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Abstract—Human body-pose estimation is a complex problem
in computer vision. Recent research interests have been widened
specifically on the Sports, Yoga, and Dance (SYD) postures for
maintaining health conditions. The SYD pose categories are
regarded as a fine-grained image classification task due to the
complex movement of body parts. Deep Convolutional Neural
Networks (CNNs) have attained significantly improved perfor-
mance in solving various human body-pose estimation problems.
Though decent progress has been achieved in yoga postures
recognition using deep learning techniques, fine-grained sports,
and dance recognition necessitates ample research attention.
However, no benchmark public image dataset with sufficient
inter-class and intra-class variations is available yet to address
sports and dance postures classification. To solve this limitation,
we have proposed two image datasets, one for 102 sport categories
and another for 12 dance styles. Two public datasets, Yoga-82
which contains 82 classes and Yoga-107 represents 107 classes are
collected for yoga postures. These four SYD datasets are experi-
mented with the proposed deep model, SYD-Net, which integrates
a patch-based attention (PbA) mechanism on top of standard
backbone CNNs. The PbA module leverages the self-attention
mechanism that learns contextual information from a set of
uniform and multi-scale patches and emphasizes discriminative
features to understand the semantic correlation among patches.
Moreover, random erasing data augmentation is applied to
improve performance. The proposed SYD-Net has achieved state-
of-the-art accuracy on Yoga-82 using five base CNNs. SYD-Net’s
accuracy on other datasets is remarkable, implying its efficiency.
Our Sports-102 and Dance-12 datasets are publicly available at
https://sites.google.com/view/syd-net/home.

Index Terms—Sports, Dance, Yoga, Attention, Convolutional
Neural Networks (CNNs), Posture Recognition, Random Erasing.

I. INTRODUCTION

HUMAN body-pose recognition is a challenging problem
in computer vision. It is widely used in various appli-

cations, such as sports [1]–[6], yoga [7]–[14], dance [15]–
[19], daily activity [20], and others [14], [21], [22]. Among
these actions and postures, Sports, Yoga, and Dance (SYD)
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are intrinsically very important physical activities to balance
functionalities of various body parts, well-being, etc. The
SYD activities (Fig. 1) are crucial to improve our quality of
life (QoL) and mitigating several diseases and mental health
conditions, e.g., Parkinson’s disease, anxiety, sleeping disorder,
etc. [23]. Fine-grained image classification (FGIC) using SYD
postures is difficult due to huge intra-class variations and small
inter-class differences among the sub-categories. SYD express
our emotion, complex body movements, gestures, costumes,
and diversity. Dance is a perceptual domain integrating audio
(music) and video (posture) in a synchronized manner to
represent the underlying knowledge of a dance style [24]. In
this direction, Indian Classical Dance (ICD) and Yoga poses
(aka asana) effectively represent their heritage and culture
since ancient times [25], [26]. Also, hundreds of dancing
themes (e.g., tribal, folk, etc.) are popular across the world.
These diversities are promoted in the Intangible Cultural
Heritage of UNESCO, such as the Lazgi (Khorazm region
in Uzbekistan) [27], Thai (Thailand) Kolo (Serbia), Lad’s
(Romania), Bharatnatyam (India), and others.

Fig. 1. Symbolic examples of fine-grained Sports, Yoga, and Dance (SYD)
postures, represent complex body part movements and gestures, which are
key challenges in posture recognition.

To address the challenges in SYD recognition, existing
methods have emphasized hand-crafted features (e.g., bag-of-
words, haar wavelets, scale-invariant feature transform (SIFT),
space-time interest points (STIP), moments, etc.) [28], [29],
pose estimation from skeletal joints [22], [30], motion analysis
using optical flow information [26], and deep convolutional
features [18], [21], [31], shown in Table I. The pose estimation
performance is remarkably improved using deep learning and
related fusion-based techniques. Most of these methods are ex-
perimented with laboratory-simulated dance videos collected
from YouTube, or other web resources, summarized in Table I.
The Leeds Sports Pose (LSP) dataset [32] represents 8 sports
classes. The Yoga-82 [8] comprised of 82 fine-grained yoga
poses. Another dataset containing 107 yoga classes, Yoga-
107, is also experimented. However, no image-based dataset
with diverse variations of dance styles is publicly available.
Our main motivation is to create new image-based dance and
sports action datasets. We have presented the Sports image
dataset with 102 actions, and the Dance image dataset with
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TABLE I
SUMMARY OF A FEW EXISTING SPORTS, YOGA, AND DANCE RECOGNITION IMAGE/VIDEO DATASETS WITH RELATED DESCRIPTIONS.

Ref, year Method Input data Dataset name and pose/actions
[32], 2010 appearance and pose-based pictorial structure model. 1000 training and 1000 testing images Sports 8: Soccer, Tennis, etc.
[37], 2011 global scene model with a figure-centric visual word

representation
150 clips (mean 6.39s) at 10fps UCF Sports: kicking, lifting, rid-

ing horse, running, etc.
[38], 2014 multiple schemes to learn spatio temporal features 1 million YouTube videos, avg 5.36 min clip. 487 classes: cricket, racing, etc.
[39], 2019 spatio-temporal color-coded image called, joint an-

gular displacement map (JADM).
16,800 3D yoga videos with 400 videos per
pose, collected using a mocap setup.

Yoga 42: standing postures,
katichakrasana, etc.

[8], 2020 classification using CNNs in a hierarchical structure 28,478 yoga-pose images are collected from
various search engines.

Yoga 82: Handstand, Plank, Side
reclining, Shoulderstand, etc.

[7], 2022 contrastive skeleton feature representations and ex-
tracts 33 keypoints using Mediapipe

contains 1931 images collected from Kaggle Yoga 45: balancing, sitting, up-
ward bow pose, etc.

[40], 2013 space-time interest point descriptors computed from
each frame and classified by a non-linear SVM.

330 video clips of 87 dancers at 30 fps, and
collected from stage performance.

ICD - 6 styles: Bharatanatyam,
Kathak, Odissi, etc.

[41], 2017 mid-level action representation using dancelets for
dance-based video recommendation.

420 videos collected from YouTube and
Youku websites.

HIT Dances 6 styles: Ballet, Hip-
hop and 4 Chinese folks.

[42], 2018 integrates optical flow and motion data. Fusion-based
multi-stream 3D temporal CNNs were tested.

1000 videos of 10 sec. at 30 fps, a total of
300000 frames.

Let’s Dance 10 classes: Ballet,
Foxtrot, Latin, Tango, etc.

[43], 2021 Estimates 2D pose sequences, and tracks dancers.
Simultaneously estimates corresponding 3D poses.

1143 video clips of 9 genres, 154 movement
types of 16 body parts.

