sensors is 

mainly dependent on the quantity and quality of training data 

[12, 13]. In industrial systems, collections of sufficient and 

optimal training data are difficult and expensive, easily leading 

to the imbalance of data distribution [14]. Li et al. augmented 

training data by using the Co-training algorithm to select 

suitable unlabeled data as new labeled data, but the process of 

cross validation is complicated and has the risk of selecting the 

wrong unlabeled data [15]. Mohamed et al. provided an 

ensemble machine learning model, which can reduce the 

dependence on training data by implementing biological 

models to simulate reaction processes. However, the specific 

biological model is hard to generalize to other industrial 

systems [16]. Liu et al. proposed a bagging method to increase 

the sampling rate of training data, but resampling is not able to 

derive more valuable information for modeling [17]. 

Recently, the transfer learning algorithm gained popularity 

due to the fact there reserve a large amount of historical data in 

industrial systems [18,19]. Cai et al. proposed an instance-based 

transfer learning method working together with gradient 

boosting decision trees (GBDT) to establish a wind power 

quantile regression model. The main motive is to assign 

different weights to data from different sources in transfer 

processes. However, the premise of instance-based transfer 

learning is that the data among source and target domains are 

supposed to have a significant correlation [20]. Zhao et al. 

proposed a feature-based transfer learning method to detect 

unknown variants of network attacks. The main idea is to find 

the optimal feature variables between source and target 

domains, but transferred results are sensitive to the used feature 

extraction methods [21]. Roberto et al. proposed a model-based 
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transfer learning method with an application for classification, 

but transferred results will deteriorate over time [22]. In a word, 

all the instance-based, feature-based and model-based transfer 

learning algorithms belong to single-level transfer learning 

algorithms, which are limited to their own disadvantages and 

are susceptible to other unobserved factors [23]. 

In addition, to improve the adaptive ability of soft sensors, 

Du et al. proposed a moving window partial least squares (MW-

PLS) model to update informative regions, but it is susceptible 

to outliers [24]. Then, Liu et al. proposed an enhanced just-in-

time learning (JITL) algorithm to cope with normal changes and 

abrupt noises in wastewater treatment processes, but the 

computational burden is unacceptable [25]. Li et al. used the 

long-short term memory recurrent neural network (LSTM) to 

keep the soft sensors having high prediction accuracy [26]. 

However, it requires too much training data to build the initial 

model due to the complex network structure. Adversarial 

learning network is a type of machine learning model usually 

composing of two neural networks, both of which compete with 

each other aiming to improve their own performance. In 

adversarial learning networks, one network is called the 

generator to create new data that resembles some known data 

distribution, whereas the other network is called the 

discriminator, which is used to distinguish between real and 

fake data generated by the generator. Two networks are trained 

in a zero-sum game framework, where one network’s loss is 

another network’s gain [27]. 

Finally, with more and more soft sensors being opaque due 

to the advent and development of neural networks, it is more 

important than ever to study rationally and visually explainable 

methods aiming to provide a reasonable explanation for the 

corresponding model and prediction results as well [28]. 

Traditional explainable methods only rely on mechanism 

knowledge of process industries to explore why the soft sensor 

can achieve better prediction performance. However, they lack 

visualization ability to show operators or managers why better 

performance can be achieved [29]. Then, some research 

scholars make the complexity of model as the explainable 

definition, so as to achieve visual explanation, but it is easy to 

make a risk of misleading predictions or scarify some predictive 

power of soft sensors [30, 31]. Therefore, it is urgently needed 

to design a reasonable and visually explainable method that can 

balance explanation and prediction abilities to quantify 

explanation. 

To resolve these problems, we propose an adversarial 

transfer learning (ATL)-based soft sensor and a Granger 

causality analysis (GCA)-based rationale analyzer in this paper. 

The detailed contributions are provided in Table I and as 

follows: 

TABLE I 

The advantages of the ATL-based soft sensor and the GCA-

based rationale analyzer. 

Contributions Advantages 

A hierarchical 

transfer learning 

algorithm 

⚫ Utilize VIP to extract the optimal 

feature variables from data samples 

⚫ Build a SCG-NN-based generator 

with the optimal feature variables 

for transferring historical data 

A novel 

adversarial 

learning network 

⚫ The SCG-NN-based generator is 

used to transfer historical data 

⚫ The cross-entropy error-based 

discriminator is used to evaluate 

transferred results 

A new rationale 

analyzer 

⚫ Utilize the improved GCA to unfold 

the internal causality among input 

variables and between input and out 

variables simultaneously with low 

computational intensity 

(1) A hierarchical transfer learning algorithm is proposed to 

overcome the disadvantages of single-level transfer learning by 

integrating feature extraction with model-based transfer 

learning. In this algorithm, variable importance in projection 

(VIP) is first used to extract the optimal feature variables from 

data samples. Then, a scaled conjugate gradient (SCG) learning 

-based shallow neural network (SCG-NN) is built with the 

optimal feature variables and acts as a generator to transfer 

historical data and to generate the new training data. 

