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Distortion-independent Pairwise Underwater Image
Perceptual Quality Comparison

Miao Yang, Member, IEEE, Zhuoran Xie, Jinnai Dong, Hantao Liu, Senior Member, IEEE, Haiwen Wang, and
Mengjiao Shen

Abstract—Ranking underwater images according to their qual-
ity is a key indicator comparing the performance of different
methodologies and therefore is critical in the field of instrumenta-
tion and measurement. Perceiving differences in the quality of un-
derwater images is a challenging task that has received relatively
less attention, primarily due to mixed distortion, diversified image
content, and the absence of high-quality reference images. Thus,
based on the pairwise underwater image quality voting data,
we develop a novel ternary classification transformer to predict
a quality comparison of underwater images without reference.
This is the first attempt to model the quality discrimination of
an image pair. The proposed model combines the perception
of convolutional neural networks and Transformer encoder to
explore local quality features and visual perceptual connections
between different patch tokens. Experimental results reveal that
the proposed pairwise underwater image quality comparison
(PUIQC) scheme predicts noticeable quality differences correlat-
ing well with subjective perception. The quantification of complex
distortions in underwater images compared to other learning-
based methods is a compelling feature of this technology. It
delivers competitive results in ranking the different enhancement
outputs. In addition, we reveal the self-attention of local quality
features within the two images and capture their responsive
contribution to the quality decision, which explains the underly-
ing subjective quality-sensitive mechanism during image quality
comparison.

Index Terms—Underwater image quality evaluation, Learning

to rank, Image pair, Quality comparison without reference,
Transformer.

[. INTRODUCTION

ISION, as an essential sensing technique and measuring

tool, involves numerous information for understanding
subsea environments [1]-[3]. Due to the unstructured and
hazardous underwater environment, underwater images are
widely-used for exploring, recognizing, and monitoring the
underwater world, playing an irreplaceable and significant role
in the underwater application system. Ranking the quality of
underwater images has important instructive implications for
various tasks, including image screening, underwater image
enhancement, comparison of restoration results, and under-
water imaging system design [4]-[10]. Although numerous
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algorithms have been developed to predict the quality of natu-
ral images, automatically measuring the quality of underwater
images in a way that is consistent with human perception is
challenging because no referenced image can be associated,
and the levels of mixed distortion in underwater images can
not be grouped. Underwater images are typically low-quality,
so it is hard to illuminate the perceived quality discrimination
with specific image quality evaluation (IQE) values. Moreover,
a lack of effective quality comparison methods for different
enhancement methods conforms to subjective perception.

The blind image quality assessment (BIQA) methods esti-
mate image quality without accessing information about the
reference image. As discussed in [11], the numerical quality
score for each image, the mean opinion score (MOS), is
highly challenging and noise-prone. Besides, due to the limited
number of underwater images in the existing IQA database,
i.e., TID2013 [12], LIVE database [13], CSIQ database [14]
and KonlQ-10k database [15], the degradation in the real
underwater images can not be predicted accurately. Although
deep learning models have great potential in image quality
evaluation due to their excellent performance in image clas-
sification and recognition fields [16]—[19], compared with the
large training data included in the existing image recognition
datasets, the variety and number of underwater images [20],
[21] are far from sufficient for training an authentic deep
model.

Training a model using image pairs is an alternative data
augmentation process in deep learning based image quality
evaluation [22]-[25]. However, most of the pairwise samples
are generated by grouping a reference image and its corre-
sponding distorted versions [11], [24], [25], or by associating
a threshold value of some full-reference IQA metrics on the
image pair. In both cases, the reference image is necessary
[22], [23]. Indeed, modeling the perception of quality differ-
ences between images with different content or the quality
uncertainty in an image pair is rarely considered by the exist-
ing pairwise IQE methods. Besides, the perception of image
quality has an inevitable relationship with visual attention.
However, the knowledge about the implications of underwater
image quality judgment affected by the distortion and attention
areas is significantly limited. It is worth noting that how
the visual attention changing by the image quality appears
prominently when observers view two images simultaneously.