University of Illinois Dance - 9
types: Ballet, Tango, etc.

[44], 2022 understanding dance semantics by spatio temporal
dynamics using keypoints (OpenPose) and GRU.

300 HD dance videos, collected from 6 per-
formers in indoor and outdoor, and YouTube.

7 types: firing arrows, dance of
peacock, playing flute, etc.

Ours, 2023 Multi-scale patch-based attention mechanism 5967 image samples collected from Kaggle Yoga 107: tulasana, lolasana, etc.

12 categories, which are the first of their kind. A new deep
model is devised to simulate experimental analysis on four
SYD datasets in a weakly supervised manner.

We have proposed a patch-based attention (PbA) module,
namely SYD-Net (Fig. 2), that integrates spatial attention and
channel attention on top of standard backbone convolutional
neural networks (CNNs). Our aim is to establish a semantic
correlation among a set of uniform and multi-scale patches
by focusing on the most relevant image regions for defining
a comprehensive feature descriptor. SYD-Net is inspired by
the self-attention mechanism [33], [34], which is an integral
ingredient of numerous deep architectures in computer vision
and natural language processing ubiquitously. Gaussian drop-
out [35] is adapted to hinder overfitting. Random region
erasing [36] data augmentation (Fig. 3) produces on-the-fly
data diversity for effective training of SYD-Net. The major
contributions of this work are:

• A patch-based attention mechanism that summarizes the
discriminativeness of partial feature descriptors for fine-
grained sports, yoga, and dance postures recognition.

• A new image dataset with 102 sport actions and an-
other dataset representing 12 dance styles are proposed
for posture classification avoiding part-based/skeletal-
joint/bounding-box information.

• Extensive experiments are conducted using five backbone
CNN architectures on four SYD datasets in a weakly
supervised manner.

• The proposed SYD-Net approach achieves state-of-the-art
accuracy on the Yoga-82 and Yoga-107 datasets.

The rest of this paper is organized as follows: Section II
summarizes related works on SYD poses. Section III describes
the proposed method. Section IV describes the datasets briefly.
Section V demonstrates the experimental results of the ablation
study. The conclusion is presented in Section VI.

II. RELATED WORKS

Posture recognition methods can be generalized into two
broader streams: a) hand-crafted, and b) deep-learning meth-
ods including, attention-based works. Some SYD pose recog-
nition methods are summarized in Table I, and described next.

A. Study on Sports Actions

Sports activities are primarily recognized using deep archi-
tectures. Various sports technologies and related datasets are
studied and analyzed the role of computer vision technologies
in sports (e.g., player and ball tracking) in [5]. The pictorial
structure model (PSM) with clusters of partial pose descriptors
from sports images is presented [45]. The dataset is more
challenging than its earlier version, called Leeds Sports Pose
(LSP) dataset [32]. The collective sports video dataset repre-
sents a multi-task recognition of both 5 collective activities and
11 sports categories [6]. Deep learning methods using CNNs
and long short-term memory (LSTM) are tested for bench-
mark analysis. A two-stream attention model using LSTM
is described for action recognition [4]. Freestyle wrestling
actions are recognized from videos using a histogram of graph
nodes [46]. A multi-labels DeepSport dataset is presented
for automated sport understanding using videos captured at
multiple views of a basketball game [1]. A CNN combining
global regression and local information refinement modules
for sports-pose estimation using 2D images is presented [3].
Swimming motion analysis is presented [14]. Figure Skating
Dataset with 10 sports actions (FSD-10) is introduced for fine-
grained content analysis using a key-frame-based temporal
segment network [47]. Most of the existing works on sports
analysis are based on video datasets.

B. Study on Yoga Postures

Mainly, three types of intelligent approaches for yoga
pose analysis have been developed: (a) wearable device, (b)
Kinect, and (c) computer vision. A hybrid multi-modal and
body multi-positional system for recognizing 21 complex
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Fig. 2. Proposed SYD-Net Model comprises three key modules. a) Extraction of hybrid patches, consisting of same-size uniform patches and hierarchical
multi-scale regions. b) Patch-based attention module, consisting of the self-attention feature maps and further refined with the weighted-attention to define
channel-attention. It is modulated with a spatial attention module to define an attentional feature map. c) Finally, the compact feature vector is regularized
with the Gaussian dropout and batch normalization prior to the softmax layer for classification.

human activities using wearable devices is developed [48].
The CNNs recognize yoga poses from 3D motion capture
data by integrating a joint angular displacement map (JADM)
comprising 39 joints of yoga action skeletons [39]. A yoga
pose grading approach is described using contrastive skele-
ton feature representations [7]. Many approaches have used
OpenPose to estimate the keypoints/joints in developing Yoga
pose recognition and mobile applications for self-assessment
and yoga assistance [49]–[51]. A yoga self-coaching system
using an interactive display in real time is developed to avoid
incorrect postures [52]. It classifies 14 yoga postures based on
transfer learning. The fitness actions of 28 poses are classified
into three categories of exercises [10]. Likewise, 88 videos
are used for classifying 6 Yoga poses [49]. Yoga-82 [8] has
introduced a new dataset containing almost 28.5k images of 82
fine-grained yoga poses, and illustrated in Fig. 7. This dataset
is tested in our study for further improvement.

C. Study on Dance Postures

Traditional hand-crafted feature-based and deep learning
approaches are developed for dance posture recognition. The
bag-of-words method is applied to recognize five Greek dance
styles from videos [53]. The space-time interest point (STIP)
detection and their description from videos using a 3D facet
model are presented [54]. A spatio temporal Laban feature
descriptor (STLF) from YouTube videos is described [55].
Using a Kinect sensor, 3D skeletal information of 25 leg
postures from five dancers representing Odissi dance has been
collected, and a similarity function is used for recognition
[30]. Multiple kernel learning using a directed acyclic graph
is presented [29]. With music, Kathakali demonstrates com-
plex hand gestures, body movements, and facial expressions.
The dataset contains 654 images representing 24 mudras of
Kathakali and was tested using CNN [56]. Bharatanatyam
posture recognition is tested on audio and video data using
the Gaussian mixture model (GMM), support vector machine
(SVM), and CNN [57]. Dance semantics understanding from
videos by deep pose estimation (based on OpenPose) coupled
with a gated recurrent unit (GRU) is presented [44]. The

Inception-v3 features, 3D CNN features, and pose signature
based on AlphaPose estimation are combined and fed into
an LSTM for building spatio temporal relationships for ICD
classification [58]. A model based on ResNet-50 recognized
eight ICD [59]. An Uzbek national dance, Lazgi classification
and recognition using an optical motion capture system are
explored [27]. According to our study, image datasets repre-
senting various sport actions and dance styles are unavailable
for weakly supervised pose estimation. This work presents two
new image datasets for sport and dance actions recognition.