(2) A novel adversarial learning network consisting of a 

SCG-NN-based generator and a cross-entropy error-based 

discriminator is proposed. The transferred historical data 

resembling the original training data distribution are first 

selected by calculating their cross-entropy error values, and are 

added into training data set. Then, a new SCG-NN-based 

generator is rebuilt with the augmented training data set and is 

used to transfer historical data again. As constantly adversarial 

learning occurs between the generator and the discriminator, the 

transferred results will be continuously optimized. 

(3) An improved Granger causality analysis (GCA)-based 

rationale analyzer is added to provide a visual explanation for 

the corresponding model and prediction results. In this rationale 

analyzer, we utilize multiple linear regression (MLR) to replace 

the internal regression method, so the improved GCA-based 

rationale analyzer can unfold the internal causality among input 

variables and between input and output variables 

simultaneously with low computational intensity. 

The proposed ATL-based soft sensor and the GCA-based 

rationale analyzer are described in Section II. Section III 

provides a simulation wastewater plant (BSM2) and a full-scale 

OD wastewater plant to verify their effectiveness. Section IV 

discusses the advantages and disadvantages. Finally, the 

conclusion and future research are presented in Section V. 

II. ATL-BASED SOFT SENSOR AND GCA-BASED RATIONALE 

ANALYZER 

To refine the useful hidden information from historical data 

for modeling, and provide a visual explanation for the 

corresponding model and prediction results, an ATL-based soft 

sensor and a GCA-based rationale analyzer are proposed in this 

paper. The flowchart is shown in Fig. 1 and the detailed 

procedure is as follows: 

(1) VIP-based feature extraction: In industrial systems, 

there are space-time differences between the historical data set 

and training data set due to the influences of internal reactions 

and external environment. We first utilize VIP to extract the 
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optimal feature variables between source domain and target 

domain (historical data set and training data set). 
(2) Model-based transfer learning: After VIP-based 

feature extraction, two new data sets with equal dimension are 

derived, training data set 𝐷𝑡  and historical data set 𝐷ℎ. Then, we 

build a SCG-NN using 𝐷𝑡  and denote it as a generator to 

transfer 𝐷ℎ and to produce new training data. 

(3) Adversarial learning: To ensure the quality of 

transferred results, a cross-entropy error-based discriminator is 

designed to evaluate the transferred results. The proper 

transferred historical data resembling the original training data 

distribution can be selected by calculating their cross-entropy 

error values, and be added into 𝐷𝑡 . Then, a new SCG-NN-based 

generator is rebuilt with the new 𝐷𝑡  and is used to transfer 𝐷ℎ 

again. 

(4) Soft sensor establishing: As constantly adversarial 

learning occurs between the generator and the discriminator, 

transferred results are optimized and 𝐷𝑡  is augmented 

continuously. Until satisfying the termination condition of 

adversarial learning, we use the final 𝐷𝑡  to build a SCG-NN-

based model for prediction. 

(5) Causality analysis: To provide a visual explanation for 

the corresponding model and prediction results, we utilize the 

GCA-based rationale analyzer unfold the internal causality 

among input variables and between input and out variables 

simultaneously, and show the results in the form of figures. 

 

Fig. 1 The flowchart of ATL-based soft sensor and the GCA-

based rationale analyzer. 

A. VIP-based Feature Extraction 

VIP is a simple but powerful feature extraction method, 

which can effectively identify the connection between input and 

output variables [32]. The detailed procedure is shown in Fig. 

2. 𝑋 ∈ 𝑅𝑛×𝑚 is initial input matrix, 𝑌 ∈ 𝑅𝑛×1 is output matrix. 

The structure of the PLS calibration model between the input 

and output matrix can be defined as follows: 

𝑋 = 𝑇𝑃′ + 𝐸                                          (1) 

𝑌 = 𝑇𝑄′ + 𝐹                                          (2) 

where 𝑇 represents the relation matrix between 𝑋 and 𝑌, 𝑃 ∈
𝑅𝑚×𝑛  and Q ∈ 𝑅1×𝑛  are loading matrices, 𝐸 ∈ 𝑅𝑛×𝑚  and 𝐹 ∈
𝑅𝑛×1  matrices contain the projection residuals. Then, a 

common latent variables pace 𝑊∗ is derived as follows: 

𝑇 = 𝑋𝑊∗                                            (3) 

𝑊∗ = (𝑃′)−1 = 𝑊(𝑃′𝑊)−1                               (4) 

where 𝑊 represents the 𝑋-weights matrix. The final prediction 

output matrix �̂� ∈ 𝑅𝑛×1 can be described as follows: 

�̂� = 𝑋𝑊∗𝑄′                                          (5) 

𝐵𝑃𝐿𝑆 = 𝑊∗𝑄′                                         (6) 

where 𝐵𝑃𝐿𝑆 is named as the PLS regression coefficient. It is one 

of the most frequently used metrics for a multilinear regression 

issue. 