This paper is modeling the quality comparison of under-
water images by combining CNN and transformer encoder
on the preference label underwater image quality database
(PLUIQD) [26], entitled the pairwise underwater image quality
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comparison (PUIQC) model. This paper’s contributions are
as follows. (i) Unlike previous quality comparison models
that depend on the referred image, the developed scheme is
reference image-independent. (ii) Conducting a critical step
towards treating the quality ranking of underwater images as
an accumulation of the ternary classification results, where
the image pairs are not necessarily assigned a visually distin-
guishable label. (iii) The model endeavors to capture the cross-
local perceptual quality gap between two images by combining
a pair of CNN and Transformer encoder. Additionally, it
examines the role of attention mechanisms when analyzing
two underwater images with varying content; (iv) We em-
pirically demonstrate that segmenting images into patches
and assigning a uniform quality score cannot represent the
quality difference perceived from image pairs and deteriorates
the model’s performance. Experiments on the underwater im-
age quality databases demonstrate that the suggested PUIQC
model can accurately reveal the noticeable and unnoticeable
quality differences between underwater imagery. Indeed, the
accumulated preferred score provides an indicator to rank
the performance of different enhancement methods. Moreover,
when distinguishing the quality difference between underwater
images, the image attention areas are analyzed to provide in-
sights into optimally exploiting visual attention in underwater
image quality research, which is largely unexplored.

The remainder of the paper is organized as follows. Section
II reviews and summarizes the current underwater image qual-
ity evaluation, the deep learning-based BIQA, and the pairwise
ranking methods. Section III introduces the framework of
the proposed PUIQC network and introduces the underwater
preference database explored. Sections IV and V conduct
the experiments, comparative analysis against state-of-the-art
models, and discuss the results. Finally, Section VI concludes
this work.

II. RELATED WORK

This section briefly reviews the related BIQA algorithms,
underwater image quality assessment (UIQA) methods, and
deep learning-based ranking methods applied in image quality
evaluation.

A. No-reference image quality assessment

Since no pristine image can be obtained in a water envi-
ronment, this section discusses the BIQA metrics. Existing
BIQA methods hypothesize that distortions in natural images
can be recognized as at least one distortion simulated in
the existing IQE datasets, such as the TID2013, LIVE, and
KADID-10k [27] databases. Such BIQA methods are grouped
into natural scene statistics (NSS) related methods [28], i.e.,
blind/referenceless image spatial quality evaluator (BRISQUE)
[29], the blind image integrity notator using DCT statistics
(BLIINDS [30], BLIINDS-II [31]), the integrated local NIQE
(IL-NIQE) [32], and the unsupervised blind image quality
evaluation via statistical measurements of structure, natural-
ness, and perception (SNP-NIQE) [33], and learning based
methods. Without NSS knowledge, Peng et al. proposed a
codebook representation for no-reference image assessment

(CORNIA) [34] and revealed that features could be learned
directly from the original image [35]. Although knowledge-
driven image quality evaluation achieves appealing results
for evaluating the labeled natural images, optimizing these
methods when the data changes is challenging. However, deep
learning schemes offer a potentially powerful framework for
data-driven models [36] and have been rapidly developed to
construct end-to-end BIQA solutions.

One of the challenges in applying the CNN to BIQA
is the lack of sufficient training data. To overcome that,
several solutions have been proposed for deep neural network
(DNN) based BIQA methods, such as rotating, cropping, and
mapping the images [37]. These methods are characterized
by working with image patches [38], and the reference image
[16], [39], or the distortion recognition is included [17], [40].
Although these methods achieve comparable performance on
the existing IQE databases, relying on the people’s opinion-
based score to determine the whole image quality and utilizing
the quality labels of the image patches is illogical. Besides,
the distortion discrimination procedure reduces the models’
generalization to measure the image quality with unknown
distortions. Moreover, the quality comparison of two images is
a complex psychological and visual physiological interaction,
which cannot be represented by exclusively comparing the
image blocks.

It is proved that the self-attentional mechanism can learn
global and local features and express adaptive kernel weights
and dynamic receptive fields similar to the deformable con-
volution. Image quality assessment is also a task closely
related to the mutual characteristics of long-distance spatial
image blocks. Besides, the great success in natural language
processing extends the application of Transformer in vision-
based quality evaluation, which has become a new research
direction. For instance, You et al. [41] proposed applying the
Transformer in image quality (TRIQ) by inputting the features
of the last layer of ResNet50 into a shallow Transformer
encoder utilizing an adaptive position embedding. Zhu et al.
[42] employed salience region as a query and combined it with
a Transformer-based encoder to conduct quality prediction. Ke
et al. [43] introduced a multi-scale image quality Transformer
(MUSIQ) which divides the input images of various resolu-
tions into blocks, utilized as the Transformer input. Alireza et
al. [44] aggregated features from different CNN layers into a
Transformer to extract global and local features of the input
images. However, the existing methods focus on the attention
mechanism for a single image.