III. PROPOSED METHOD

Sports, Yoga, and Dance (SYD) involves complex move-
ments of body parts and subtle variations in expression and
gesture, e.g., yoga and dance poses. Human-object interactions
could also be involved, e.g., players with a football in sports.
Various pose-estimators, object detectors, skeletal joints, and
body parts are often used to solve the problem. The recognition
task becomes more challenging when multiple persons are in-
volved in an activity. In some cases, extraction and localization
of body keypoints of multiple persons from a still image could
be burdensome, and difficult to formulate an appearance-based
model. Sometimes, a global descriptor overlooks finer details,
which are essential for FGIC [60]. Our intuitive approach
is that region-based partial feature description could be an
alternative solution in capturing finer details of SYD poses for
classification. Our target is to devise an end-to-end trainable
deep architecture to classify these complex fine-grained human
postures avoiding any bounding-box annotation, object/pose
detector, and body keypoints/joints, commonly used in existing
works. Moreover, the random erasing technique with conven-
tional data augmentation is followed for additional benefits to
ease overfitting and overall performance gain. The proposed
SYD-Net, conceptualized in Fig. 2, is divided into three parts:
a) computing a set of non-overlapped patches with fixed-
size and multi-scale region proposals, b) patch-based attention
module, and c) classification. Functionalities of all modules are
described next.
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(a) Fixed RGB=127 (b) Random RGB

Fig. 3. Patches with random erasing image augmentation. (a) Erased full image with fixed RGB=127; 4×4 uniform, and multi-scale patches, enclosed by
rectangles. (b) Two random regions erased with random RGB colors on both types of patches.

A. Uniform and Multi-Scale Patch Proposals

In an image, contextual information and associated object(s)
provide a vital cue to understand human activity, evident in
various sports (Fig. 5). Here, a patch-based approach is devised
to learn overall semantics and contexts from various image
parts at multiple scales (Fig. 3). We aim to integrate de-
tailed information from several smaller non-overlapping image
patches into a comprehensive feature descriptor. Moreover,
hierarchical regions establish a semantic correlation and con-
textual representation among the feature maps. The uniform
patches focus on finer details in each small region. Whereas
larger multi-scale patches summarize overall feature repre-
sentation holistically. Thus, combining these two key aspects
through an attention mechanism improves overall efficiency
for subtle discrimination in fine-grained SYD postures.

Let a color input image Il ∈ Rh×w×3 is fed into a
backbone CNN, such as MobileNet-v2 with class-label l.
A backbone network N extracts high-level feature maps F
∈ Rh×w×c where h, w, and c denote the height, width,
and channels, respectively. The input image Il is divided
into a set (D) of non-overlapping uniform patch proposals.
The resulting number of small regions is e = (h× w)/a2,
where a × a is the spatial size of a rectangular patch d. Set
D = {d1, d2, ..., de|Il} consists of e parts. A small patch di is
defined with its spatial dimension pi = [xi, yi,∆w,∆h], and
here ∆w = ∆h = a is uniformly the same for all patches.
Each patch is denoted as di=[Fi, pi], where Fi is the feature
map of patch pi. In addition, multi-scale patches are defined to
capture complementary information hierarchically, where the
patch sizes are progressively increasing. It can be defined as
pi = [xi, yi,∆wi,∆hi] and pj = [xj , yj ,∆wj ,∆hj ] such that
∆wi > ∆wj and ∆hi > ∆hj , where pi > pj regarding
the spatial dimension of pi and pj patches, respectively.
Finally, a collection of all n patches (i.e., uniform and multi-
scale) is denoted as P =

{
pi
}i=n
i=1

, and corresponding feature
map is F =

{
Fi
}i=n
i=1

∈ Rn×(h×w×c). The feature map of
each patch is determined through a mapping between the
correspondence of smaller regions within the actual high-
level output feature maps, extracted using a base network N .
Firstly, F is upsampled to a higher resolution k(h × w) for
this intent. Then, bilinear interpolation is applied for pooling
features from every patch. The upsampling is regarded as a
mapping m : F → F ∈ Rk(h×w)×c, where actual spatial size
(h×w) is scaled up by k times before pooling. Though P
represents patches of various sizes, bilinear pooling renders
the feature vectors of the same sizes for all patches, which
are kept the same as the output dimension of base CNNs, i.e.,
F ∈ R(h×w×c), and denoted as F.

B. Patch-based Attention (PbA) mechanism

Attentional feature description is proliferated ubiquitously
in image recognition and others to improve performance.
Here, attention is performed in two paths, patch-based channel
attention and spatial attention, which are finally integrated
together. It fuses both to summarize essential features by
exploring where to focus and what to emphasize simultane-
ously in the feature maps F. Self-attention acts across the
channel-based feature maps of all patches to capture channel-
wise relationships. It relates inter-channel feature interactions
among patches and estimates their relevance correspondingly.
Cross-channel attention investigates the importance of feature
maps (what) to enhance learning capability. On the contrary,
spatial attention explores neighborhood structural interpreta-
tion for producing a spatial attentional mask (where) for further
refinement of aggregated feature summarization. These dual-
attention pathways empower significantly and act complemen-
tarily to render a global information for distinguishing subtle
variations in SYD recognition.

1) Channel Attention (CA): Channel attention is adapted
from self-attention mechanism that tackles long-range depen-
dency by generating a context vector based on the weighted
sum of feature space [33], [34]. In self-attention, the query Q,
key K, and value V are learned from the same input feature
vector F. The attention-weight matrix is a dot product of Q and
K, multiplied by V to generate an attention-focused feature
map. We have applied [Q,K, V ] attention principle for a patch
pi and its neighbors pj patches (i ̸= j). We aim to generate an
attentional feature descriptor, i.e., value V that focuses on the
relevant and discriminative regions. Fi and Fj are high-level
feature vectors computed from pi and pj patches, respectively.
The attentional feature map is given as

ψi,j = tanh(WψFi +Wψ′Fj + bψ),

ϑi,j = σ (Wϑψi,j + bϑ)
(1)

where Wψ and Wψ′ are the weight matrices to compute atten-
tion vectors using pi and pj patches, respectively; Wϑ is their
nonlinear combination; bψ and bϑ are the bias vectors, and
σ(.) is element-wise nonlinear activation. The next objective
is to compute the importance of each pi through a weighted
sum of attention scores of all patches, given as

δi,j = softmax(Wδϑi,j + bδ), F̂i =

n∑
j=1

δi,jFj (2)

where Wδ is the weight matrix, and bδ is the bias vector. The
aggregated feature space is F̂i which is summarized through
a global average pooling (GAP) layer to generate F̃i for all
patches in P . The result F̃i is passed through a softmax layer
for producing a weighted attention matrix ϕi. Finally, their
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weighted sum FCA is considered as the output of the cross-
channel attention (CA) mechanism, and is given as

F̃i = GAP
(
F̂i

)
, FCA =

n∑
i=1

ϕiF̃i

where, ϕi = softmax(WϕF̃i + bϕ)

(3)

2) Spatial Attention (SA): Spatial attention captures the
neighborhood information to calibrate feature representation
by generating an attentional mask for refining the global
structural information. This mask builds spatial relationships
by correlating where to pay attention in the feature space.
Thus, it effectively localizes the most informative region(s)
for global semantic representation of SYD postures.