 
Fig. 2 The procedure of VIP-based feature extraction. 

Then, depending on Eq. (1) to Eq. (6), the VIP score of the 

j-th input variable for Y is calculated: 

𝑉𝐼𝑃𝑗 = √𝑚∑ [(𝑞𝑖
2𝑡𝑖

′𝑡𝑖)(𝑤𝑖𝑗/‖𝑤𝑗‖
2
)]𝑎

𝑖=1 /∑ (𝑞𝑖
2𝑡𝑖

′𝑡𝑖)
𝑎
𝑖=1     (7) 

where 𝑚 is the number of variables of the input matrix 𝑋, 𝑎 is 

the size of the matrix, 𝑞𝑖, 𝑡𝑖 and 𝑤𝑗  represent the 𝑖-th and 𝑗-th 

column vectors of 𝑄, 𝑇 and 𝑊, respectively. 

By comparing the 𝑉𝐼𝑃  score with the specific baseline 

𝑉𝐼𝑃𝑙𝑖𝑚𝑖𝑡 , the feature variables with high connection to the 

output variable can be selected. The baseline 𝑉𝐼𝑃𝑙𝑖𝑚𝑖𝑡 plays an 

important role in the feature extraction process. If 𝑉𝐼𝑃𝑗 ≥

𝑉𝐼𝑃𝑙𝑖𝑚𝑖𝑡 , the 𝑗-th variable will be selected as an input feature 

variable. Otherwise, the 𝑗-th variable will be removed. 

Different from the traditional statistical feature extraction 

methods such as PCA, the VIP metric weights the contribution 

of each variable according to the variance explained by each 

PLS principal component. In addition, compared with neural 

network-based feature extraction methods such as 
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Autoencoders (AE), VIP has more highly computational 

efficiency. Moreover, the extracted features from VIP have the 

true physical meaning and can reflect the physical correlation 

among the variables [33]. 

B. SCG-based Transfer Learning 

SCG-NN is one of feedforward shallow neural networks. It 

has the same framework as other feedforward shallow neural 

networks. The optimization process follows the well-known 

gradient descent method similarly, and the purpose is to find the 

proper step size 𝛼𝑘  and the descent direction 𝑝𝑘  for 

optimization [34]. 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘                                  (8) 

𝑝𝑘 = −𝑔𝑘 + 𝛽𝑘−1𝑝𝑘−1                            (9) 

where 𝑥𝑘 represents the 𝑘-th step iterative value, 𝑝𝑘 is the 𝑘-th 

step direction of descent, −𝑔𝑘 is the negative gradient of 𝑝𝑘−1, 

𝛽𝑘−1  is determined by different methods in different 

feedforward neural networks. 

Unlike other gradient descent algorithms, SCG-NN utilizes 

a fully-automated variable gradient method to derive the 

optimal step size 𝛼𝑘 and the descent direction 𝑝𝑘  [35], where 

the searching of step size 𝛼𝑘  and the descent direction 𝑝𝑘  is 

determined by the unconstrained optimization problem: 

min 𝑓(𝑥𝑘 + 𝛼𝑘𝑝𝑘)                               (10) 

where step size 𝛼𝑘 is calculated: 

𝛼𝑘 = −
𝑔𝑘
′𝑝𝑘

𝑝𝑘
′𝐻𝑘𝑃𝑘

                                   (11) 

where 𝐻𝑘  represents the Hessian matrix, 𝐻𝑘 =
𝜕2𝐸𝑘

𝜕𝑥𝑘
2 . 𝐸𝑘  is the 

total error of the 𝑘-th iteration output. 𝐻𝑘 > 0 is a necessary 

premise for the continuation of iteration. 