B. Underwater image quality evaluation

The absorption and scattering dominated by the water’s
inherent optical properties (IOPs) disturb and degrade under-
water imaging when light propagates through the water. The
complex physical and chemical properties of seawater result
in the interaction of the forward scattering (the randomly
deviated light while moving from an object to the camera)
and the backscattering (the fraction of the light reflected by
the water toward the camera before it reaches the objects in the
scene). The wavelength depended on absorption attenuation,
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the various concentration of plankton, and the color-dissolved
organic substances that induce the non-uniform color casting.
Beyond these features, waves, swirls, and silt produce irregular
blurring in underwater images. Even worse, the artificial
lighting presents the light sparkle at the center of the image
and aggravates the scattering caused by the suspended parti-
cles. Underwater images are therefore dominated by a mixed
distortion governed by low contrast, non-uniform illumination,
blurring, non-uniform color casting, and various noise sources.
Fig.1 illustrates some examples of underwater imagery. Given
that it is challenging to fully and systematically explain
the imaging mechanism of underwater environments and the
distortion types existing in an image, current BIQA methods
for natural images underperform in predicting the quality of
underwater images.

. |

(a) Whitish

(b) Bluish (c) Greenish

(d) Yellowish

Fig. 1. Examples of underwater images.

To evaluate the performance of the enhancement or restora-
tion algorithms on various underwater images, the objective
and subjective UIQA methods are explored extensively. For
example, Karen et al. [20] proposed an underwater image
quality measure (UIQM) method, where the training dataset
contains 30 randomly selected underwater images captured
with different devices and under different depths. In this work,
the MOS values of the tested underwater images are gathered
from 10 image processing experts. Jiang et al. [45] developed
an effective No-reference (NR) Underwater Image Quality
metric (NUIQ) to evaluate the visual quality of enhanced
underwater images automatically. Moreover, in our previous
work, we presented an underwater color image quality evalu-
ation (UCIQE) method for fuzzy and low-contrast underwater
monitoring images [21] and a multi-topic underwater image
quality assessment (MUIQE) for a specific distortion topic
[46]. However, the various UIQA value gaps cannot easily
be used as an indicator to compare the perceptual underwater
image quality. To highlight the inefficiency of the current
methods, Table I reports the results of some common BIQA
and UIQA methods when applied to the images presented in
Fig.1. The best quality value for each method is highlighted
in bold, and a better image quality corresponds to a lower
IL-NIQE/SNP-NIQE value. Since NUIQ sorts different en-
hancement methods based on the same underwater image,
the quality of Fig.1(c) is negative. The results infer that
evaluating the underwater image quality using common BIQA
methods is unsatisfactory and inconsistent with the subjective
assessments. For example, some BIQA metrics score a higher
value on Fig.1(b) due to the high contrast caused by the
nonuniform lighting and a higher score on Fig.1(c) which is a
blurred image. The outputs of different enhancement methods
on underwater images are perceptual similar in quality, and
subjectively hard to vote. Therefore, individually predicting

the image quality score cannot illustrate an accurate quality
comparison for underwater images.

C. Pairwise comparison

The pairwise ranking was initially used to estimate the
preference order of different systems [49]—[52], algorithms and
processing parameters. Learning from rank has recently been
applied in IQA methods. Indeed, Gao et al. [22] exploited
the preference image pairs to train a BIQA model, explored
the multiple kernel learning algorithm lasso (MKLGL) to
measure the similarity of different images, and mapped the
paired image (NSS) features to a binary preference label. By
using synthetically generated distortions, for which the relative
image quality is known, Liu et al. [24] trained a Siamese
network to rank images based on their quality and proposed
the RankIQA. This model was the first to demonstrate the
capability of image ranking to image quality discrimination.
Specifically, the authors fine-tuned a VGG-16 network on
available IQE databases and output the related quality sorting.
In this method, the weight coefficients are shared by the two
sub-networks. Isogawa et al. [53] proposed an IQA method
for inpainting image repair evaluation to select the best from
multiple results. For this scheme, the training data are gener-
ated by adding different levels of distortions to the inpainting
images, and the features of the two images are linearly fitted
to the binary pairwise preference based on the RankingSVM
[49].

Ma et al. [23] proposed an opinions-unaware BIQA model,
exploiting the quality-discriminated image pairs (dipIQ) based
on RankNet, where the quality of discriminable image pairs
(Dips) is measured using FRIQA metrics. Additionally, two
parallel streams with shared weights are applied to process
two images individually, where each network produces one
quality prediction. The softmax of the predicted quality dif-
ference is the final binary classification output. Prashnani et
al. [11] suggested a pairwise-learning framework to predict
the preference probability of the reference and the distorted
images (PieAPP, perceptual image-error assessment through
pairwise preference). Images in groups of three are fed into
an error estimation module, where the probability of prefer-
ring image A over image B with respect to the reference
image R is estimated by the error differences between the
two distorted images from the reference. To confront the
cross-dataset quality evaluation, Zhang et al. [48] introduced
the ResNet-34 backboned unified no-reference image quality
and uncertainty evaluator (UNIQUE) to fit the MOS and
the standard deviation values provided in the LIVE, CSIQ
and KADID-10K datasets by a combined loss. The 270,000
training pairs are [orwarded to the weight-shared Siamese
network. Li et al. [54] developed a ranked prediction involved
method for video quality evaluation, where the rank error of a
sequence of images in the video, rather than a pair of images,
is applied as the first assessor.