No parameter optimization is required in the global average
pooling (GAP), and it helps to avoid overfitting [61]. GAP
sums out spatial information; thus, it is more robust to spatial
translations of input. It can play as a structural regularizer in
the network. Here, GAP is applied to refine spatial features
F from all patches P. It downsamples the channel dimension
precisely to (h×w×1) by summarizing the mean features and
generatig Fgap. Compared to GAP (.), global max pooling
(GMP) emphasizes the most important features from cross-
channels and generates an optimized feature vector Fgmp.
A combination of both pooling improves learning efficiency
compared to any single pooling [62]. The fused feature map
H ∈ Rn(h×w×2) is defined as

H = concat
(
GAP (F) ;GMP (F)

)
(4)

where, the feature pooling is F → Fgap : Rn(h×w×1), and
same for Fgmp. Next, a multi-layer perceptron (MLP) is
applied to generate a spatial attention mask FSA. A MLP
layer comprises a flatten, softmax, Gaussian dropout, and batch
normalization layers. We aim to compute weighting factors
based on the probabilities rendered by softmax activation. The
probabilities are computed by a dense layer with the same size
as base CNNs output channels 1× c.

FSA = MLP
(
H
)
; (softmax+ λGD+BN ) ⇒MLP (5)

where λGD+BN denotes a regularization (λ) process with a
Gaussian dropout (GD) and batch normalization (BN) layers.
The spatial attention mask is FSA ∈ R(1×c). This patch-level
spatial attention (FSA) mask is multiplied element-wise with
the weighted attention vector FCA, rendered from channel
attention method. It modulates overall feature representation
and empowers discriminability by capturing subtle details with
focusing on global structural information, as essential for
FGIC. A residual path is connected with FCA for smoother
gradient flow in learning. Finally, a patch-based attention
(PbA) feature vector FPbA ∈ R(1×c) is obtained.

FPbA =
(

FCA ⊗ FSA + FCA
)

(6)

3) Classification: The upsampled feature F is squeezed by
a GAP layer to produce a vector of (1×c) channels which is
added with attentional feature map FPbA. The final feature

Fig. 4. Baseline approach using attention over CNN’s output features.

vector Ff is regularized and passed to a softmax layer to
compute an output vector implying the class probabilities.

Ff = FPbA + GAP (F) ; Ypred = softmax(λ(Ff )) (7)

Gaussian dropout (GD) [35] and batch normalization (BN)
regularizers are applied to avoid overfitting issues and de-
noted as λ. The GD can generalize learning tasks effectively
than a simple dropout layer. Typically, GD uses multiplica-
tive noise, and the dropout rate ϕ maps to the noise stan-
dard deviation σnoise. This hyperparameter is computed as
σnoise(ρ) =

√
ρ.(1− ρ)−1. The noise distribution is free

of learnable parameter. The categorical cross-entropy loss
function Lce(Ytrue, Ypred) minimizes the error rates between
the actual class-label (Ytrue) and predicted class-label (Ypred)
during the learning task. The proposed SYD-Net is end-to-
end trainable and the attention module could be added with
standard backbones to enhance efficiency.

C. Attention-based Baseline Method

In addition to the conventional baseline evaluation, the
attention mechanism is applied to compute baseline results
(Table III). We aim to observe the suitability of hybrid patches
in improving the accuracy of attention-based baseline results
using different backbone CNNs. A pictorial representation of
the attention-based baseline is shown in Fig. 4. In this method,
firstly, the high-level feature map from a backbone CNN
is extracted. Subsequently, the self-attention and weighted
attention techniques are exploited for re-weighting the base
CNN’s output features. Lastly, a softmax layer is applied to
the attentional feature description for classification.

In summary, three methods are explored for baseline assess-
ment: (a) simple classification method using high-level feature
vector of a base CNN with conventional data augmentation; (b)
similar classification strategy as (a), with additional random
erasing data augmentation for more data-diversity; and (c)
leveraging attentional weights over base CNN’s features in
conjunction with (b), shown in Fig. 4. Description of baseline
evaluations is given in Sec. V-B. Indeed, our attention-based
baseline performance outperforms the traditional baseline
method that only uses base CNN’s output features.

IV. DATASET DESCRIPTION

We have described the Sports-102, Yoga-82, Yoga-107, and
Dance-12 datasets which provide only class labels, avoiding
bounding-box annotations, and summarized in Table II.

1) Sports-102 Dataset: The sports dataset represents 102
sports-action classes representing complex human body pos-
tures. Sports-102 comprises various games, some of which
are based on individual performers (e.g., golf, javelin, etc.)
while others are team-based (e.g., hockey, kabaddi, etc.) with
diversity. Samples of various sports are shown in Fig. 5. The
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Fig. 5. Examples of diverse sport actions from the Sports-102 dataset.

Fig. 6. Class-wise train-test image distribution of Sports-102 dataset. Best view of the class labels in zoom.

(a) Yoga-82 dataset (b) Yoga-107 dataset

Fig. 7. Examples of various asanas from the Yoga-82 [8] and Yoga-107 datasets.

training and testing data distribution of various sports cate-
gories are shown in Fig. 6. Mainly, the images are collected
from Kaggle 1 repository, and related websites. Though few
video-based datasets exist for dance and sport actions, no such
image-based datasets are publicly available for research, to the
best of our knowledge.

2) Yoga-82 [8] and Yoga-107 Datasets: These are publicly
available datasets. Samples of various postures of Yoga-82 are
illustrated in Fig. 7.a. After careful observation, a few samples
are rejected, which are irrelevant. The reason might be the
resolution, format, size, other characteristics of images, and
repetition of the same images. Some poses (asana) represent-
ing the cartoon’s and animal’s images are irrelevant to the
current problem, so, eliminated. Thus, samples from various
yoga classes are discarded to formulate a well-defined and
precise Yoga-82 sub-dataset. Actual Yoga-82 contains 21.0k
training and 7.4k testing samples. Whereas we have tested on
19.9k training and 7.2k testing images after standardization.