Depending on the definition: 𝑠𝑘 = 𝐻𝑘𝑃𝑘 , 𝛿𝑘 = 𝑝𝑘
′ 𝑠𝑘  and 

𝑢𝑘 = −𝑔𝑘
′ 𝑝𝑘 , so 𝛼𝑘 =

𝑢𝑘

𝛿𝑘
. 𝑠𝑘  can be calculated by using 

information from the second-order approximation: 

𝑠𝑘 =
𝐸′(𝑥𝑘+𝜎𝑘𝑃𝑘)−𝐸

′(𝑥𝑘)

𝜎𝑘
+ 𝜆𝑘𝑃𝑘                  (12) 

where 𝐸′ represents the first-order approximation of the total 

error 𝐸𝑘 . So 
𝐸′(𝑥𝑘+𝜎𝑘𝑃𝑘)−𝐸

′(𝑥𝑘)

𝜎𝑘
 can describe the second-order 

approximation of 𝐸𝑘  when 𝜎𝑘 → 0 . According to the newly 

introduced scale factor 𝜆𝑘 and 𝛼𝑘 are redefined as: 

𝛼𝑘 =
𝑢𝑘

𝛿𝑘
=

𝑢𝑘

𝑝𝑘
′ 𝑠𝑘+𝜆𝑘|𝑃𝑘|

2                           (13) 

In this paper, SCG-NN is used as the transferred learning 

model. Its detailed training process is shown as follows:  

Step 1: The number of neurons in each layer of neural 

network is determined relying on the distinguish of data, and 

then we initialize the network parameters randomly. 

Step 2: We calculate the total error 𝐸𝑘 of the 𝑘-th iteration 

output, and depending on Eq. (11) to Eq. (13), derive the proper 

step size 𝛼𝑘 and the descent direction 𝑝𝑘. 

Step3: The network parameters are updated through coping 

with the unconstrained optimization problem Eq. (10). 

Step4: We recalculate the total error 𝐸𝑘+1 with the updated 

network parameters, and derive the more proper step size 𝛼𝑘+1 

and the descent direction 𝑝𝑘+1 again. 

Step 5: Repeat the above steps until satisfying the 

termination condition of iteration. 

In SCG-NN, the fully-automated variable gradient method 

is an optimization methodology based on conjugate directions. 

In other words, the directions are orthogonal to each other with 

respect to the quadratic function 𝐻𝑘 [36]. SCG-NN has a clearer 

optimization goal in training processes, so leading to that it can 

denote better computation efficiency. 

C. A Novel Adversarial Learning Network 

Inspired by the adversarial learning network [37], we design 

a novel adversarial learning network to prevent the 

deterioration of transferred results in this paper. Its generator is 

based on the proposed hierarchical transfer learning algorithm, 

aiming to transfer the historical data and to produce new 

training data, whereas the cross-entropy error is involved as the 

evaluation criterion setting up the discriminator, which can be 

used to evaluate the quality of transferred data. Then, we adjust 

the parameters of SCG-NN depending on the feedback 

evaluation results. The detailed cross-entropy error function is 

as follows: 

𝐿𝑐𝑒𝑒(𝑦𝑖 , �̂�𝑖) = −[𝑦𝑖 ln(�̂�𝑖) + (1 − 𝑦𝑖)ln(1 − �̂�𝑖)      (14) 

where 𝑦𝑖  and �̂�𝑖  are real and predictive values, respectively. 

𝐿𝑐𝑒𝑒(𝑦𝑖 , �̂�𝑖) represents the cross-entropy error value between 𝑦𝑖 
and �̂�𝑖. Since the cross-entropy error function can describe the 

difference from probability distribution of variables, it is 

suitable to assess the quality of transferred data in this paper 

[38]. 

D. GCA-based Rationale Analyzer 

GCA is a multivariable linear analysis method based on 

time series. The primary purpose is to identify the causality by 

exploring whether one time series is useful for predicting 

another [39]. Different from other analysis methods, GCA can 

identify the causality between input and output variables rather 

than only analyzing why the soft sensor can achieve predictions 

for target variables. 

In this paper, the problem of space-time differences 

between two data sets has been resolved through the proposed 

ATL-based soft sensor, so the multiple regression issue is 

simplified. MLR is involved as the new regression method to 

replace the internal regression method of GCA. MLR can not 

only decrease the computational intensity but also analyze 

multiple causalities among input variables and between input 

and output variables simultaneously. The detailed process is as 

follows: 

Firstly, all the input and output variables are used to build 

an MLR-based regression model: 
𝑥1 = 𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 + 𝑎1𝑛+1𝑦 + 𝑒1
𝑥2 = 𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 + 𝑎2𝑛+1𝑦 + 𝑒2

……
𝑥𝑛 = 𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑛𝑥𝑛 + 𝑎𝑛𝑛+1𝑦 + 𝑒𝑛

𝑦 = 𝑎𝑛+11𝑥1 + 𝑎𝑛+12𝑥2 +⋯+ 𝑎𝑛+1𝑛𝑥𝑛 + 𝑎𝑛+1𝑛+1𝑦 + 𝑒𝑛+1

 

(15) 

where (𝑥1, 𝑥2, … , 𝑥𝑛) is the complete set of input variables, 𝑦 is 

the output variable, 𝑎𝑝𝑞 is the regression coefficient, 𝑥𝑞  is the 

𝑞-th variable, 𝑒𝑝 represents the prediction error. The regression 

model Eq. (15) is called the unrestricted model or the full model 

[40]. 

Then, to identify the causality between input and output 

variables, we derive an incomplete regression model lacking a 

certain variable. For example, 𝑞 ≠ 1: 
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𝑥1 = 𝑏12𝑥2 + 𝑏13𝑥3 +⋯+ 𝑏1𝑛𝑥𝑛 + 𝑏1𝑛+1𝑦 + 𝑒1(1)
𝑥2 = 𝑏22𝑥2 + 𝑏23𝑥3 +⋯+ 𝑏2𝑛𝑥𝑛 + 𝑏2𝑛+1𝑦 + 𝑒2(1)

……
𝑥𝑛 = 𝑏𝑛2𝑥2 + 𝑏𝑛3𝑥3 +⋯+ 𝑏𝑛𝑛𝑥𝑛 + 𝑏𝑛𝑛+1𝑦 + 𝑒𝑛(1)

𝑦 = 𝑏𝑛+12𝑥2 + 𝑏𝑛+13𝑥3 +⋯+ 𝑏𝑛+1𝑛𝑥𝑛 + 𝑏𝑛+1𝑛+1𝑦 + 𝑒𝑛+1(1)

 

(16) 

where 𝑏𝑝𝑞 is the regression coefficient, 𝑒𝑝(1) is the prediction 

error of the 𝑝-th variable by excluding the first variable. 

Finally, the GCA-index from 𝑥q to 𝑥𝑝 is defined to be the 

log-likelihood ratio: 

𝐹𝑞→𝑝 = ln
𝑣𝑎𝑟(𝑒𝑝(𝑞))

𝑣𝑎𝑟(𝑒𝑝)
                                 (17) 

where 𝑣𝑎𝑟  is the variance, 𝐹𝑞→𝑝  represents the influence of 

variable 𝑥𝑞  on 𝑥𝑝 . Eq. (16) quantifies the causality between 

variables. When 𝐹𝑞→𝑝  value is larger, it means that 𝑥𝑞  has a 

significant causality to 𝑥𝑝. Otherwise, 𝑥𝑞  invalid to 𝑥𝑝. 

The contribution rate (CR) is defined as follows: 

𝐶𝑅𝑞→𝑝 =
𝐹𝑞→𝑝

𝑠𝑢𝑚(𝐹𝑗→𝑝)
𝑗 = 1,2, … , 𝑛 + 1                (18) 

By comparing 𝐶𝑅𝑞→𝑝  values, we can provide a more 

intuitive result to identify the causality among input and 

between input and output variables. 

III. CASE STUDIES 

To validate the prediction performance of the ATL-based 

soft sensor and the explanation ability of GCA-based rationale 

analyzer, two sets of data are collected from a simulated 

wastewater plant and a full-scale OD wastewater plant, 

respectively. The root means square error (RMSE) and 

correlation coefficient (R) are selected as evaluation indexes of 

prediction results. The detailed introduction of two wastewater 

plants and evaluation indexes can be referred to the Appendix 

Information. 

A. Benchmark Simulation Model No.2 (BSM2) 

(1) Feature Extraction and Parameter Setting: In this case 

study, chemical oxygen demand (COD) is the output variable, 

which is a typically quality-related but hard-to-measure 

variable, other 36 process variables are initial input variables. 

To extract the optimal feature variables, we calculate the 

𝑉𝐼𝑃score of each initial input variables using Eq. (7). At the 

same time, the threshold baseline 𝑉𝐼𝑃𝑙𝑖𝑚𝑖𝑡 = 1.2 is provided 

relying on the distribution of data. After VIP-based feature 

extraction, the final input and output variables are derived and 

shown in Appendix Information Table S1. In addition, with the 

iterative adjustment, the final structure of SCG-NN is set up as 

21-15-1. The suitable network structure can not only contribute 

to reducing overfitting occurs but also improve the 

computational efficiency. 

TABLE II 

The feature extraction results and time consumption of PCA, 

AE and VIP. 

Method 
Initial 

inputs 

Feature 

extraction 
Time(s) 

PCA 36 25 0.38 

AE 36 30 12.36 

VIP 36 21 0.41 

(2) Performance of different feature extraction methods: As 

profiled in Table II, PCA, AE and VIP extracted 25, 30 and 21 

feature variables from the 36 initial input variables, respectively. 