The Yoga-107 dataset is collected from Kaggle 2 repository
and a few samples are shown in Fig. 7.b. It contains 107
fine-grained classes of yoga poses, comprising a total of 5.9k
images. It is a challenging yoga dataset as the classes are more
than 100, and the asana samples per class are much lesser
than Yoga-82.

3) Dance-12 Dataset: A total of 12 dance styles are
incorporated in the Dance-12 dataset representing diverse
variations in postures, number of persons, background, theme,
and other factors. This dataset represents the following

1www.kaggle.com/datasets/gpiosenka/sports-classification
2https://www.kaggle.com/datasets/shrutisaxena/yoga-pose-image-

classification-dataset

TABLE II
DATASET SUMMARY AND TOP-1 ACCURACY (%) OF SYD-NET TRAINED

FROM SCRATCH AND WITH IMAGENET WEIGHTS USING XCEPTION.

Dataset Train Test Class Xcep (srth) Xcep (ImNet)
Sports-102 9278 4315 102 96.70 98.86

Yoga-82 19941 7241 82 97.29 97.80
Yoga-107 4084 1883 107 82.00 85.20
Dance-12 3129 1694 12 92.24 97.98

dance categories: Ballet, Hip-hop, Pole, Salsa, Samba,
Bharatnatyam, Chaau, Dandya, Dhunuchi, Kathak, Kalbelia,
and Manipuri. The first five dances are internationally
popular and the remaining seven are Indian. All the images
are collected freely from various public websites such as
Google, Yahoo, Bing, etc. Samples of international and
Indian dance genres are illustrated in Fig. 8. The training
and testing splits of various dance styles are given in
Fig. 9. The purpose of our data collection is research
only. No commercial gain or unethical issue is involved
in our research. Dance-12 is growing a dataset in size
and variations. We will include several more classical
and folk dance styles from various countries around the
world in the near future. This dataset is publicly available at
https://sites.google.com/view/syd-net/home.

V. EXPERIMENTAL RESULTS

Firstly, we have analyzed the experimental details of SYD-
Net. Next, an ablation study is presented to evaluate the
significance of key components of the SYD-Net model.

A. Implementation
Our model is implemented using ResNet-50 [63], DenseNet-

201 [64], NASNetMobile [65], MobileNet-v2 [66], and Xcep-
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(a) Ballet (b) Hip-Hop (c) Salsa (d) Pole (e) Bharatnatyam (f) Manipuri (g) Chhau (h) Kalbelia
Fig. 8. Examples of various dance styles from the Dance-12 dataset.

Fig. 9. Training-testing image distribution of Dance-12 dataset.

tion [67] backbone CNNs in TensorFlow-2.x with cuDNN
7.6.The input image resolution is 224×224, and the output
feature map of the MobileNet-v2 backbone is 7×7×1280.
Whereas, the output feature maps of other backbones represent
the same spatial size, but differ in channel dimensions. The
patch sets are extracted along the spatial dimension [68]. The
spatial size of base output (7×7) is upsampled to 48×48
for extracting the patch sets from P9 to P20. The upscaled
resolution is 45×45 for proper pixel alignment with the patch-
sizes of P25 and P30. Three sets of uniform patches (3×3,
4×4, and 5×5) and corresponding hierarchical regions are
generated. For example, with 16 uniform patches, 4 multi-
scale patches are computed in a hierarchical manner from
the center of the input image with the smallest 12×12 size,
and incremented to 24×24, 36×36, and finally to 48×48
size. Altogether 16 uniform and 4 hierarchical patches are
considered in set P20. Likewise, P12 and P30 are generated.
Initially, the input image size is 256×256. We have applied
standard data augmentations of random rotation (±25 degrees)
and random scaling (1±0.25). Two randomly selected regions
of total size or a single region with size (0.1-0.8) are erased
with either a fixed RGB=127 or random RGB pixel-values at a
time (Fig. 3), and applied on-the-fly for image augmentation.
Then, random cropping is applied to select an image size of
224×224 as input to CNNs. SYD-Net is trained from scratch
for initializing base CNNs for a fair comparison, as well as
trained with ImageNet weights in separate experiments. The
Stochastic Gradient Descent (SGD) is used to optimize the
categorical cross-entropy loss function with an initial learning
rate of 0.007 and multiplied by 0.1 after every 50 epochs. The
model is trained for 200 epochs with a mini-batch size of 8
using a Tesla M10 GPU of 8 GB. A Gaussian dropout rate 0.2
and batch normalization are applied to avoid overfitting. The
top-1 and top-5 accuracy (%) metrics are used for performance
evaluation, and the model’s parametric complexity is estimated
in millions (M).

TABLE III
TOP-1 BASELINE ACCURACY (%) USING CONVENTIONAL DATA
AUGMENT (TOP ROW-SET), RANDOM ERASING AUGMENT (MID

ROW-SET), AND ATTENTION WITH RANDOM ERASING (LAST ROW-SET).
THE LAST COLUMN SHOWS MODEL PARAMETERS IN MILLIONS (M).

Base CNNs Sports Yoga-82 Yoga-107 Dance Par (M)
ResNet-50 68.34 75.52 52.13 63.44 23.8

DenseNet-201 74.21 80.16 55.12 68.12 18.5
MobileNet-v2 75.70 79.73 60.31 63.80 2.4

Xception 79.10 81.93 62.87 72.27 21.1
ResNet-50 70.91 77.56 55.28 63.80 23.8

DenseNet-201 76.69 80.60 57.47 68.24 18.5
MobileNet-v2 77.62 82.23 65.10 65.58 2.4

Xception 80.17 83.78 66.50 72.92 21.1
ResNet-50 70.96 80.60 57.31 60.90 23.9

DenseNet-201 77.18 83.63 58.38 68.95 18.6
MobileNet-v2 77.22 83.31 65.86 68.06 2.4

Xception 82.88 85.67 67.52 73.34 21.2

B. Performance Analysis

The performances of SYD-Net have been evaluated consid-
ering several important aspects, discussed next.

1) Baseline Results: First, baseline performances of four
backbone CNNs (trained from scratch) are computed on four
datasets. The results are given in Table III. Three sets of exper-
iments are conducted for a baseline evaluation, as aforesaid.
In the first set of experiments (top row set), conventional data
augmentations,i.e., rotation, scaling, and cropping are applied.
In addition to the general augmentation, random region erasing
is applied in the second set of experiments, given in the middle
row set. In both experiments, we considered the output feature
maps of base CNNs, and then applied global average pooling
(GAP) prior to classification layer. In the last set of experi-
ments (bottom row set), the erasing-based data augmentations
remain the same.