Obviously, VIP derived the lowest-dimensional feature 

variables. This is because VIP can extract the optimal feature 

variables and remove the irrelevant variables through 

calculating the VIP score of each initial input variable. Then, 

by comparing their time consumption, we found that the time 

consumption of VIP is lower than AE significantly. This is 

mainly because VIP only needs to consider the statistical 

correlation between input and output variables rather than using 

the complex neural networks like AE to exploring the 

unexplainable relationship. To further demonstrate the 

superiority of VIP, Fig. 3 and Fig. 4 show the fitting profile 

between the prediction and true values as well as prediction 

errors with different feature extraction methods. It can be 

observed from Fig. 3 that VIP-SCG has better stability and 

achieves more accurate prediction, especially under the peak 

and valley locations. This illustrates that VIP can extract the 

most proper feature variables for prediction. Also, as can be 

seen from Fig. 4, occasional and unacceptable prediction errors 

occur frequently when using PCA-SCG and AE-SCG, but the 

prediction errors of VIP-SCG are always close to zero. 

Therefore, VIP-SCG can predict COD better than other soft 

sensors. 

 
Fig. 3 The fitting profile between the prediction and true values 

of PCA-SCG, AE-SCG and VIP-SCG. 

 
Fig. 4 The prediction errors of PCA-SCG, AE-SCG and VIP-

SCG. 

(3) Performance of soft sensors with or without ATL: To 

verify the advantages of ATL-based soft sensor, Table III 

tabulates the prediction results in terms of RMSE, R and time 

consumption of different soft sensors with or without ATL. By 

performing ATL, the prediction results of all soft sensors have 
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been improved significantly than without ATL in terms of 

RMSE values are reduced by 0.21, 0.81 and 0.47, respectively. 

This is mainly because ATL transferred the proper historical 

data to augment the training data set, leading to that we can 

establish better soft sensor model to predict COD. Then, by 

comparing the time consumption, it can be found that although 

the time consumption of soft sensors with ATL is larger than 

without ATL, the computational intensity is still acceptable. 

TABLE III 

The prediction results in terms of RMSE, R and time 

consumption of soft sensors with and without ATL. 
Meth

od 

RMS

E 
R 

Time(

s) 

Meth

od 

RMS

E 
R 

Time(

s) 

PCA-

SCG 
0.99  

97.69

% 
1.53  

PCA-
SCG-

ATL 

0.78  
98.30

% 
5.57 

AE-

SCG 
3.89  

90.04

% 
1.56  

AE-
SCG-

ATL 

3.28  
92.32

% 
5.87 

VIP-
SCG 

0.82  
98.61

% 
1.51  

VIP-

SCG-

ATL 

0.35  
99.18

% 
5.31 

(4) Performance of different soft sensors: Fig. 5 shows the 

prediction results of VIP-SCG-ATL and some other state-of-

the-art regression methods-based soft sensors such as VIP-

LSTM and VIP-SAE, and Table IV depicts their RMSE, R and 

time consumption. As profiled in Fig. 5, the prediction values 

of VIP-SCG-ATL are still the closest to the true values. This is 

mainly because it can refine the useful hidden information from 

historical data through ATL and use them to build better models 

for prediction. In addition, it is worthy to note that other two 

soft sensors, VIP-LSTM and VIP-SAE, have the poor 

prediction performance during the initial phase. This indicates 

that their optimization efficiency is inferior to VIP-SCG-ATL. 

By comparing the time consumption in Table IV, we can more 

intuitively discover VIP-SCG-ATL has the cheapest time 

consumption. The major reason is that SCG-NN belongs to one 

of feedforward shallow neural networks and uses the fully-

automated variable gradient method for training. 

 
Fig. 5 The fitting profile between the prediction and true values 

of VIP-LSTM, VIP-SAE and VIP-SCG-ATL. 

TABLE IV 

The prediction results in terms of RMSE, R and time 

consumption of VIP-LSTM, VIP-SAE and VIP-SCG-ATL. 
Method RMSE R Time(s) 

VIP-LSTM 0.97 98.26% 33.64 

VIP-SAE 1.01 97.27% 23.42 

VIP-SCG-ATL 0.35 99.18% 5.31 

(5) Result of GCA-based rationale analyzer: Fig. 6 shows 

the contribution rate of each input variable to COD using the 

GCA-based rationale analyzer. The first-highest and second-

highest causalities to COD are Q-in and Q-p, respectively. 

Obviously, the result conforms to the actual wastewater 

treatment process. When increasing or decreasing the water 

flow at the influence and primary locations, the efficiency of 

the whole wastewater treatment will be indeed affected, COD-

e is no exception. Besides the influence of water flow, SI and 

SO also play significant roles in nitrification and denitrification 

processes. As displayed in Fig. 6, they have large CR values on 

COD-e such as SI-r2 and SO-r5. 

 
Fig. 6 The contribution rate (CR) of each input variable to COD. 

B. A Full-scale OD Wastewater Treatment Plant 

(1) Feature Extraction and Parameter Setting: In this case 

study, biological oxygen demand (BOD) that can describe the 

reaction efficiency of biological activity is the output variable. 

And there are 36 process variables in the full-scale OD 

wastewater treatment process, which are all selected as initial 

input variables. To eliminate the negative influences of 

unrelated process variables and reduce the complexity of model, 

like the first case study, we determine the threshold baseline 

𝑉𝐼𝑃𝑙𝑖𝑚𝑖𝑡 = 1 relying on the distribution of data, and calculate 

𝑉𝐼𝑃score of each initial input variables using Eq. (7). After 

VIP-based feature extraction, the final input and output 

variables are derived and shown in Appendix Information Table 

S2. Similarly, the structure of SCG-NN is determined through 

continual trial-and-error. The final structure is set up as 9-12-1. 

TABLE V 

The feature extraction results and time consumption of PCA, 

AE and VIP. 

Method 
Initial 

inputs 

Feature 

extraction 
Time(s) 

PCA 36 15 0.063 

AE 36 20 8.721 

VIP 36 9 0.096 

(2) Performance of different feature extraction methods: 

We compare the results and time consumption of different 

feature extraction methods. As profiled in Table V, PCA, AE 

and VIP reduce the dimension of the input variables 

significantly, especially VIP reduces the dimension from 36 to 

9. Also, even though the time consumption of VIP is not 

cheapest, it is still acceptable. This is because VIP can refine 

the correlation between input and output variables only through 

simple computation. To further illustrate the superiority of VIP, 
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Fig. 7 and Fig. 8 show the fitting profile between prediction and 

the true values as well as prediction errors of different feature 

extraction methods. As displayed in Fig. 7, the soft sensor after 

VIP-based feature extraction can derive the best prediction 

results, especially under the peak and valley locations. This 

further illustrates that VIP captures the feature variables with 

high correlation to BOD. In addition, it can be seen from Fig. 8, 

the prediction errors of all soft sensors are highly dynamic in 

the whole wastewater treatment process, but the VIP-SCG still 

derived the best prediction results with the most stable 

prediction errors between -0.1 and 0.1. 

 
Fig. 7 The fitting profile between the prediction and true values 

of PCA-SCG, AE-SCG and VIP-SCG. 

 
Fig. 8 The prediction errors of PCA-SCG, AE-SCG and VIP-

SCG. 

(3) Performance of soft sensors with or without ATL: To 

verify the effectiveness of ATL, Table VI depicts the prediction 

results of soft sensors with or without ATL in terms of RMSE, 

R and time consumption. Obviously, by performing the ATL, 

the prediction results of all soft sensors have a large 

improvement in terms of RMSE values being reduced by 

43.57%, 28.81% and 43.83% than without ATL. This is mainly 

because the historical data can be continually transferred and 

optimized during the adversarial transfer learning process, 

which will be beneficial to the instruction of model with higher 

prediction performance. It is worth noting that since the 

methodology makes the model become more complex, the time 

consumption will be increasing, but it is still acceptable. 

TABLE VI 

The prediction results in terms of RMSE, R and time 

consumption of different soft sensors with and without ATL. 
Meth

od 

RMS

E 
R 

Time(

s) 

Meth

od 

RMS

E 
R 

Time(

s) 

PCA-

SCG 

0.003

8 

99.32

% 
1.86 

PCA-
SCG-

ATL 

0.002

7 

99.42

% 
3.6 

AE-

SCG 

0.004

4 

99.18

% 
1.97 

AE-
SCG-

ATL 

0.003

4 

99.19

% 
3.75 

VIP-

SCG 

0.002

2 

99.56

% 
1.74 

VIP-
SCG-

ATL 

0.001

5 

99.63

% 
3.57 

(4) Performance of different soft sensors: Like the first case 

study, we compared the prediction results of VIP-SCG-ATL 

and some other state-of-the-art regression methods-based soft 

sensors, VIP-LSTM and VIP-SAE. As profiled in Fig. 9, even 

though VIP-LSTM and VIP-SAE basically fit the profiles of 

true values, there occurs some prediction deviation in the peak 

and valley, so leading to that their overall prediction accuracies 

are inferior to VIP-SCG-ATL. This is mainly because the 

training data, especially resembling to under the peak and 

valley locations, can be augmented by using ATL. In addition, 

it can be seen from Table VII that the time consumption of VIP-

SCG-ATL is lowest. This demonstrates that VIP-SCG-ATL can 

not only achieve best prediction results, but also have the most 

highly computational efficiency. 

 
Fig. 9 The fitting profile between the prediction and true values 

of VIP-LSTM, VIP-SAE and VIP-SCG-ATL. 