Moreover, the attention module is applied as an alternative
to GAP on base CNNs feature maps. However, the patches are
not included in any baseline assessment (Fig. 4). The baseline
performances have been improved using random erasing over
traditional augmentation techniques. Also, attention has en-
hanced the baseline accuracy over GAP with a little overhead
regarding the model parameters (approx +83K).

2) SYD-Net’s Performance: The accuracy of SYD-Net is
improved significantly by incorporating an attention module
(PbA) over hybrid patches. The performances of a different
number of patches using four base CNNs i.e., ResNet-50
(RN-50), DenseNet-201 (DN-201), MobileNet-v2 (MN-v2),
and Xception (XN) are evaluated on all four datasets, and
the results are given in Table IV. It evinces that uniform
(U) patches could attain good results over baseline accuracy.
Moreover, uniform patches in conjunction with hierarchical
(H) regions boost the performance further by summarizing
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TABLE IV
TOP-1 ACCURACY (%) OF SYD-NET (SCRATCH) WITH ATTENTION
MODULES USING VARIOUS UNIFORM (U) AND HIERARCHICAL (H)

PATCHES: P9 , P12 , P16 , P20 , P25 , AND P30 . TWO RANDOM ERASED
REGIONS WITH BASIC IMAGE AUGMENTATIONS ARE APPLIED.

CNNs Patch Sports Yoga82 Yoga107 Dance Par(M)
RN-50 P9 88.10 91.43 70.19 78.61 32.0

P12 89.37 92.56 70.67 79.03 32.7
P16 89.51 93.49 71.03 81.33 33.4
P20 90.23 93.77 71.90 82.52 34.2
P25 90.51 93.56 73.02 82.40 35.2
P30 91.37 93.92 75.00 84.18 36.2

DN-201 P9 90.60 94.24 68.32 83.42 26.1
P12 91.32 94.94 69.71 83.00 26.8
P16 92.55 95.48 71.90 83.94 27.6
P20 92.85 95.75 72.32 85.24 28.3
P25 92.83 95.46 73.50 85.37 29.2
P30 93.36 95.87 74.73 88.03 30.0

MN-v2 P9 93.50 94.66 75.26 84.36 7.5
P12 93.20 95.02 76.22 84.60 7.9
P16 92.90 95.06 77.67 85.42 8.4
P20 93.92 95.63 78.10 86.20 8.9
P25 93.22 94.96 78.84 86.85 9.6
P30 94.78 96.00 79.54 87.73 10.2

XN P9 95.66 96.35 71.36 87.50 29.3
P12 95.89 96.68 77.72 89.21 29.9
P16 95.40 96.40 79.54 90.10 30.7
P20 96.03 96.76 80.19 90.22 31.5
P25 96.21 96.50 80.76 91.40 32.5
P30 96.70 97.29 82.00 92.24 33.5

TABLE V
SYD-NET’S TOP-1 ACCURACY(%) USING NASNETMOBILE (SCRATCH)

Method Sports Yoga-82 Yoga-107 Dance Param (M)
Erasing BL 70.82 77.61 56.20 66.35 4.4

P20 90.62 94.08 72.70 83.88 9.8
P30 91.58 94.70 74.09 84.12 12.4

contextual descriptions at multiple granularities. We have de-
fined three sets of mixed patches: P9 contains 3×3=9 (patch-
size 16×16 pixels), P16 represents 4×4=16 (patch-size 12×12
pixels), and P25 represents 5×5=25 (patch-size: 9×9 pixels)
uniform (U) regions. It is clear that more patches attain better
results. For example, P25 renders better results than P9 and
P16. To enhance the accuracy of uniform patches further,
3 hierarchical regions are included with P9 to produce P12

(9U+3H) hybrid patches. Likewise, 4 multi-scale regions are
included with P16 to generate P20 (16U+4H) patches, and
5 multi-scale regions are included with P25 to generate P30

(25U+5H) patches, respectively. The results imply that hybrid
regions could improve accuracy over all three (P9, P16, and
P25) sets of uniform patches. Finally, set P30 achieves the
best performance among all patch sets. MobileNet-v2 achieves
competitive results compared to heavier backbones. Thus,
another light-weight CNN, NASNetMobile, is tested on these
datasets additionally. Only the baseline with random erasing
augmentation (Erasing BL), P20, and P30 are considered in
this precise experiment. The results of NASNetMobile trained
from scratch are given in Table V. Both MobileNet-v2 and
NASNetMobile, albeit lightweight, have attained competitive
accuracy over other base CNNs.

Next, the top-5 accuracy (%) of SYD-Net using P30 with
two random erased regions trained from scratch are given in
Table VI. All backbone CNNs attain excellent top-5 accuracy
on four SYD datasets. Now, SYD-Net is trained with pre-

TABLE VI
TOP-5 ACCURACY(%) OF SYD-NET WITH P30 , TRAINED FROM SCRATCH

CNNs Sports-102 Yoga-82 Yoga-107 Dance-12
ResNet-50 98.89 99.42 95.67 98.22

DenseNet-201 99.40 99.20 96.20 98.93
NASNetMobile 99.07 99.60 95.99 98.69
MobileNet-v2 99.60 99.78 97.95 98.70

Xception 99.81 99.42 98.39 99.70

trained ImageNet weights to observe its efficiency. This exper-
iment is conducted with both lightweight CNNs, and the best
performer Xception considering random erasing augmentation.
The results are given in Table VII. The accuracy is improved
by a significant margin using ImageNet weights on P20 and
P30 compared to training from scratch (Table IV). Also, P30

offers a little accuracy gain over P20.
Furthermore, SYD-Net is tested on the Yoga-107 dataset

trained with ImageNet weight initialization using four base
CNNs, considering all combinations of patches and random
erasing data augmentation, as defined above. The top-1 ac-
curacies are provided in Table VIII. The best performance
on Yoga-107 is 87.17%, achieved by DenseNet-201 with P30

patches. Also, other CNNs have achieved competitive results,
e.g., Xception achieved the second-best accuracy of 85.20%.

TABLE VII
TOP-1 ACCURACY (%) OF SYD-NET TRAINED WITH IMAGENET
WEIGHTS USING TWO ERASED REGIONS WITH RANDOM VALUES

CNNs Model Sports Yoga-82 Yoga-107 Dance
NASNetMobile BL 91.53 88.48 73.34 88.27

P20 97.56 94.44 83.92 95.80
P30 98.21 96.58 84.61 96.74

MobileNet-v2 BL 93.11 90.73 75.64 87.38
P20 98.37 97.20 83.60 96.50
P30 98.70 97.41 85.14 96.80

Xception BL 94.48 91.29 73.34 88.74
P20 98.81 97.41 84.18 97.15
P30 98.86 97.80 85.20 97.98

TABLE VIII
TOP-1 ACCURACY (%) OF SYD-NET TRAINED WITH IMAGENET

WEIGHTS ON YOGA-107. THE TERMINOLOGIES ARE DENOTED AS: RN50
FOR RESNET-50; DN201 FOR DENSENET-201; XN FOR XCEPTION;

MNV2 FOR MOBILENET-V2; BL FOR BASELINE; AND Pi FOR PATCHES.

CNN BL P9 P12 P16 P20 P25 P30

RN50 74.20 80.76 81.99 82.42 83.11 83.60 85.04
DN201 77.83 83.06 85.84 86.48 86.54 86.75 87.17
MNv2 75.64 79.22 80.87 82.66 83.60 84.56 85.14

XN 74.41 82.21 83.65 83.97 84.18 84.33 85.20

3) Model Parameters: The complexity of SYD-Net in
terms of model parameters estimated in millions (M) is
given in the last column of Table III-V. MobileNet-v2 and
NASNetMobile are lightweight backbones than other CNNs,
regarding the model complexity. The model parameters of P9

and P30 patch sets using MobileNet-v2 are 7.5M and 10.2M,
respectively. Next, NASNetMobile’s baseline parameters are
4.4M, and P30 requires 12.5M. Thus, the parametric complex-
ity of P30 using NASNetMobile backbone is the second lowest
(after 10.2M parameters of MobileNet-v2) among all five
CNNs used here. MobileNet-v2 attains balanced performances
on SYD datasets with lesser model parametric overhead,
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whereas SYD-Net using Xception backbone has attained the
best accuracy with higher model parameters (33.5M). The
accuracies of other base CNNs are satisfactory, and useful for
benchmarking the SYD datasets.

(a) Top-1 Accuracy on Yoga-107 (b) Accuracy Density

Fig. 10. Performance comparison of SYD-Net with P30 using five different
backbone CNNs trained from scratch. (a) Top-1 accuracy on Yoga-107. (b)
Accuracy density on four datasets using five backbone CNNs.

C. Comparative Study on Efficiency of Backbone CNNs

Few works tested on small-scale datasets have witnessed
that MobileNet-v2 could achieve better performance than
ResNet-50. A reason could be the fundamental design aspects
of these standard backbones. ResNet family exploits shortcut
connections (i.e., identity mapping) to avoid performance
degradation problem. This conjecture is further improved by
introducing bottleneck layers where parameter-free identity
shortcuts are crucial in the network at a deeper level. On
the contrary, Xception is hypothesized by utilizing the in-
ception module and separable convolutions for decoupling
the spatial and channel-wise feature correlations. MobileNet-
v2 is built upon the depth-wise and point-wise separable
convolutions and the inverted residual with linear bottleneck
layers. Moreover, ReLU6 non-linearity is used for handling
robustness issues at a lower dimensional feature representation.
Overall, this lightweight architecture directs to a faster and
memory-efficient implementation than standard convolution,
which is used as a main building block of other backbones.
The compact, lightweight architecture of MobileNet-v2 leads
to a higher computational and accuracy gain over other back-
bone CNNs. A comparative study on Yoga-107 using five
base CNNs is shown in Fig. 10.a, and Xception renders the
best accuracy among all CNNs. The results indicate superior
performances of both lightweight CNNs compared to other
heavier backbones, ResNet-50, and DenseNet-201 i.e., densely
connected between layers [64]. The results on Yoga-82, as
reported in [8], imply that the MobileNet family outperforms
the ResNet family. NASNetMobile attained competitive results
i.e., the differences between the accuracies of NASNetMobile
and ResNet-50 on various fine-grained datasets are small in
[20]. Thus, the results reported in various works evince the
better capacity of lightweight MobileNet-v2 and NASNetMo-
bile base CNNs. Herein, the efficacy of both lightweight CNNs
is clear from the baselines and patched-based results.

To delve insight into the model’s capacity, the performances
of various base CNNs could be analyzed with the top-1
accuracy density, i.e., the ratio of top-1 accuracy and the
number of model parameters, as defined in [69]. A higher

accuracy density value implies a higher efficiency of a deep
network. It indicates how efficiently the parameters contribute
to the model’s capacity and expressiveness through successive
layers of transformation and non-linearity. In [69], MobileNet-
v2 attained better accuracy density than other base CNNs, e.g.,
ResNet-50. Our analysis of accuracy density follows a similar
trend. A comparative study of accuracy density rendered by
five base CNNs on four datasets is shown in Fig. 10.b. As
aforesaid, a worthy reason of attaining a higher accuracy
density is the powerful and precise architectural design of
MobileNet-v2.

Fig. 11. Confusion matrices of SYD-Net with P30 on Dance-12 using
MobileNet-v2, and Xception base CNNs. Best viewed in zoom.

D. Performance Comparison on Yoga-82 and Yoga-107

The pioneering work on Yoga-82, considering 82 classes
and using a variant of DenseNet-201, has attained the best
79.35% top-1 and 93.47% top-5 accuracy, respectively. The
performances on Yoga-82 using various CNNs are given in
Table IX. The best performances of our approach are com-
pared fairly using different CNNs trained from scratch. It is
evident that SYD-Net outperforms those existing methods by a
significant margin and achieves state-of-the-art results. The ac-
curacies of our baseline methods are higher than actual Yoga-
82. As a result, the top-1 and top-5 accuracy of SYD-Net using
various CNNs are significantly higher than existing works
on Yoga-82. The body key-points-based classifier ensemble
method has achieved 80.14% top-1 accuracy [13]. Fusion of
DenseNet-161 and KNN model achieves 79% accuracy while
DenseNet-161 alone can attain 81% accuracy in Pose tutor
[11]. On the contrary, SYD-Net has achieved at least a 14%
gain in top-1 accuracy using various CNNs.

In Yoga-45 [7], 1931 images representing 45 yoga classes
were selected and achieved 83.27% accuracy for pose grading
using contrastive skeleton feature representation. In contrast,
we have selected 5k images categorized into 107 classes as an
enhanced version of Yoga-45. The best accuracy of SYD-Net
is 87.17%, rendered by DenseNet-201 with ImageNet weight
initialization, reported in Table VIII. However, our method is
not directly comparable with Yoga-45 due to the differences
in dataset characteristics (e.g., sample size and the number of
classes) and experimental setup.

The best top-1 accuracies of SYD-Net on four datasets using
Xception, trained from scratch (srth), and ImageNet weights
(ImNet) are reported in the last two columns of Table II.
The proposed Sports-102 and Dance-12 datasets are publicly
available for further improvement and comparative analysis.
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Fig. 12. The tSNE plots of SYD-Net on Dance-12 using MobileNet-v2. Left to right: General baseline; Baseline with attention mechanism; SYD-Net with
P25, and finally, SYD-Net with P30.