TABLE VII 

The prediction results in terms of RMSE, R and time 

consumption of VIP-LSTM, VIP-SAE and VIP-SCG-ATL. 
Method RMSE R Time(s) 

VIP-LSTM 0.0066 98.89% 21.71 

VIP-SAE 0.0031 99.40% 12.35 

VIP-SCG-ATL 0.0015 99.63% 3.57 

(5) Result of GCA-based rationale analyzer: Fig. 10 

provides an intuitive explanation for the corresponding model 

and prediction results. We can find that the first-highest and 

second highest causalities to BOD-e are DO-e and SNH-e, 

respectively. In the full-scale OD wastewater treatment plant, 

the larger DO and SNH are, the more intense the biochemical 

reaction, the higher BOD is. Obviously, the analysis result is 

consistent with the biochemical reaction process. Also, the 

improved GCA-based rationale analyzer can accurately analyze 

the causality among input variables simultaneously. As shown 

in Fig. 10, we can determine the first-highest and second-

highest causalities for each input variable. And the analysis 

result also follows the biochemical reaction process. For 

example, after the wastewater is adequately reacted in the first 

aerated section, the reaction will be weakened in the second 
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aerated section, so OUR-r2 is the first-highest causality to 

OUR-r4. Besides, the nitrification and denitrification reaction 

processes will directly affect the concentration of nitrogen, thus 

OUR-r4 is the first-highest causality to TKN-e. 

 
Fig. 10 The first-highest and second highest causalities among 

variables. 

V. DISCUSSIONS 

To improve the prediction performance of soft sensor for 

the quality-related but hard-to-measure variables in industrial 

systems, this paper proposed an ATL-based soft sensor. Firstly, 

a hierarchical transfer learning algorithm integrating VIP-based 

feature extraction with SCG-NN transfer learning is proposed 

and used to refine the useful hidden information from historical 

data. Then, we design a novel adversarial learning network to 

prevent deterioration of transferred results, which consists of a 

SCG-NN-based generator and a cross-entropy error-based 

discriminator. Finally, a GCA-based rationale analyzer is added 

to provide a visual explanation for the corresponding model and 

prediction results. 

In this paper, two case studies are provided to validate the 

effectiveness of ATL-based soft sensor and the explanation 

ability of GCA-based rationale analyzer. The data set of the first 

case study belongs to a large-scale data set, and these data are 

collected from a simulation platform, whereas the second is a 

small-scale data set, and these data are collected from a full-

scale OD wastewater treatment plant. In two case studies, their 

sampling periods are different, which are 15 mins (in the first 

case study) and 200 sets one day (in the second case study), 

respectively. The first data set can be used to represent a well 

instrumented plant in the city, whereas the second one can 

represent a plant in the rural areas with less sensors and 

instrumentations. It is important to notice that the data set from 

the second case study have larger fluctuations than the first case 

study, which will increase the difficulty of prediction and the 

complexity of model. Overall, both the proposed ATL-based 

soft sensor and the GCA-based rationale analyzer can achieve 

satisfactory prediction and analysis results in two case studies. 

This demonstrates that the ATL-based soft sensor and the GCA-

based rationale analyzer have the wide applicability. 

However, there are still some unresolved issues. Firstly, 

when suffering from diverse samples, the hierarchical transfer 

learning algorithm are sensitive in the training process, thus 

they could be substituted by other similar methods or models 

when necessary [41, 42]. In addition, the process of adversarial 

learning is time-consuming due to the evaluation and 

adjustment at each iteration stage. To improve the 

computational efficiency, it will become a good research 

direction to replace the adversarial learning process with online 

deep learning in the future research [43]. Finally, the GCA-

based rationale analyzer is only devoted to analyzing the 

causality among the input variables and between input and 

output variables, lacking the analysis and discussion regarding 

the internal structure of models [44]. 

VI. CONCLUSION 

In this paper, an ATL-based soft sensor and a GCA-based 

rationale analyzer are proposed to address the problems of 

prediction and model explanation. Firstly, the useful hidden 

information from historical data is refined by using the 

adversarial transfer learning network, resulting in the 

enrichment of training data and the improvement of prediction 

performance. Then, the GCA-based rationale analyzer provides 

an intuitive and reasonable explanation for the corresponding 

model and prediction results, which can greatly increase the 

credibility of soft sensors and prediction results. Finally, their 

effectiveness is validated in a simulated BSM2 plant and a full-

scale OD wastewater treatment plant. The quality-related 

variables can be predicted effectively with RMSE and R being 

0.35 and 99.18% (in the first case study) and 0.0015 and 99.63% 

(in the second case study), respectively. In the future research, 

we will focus on more efficient feature extraction methods and 

regression algorithms for a industrial system with multiple 

working conditions. Moreover, recursive deep learning 

networks could be a potential solution to improve the adaptive 

ability of soft sensors. 
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