TABLE IX
COMPARISON OF TOP-1 AND TOP-5 ACCURACY(%) ON YOGA-82.

Method Backbone Types Top-1 Acc Top-5 Acc
Yoga-82 [8] MobileNet-V2 71.11 88.50

ResNet-50 63.44 82.55
DenseNet-201 variant 79.35 93.47

Ensemble [13] keypoints + ensmble 80.14 -
Fusion [11] DenseNet-161 (ImNet) 81.00 -
SYD-Net ResNet-50 93.92 99.42

NASNetMobile 94.70 99.60
DenseNet-201 95.87 99.20
MobileNet-v2 96.00 99.78

Xception 97.29 99.42

E. Feature Maps Visualization

The confusion matrices of Dance-12 with P30 are shown in
Fig. 11. We have delved into various key layers to visualize
feature maps using the t-SNE [70] plots in Fig. 12. The figures
show the feature distributions of data separability and clusters
to reflect the discriminativeness of SYD-Net features. Here,
the Dance-12 test set is considered for summarizing the feature
distributions into a smaller subspace for visualization. In Fig.
12, the first two images show a comparison of feature rep-
resentation between the traditional data augmentation and its
improvement using the attention mechanism. Both techniques
are considered as baselines. The last two t-SNE figures show
feature representations of P25 and P30 in a lower dimension.
These figures clearly show the class-wise feature map clusters
with a significant class separability over the baselines. Also,
the data distribution in P30 is slightly improved over P25. This
difference is reflected in the accuracy.

F. Ablation Study

The effectiveness of major components of SYD-Net is
assessed on Dance-12 and Sports-102 using the MobileNet-
v2 backbone. Mainly, the ablation study is focused on: (1) the
patch-based attention module (PbA) and its sub-components;
(2) the significance of two different activations in MLP; and
(3) the impact of variations in random erasing data augmen-
tations. The results are reported in Table X.

1) Patch-based attention module and its components:
We have evaluated the accuracy of three sets of hybrid
patches without any attention module, i.e., P12 (9U+3H), P20

(16U+4H), and P30 (25U+5H) regions. The results imply that
the inclusion of patches could improve the accuracy over the
baseline performances, given in Table III. Also, P30 renders
better accuracy compared to P12 and P20.

The significance of channel attention and spatial attention
mechanisms of SYD-Net are explored. We have tested both

TABLE X
ACCURACY (%) OF VARIOUS KEY COMPONENTS OF SYD-NET AND

RANDOM ERASING AUGMENT USING MOBILENET-V2.
SYD-Net components Sports Dance Par

Using P12 only, no attention 89.56 69.78 2.4
Using P20 only, no attention 86.94 68.54 2.4
Using P30 only, no attention 92.57 80.21 2.4
Spatial attention only: SA12 77.18 67.71 3.9
Spatial attention only: SA20 77.36 69.07 4.8
Spatial attention only: SA30 78.54 69.55 6.1

Channel attention only: CA12 91.44 74.88 6.4
Channel attention only: CA20 91.53 76.12 6.4
Channel attention only: CA30 94.00 77.54 6.4

sigmoid spatial attention: SA12 77.62 70.31 3.9
sigmoid spatial attention: SA20 93.06 84.89 8.9
sigmoid spatial attention: SA30 93.90 85.96 10.2

P12 with general dropout 92.46 84.24 7.9
P20 with general dropout 93.85 84.83 8.9
P30 with general dropout 94.24 86.61 10.2

P12 without Gaussian dropout 93.06 83.29 7.9
P20 without Gaussian dropout 94.13 84.60 8.9
P30 without Gaussian dropout 94.82 85.60 10.2

P30 with 1 erased region, rand RGB 94.48 84.89 10.2
P30 with 1 erased region, RGB=127 93.69 84.13 10.2
P30 with 2 erased regions, RGB=127 94.52 86.43 10.2

P30, 2 erased regions, rand RGB: SYD-Net 94.78 87.73 10.2

paths separately to analyze the effectiveness of attention
mechanism in a performance gain. It is evident that the patch-
based channel attention (CA) path is more beneficial than the
spatial attention (SA) module. The reason could be that feature
maps optimization across the channel dimension (MobileNet-
v2: 7×7×1280) is more effective over the spatial dimension
(7×7×2). Because the feature space per patch is larger in
cross-channel interaction than in spatial dimension, which
ignores discriminative information during feature selection
through spatial pooling. Also, P30 achieves better accuracy
than P12, as observed in earlier ablation studies.

2) Different activations in MLP and dropout layers: The
effectiveness of softmax over sigmoid activation in the
MLP layer of spatial attention is investigated. It is noted
that softmax is more efficient in activating the neurons to
estimate the probability maps for producing spatial attention
masks. However, both activations are useful for improving
overall accuracies leveraging the attention mechanism. The
contribution of the Gaussian dropout (GD) is tested over
the general dropout for regularization. It is evident that GD
improves the learning task and enhances accuracy.

3) Variations in random erasing data augmentation: The
performance of two randomly selected regions over a single
region on input image during image augmentation is tested.
The examples of random region erasing are illustrated in Fig.
3. The regions are non-overlapping, and the randomness of
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related hyper-parameters (e.g., size and color) of both regions
are independent. SYD-Net is trained from scratch in two
different erasing cases, i.e., one with the random RGB values
and another with a fixed RGB=127 value. In this test, we
considered only P30 patches using MobileNet-v2. It implies
that two erased regions could improve the accuracy compared
to one erased region in both cases of RGB values. Because
two smaller erased regions can learn more effectively than
a larger erased region within the input image and improve
the recognition accuracy. Also, random RGB performs slightly
better than a fixed value RGB=127. The data augmentation of
two erased regions with random RGB values performs more
effectively in SYD-Net. Finally, the best model components
of SYD-Net rendering the highest performance underlying
MobileNet-v2 are given for completeness of ablation studies,
implying the suitability of major components of the proposed
SYD-Net architecture.

VI. CONCLUSION

This paper proposes a new patch-based attention method,
called SYD-Net for fine-grained human posture recognition.
We have introduced and benchmarked two new image datasets,
representing 12-dance, and 102-sport actions with diversity.
SYD-Net has achieved better performances on the Yoga-82
and Yoga-107 datasets. SYD-Net integrates fixed-size and
multi-scale patches to learn contextual information and seman-
tic understanding to define a comprehensive feature descriptor
through spatial and channel attention. Random region erasing
data augmentation also improves accuracy. Overall evaluation
of various key components justifies the contribution of each
module of SYD-Net. In the future, we plan to develop larger
datasets on Sport and Dance styles and explore graph-based
deep architecture for human posture recognition.
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