D. Inspiration

Evidently, these rank methods are all natural distortion
database dependent, which generates image pairs employing
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TABLE I
MEASUREMENTS ON UNDERWATER IMAGE QUALITY.

Tmage/Metric  DIIVINE [47]  BRISOUE [29]  BLIINDS-IT [31] CORNIA [34] IL-NIQE [32] SNP-NIQE [33] DipIQ [23] UCIQE [21] UIQM [20] KonCept512 [15] UNIQUE [48]  NUIQ [45]
Fig.1(a) 21.36 .51 X 448 24.76 .87 —2.30 0.54 1.61 0.72 1.0 .87
Fig.1(b) 88.58 61.51 39.00 85.77 76.39 12.19 -4.52 0.62 1.03 0.60 0.96 0.13
Fig.1(¢c) 66.26 63.03 38.00 89.88 62.54 13.68 -16.83 0.36 124 0.35 0.99 -0.40
Fig.1(d) 2572 15.62 21.00 53.42 38.35 6.91 -8.06 0.60 1.73 0.68 1.01 1.73

distorted images and the associated reference image, suggest-
ing that the two images are of the same content. Unlike the
Siamese modules, we extract features of both images using
a paired CNN without a shared weight to accommodate the
different quality gaps for irrelevant content. The degree of
reliance on global and fine-grained information varies when
comparing two images of different quality. This motivates us
to apply the Transformer on this quality comparison task,
utilizing patch tokens of two images as input. Besides, we
model the unnoticeable quality difference in an image pair,
which endows the network with the ability to simulate the
imperceptible quality difference. By ranking all possible image
pairs in the dataset, the accumulated preference labels (APLs)
can be obtained. The APLs collecting offers another reason-
able way to rank different sources of images. Additionally,
observing two images with different content is a natural
stimulus rather than being forced to learn where to look for
visual artifacts as eye-tracking [55]. The response inversed
deduction illustrates the contribution of image areas to the
quality judgment, guaranteeing the reliability of the visual
attention analysis.

III. METHODOLOGY
A. Preference label underwater image quality dataset

In our previous work, we designed an underwater image
quality evaluation voting procedure [26] and collected a ded-
icated preference label underwater image quality database
(PLUIQD). The PLUIQD database comprises 1000 underwater
images, and we collected the parts’ labels of the 1000 images
(300 images) through full pairwise voting and the others
by dichotomy insertion [26]. The images in PLUIQD have
different content and involve a different degree of mixed low
contrast, non-uniform color degradation and illumination, and
blurring distortions. The underwater color images have a size
of 512x512. For further details on the PLUIQD database, the
reader is referred to [26].

B. Underwater image pair training dataset

From the 1000 underwater images in PLUIQD, 1000 x
(1000-1)/2 = 499,500 possible image pairs can be generated,
which is a considerable number compared with the existing
image quality databases. We randomly select 800 images to
pair for training, of which 10% is set as the validation dataset.
The remaining 200 images are paired and comprise the testing
dataset. We categorize the pairs into three classes and labeled
them as the preference {+1,—1}, {—1,+1} and {0,0}, re-
spectively. Among the three labels, {+1, —1} represents that
the quality score of the above/left image is higher than the
image below/right, and {—1,+1} is the opposite label. The

{0,0} label represents a class of underwater image pairs whose
relative quality is hard for viewers to distinguish. To ensure
the samples’ deterministic quality difference [22] and balance
the samples in the class labeled with {0,0}, we augment the
image pairs with {0,0} label and restrict the image pairs
with {+1,—1} and {—1,+1} labels in the dataset, using the
following procedure.

For convenience, we map the APL values of all images in
the dataset to the centesimal scores, noted as APL-C values.
Let the original training set of {0,0} produced by subjective
voting be Spp, and the maximum and the mean difference of
the APL-C scores between the image pairs in Syo be ds,,....
and ds,,,,.....» respectively. To suppress the abnormal noise in
the subjective evaluation process [23], we calculate the average
IL-NIQE [52] difference of the image pairs in Spp and denote
itas ds,,,....- For a given underwater image pair p; ;, suppose
ds;; is the difference on the APL-C score and dyr,; is the
difference on the IL-NIQE score. We label the corresponding
image pair /; ; by enforcing the following constraints:

{+1,-1}
{-1,+1}
{o,0}

Fig.2 illustrates the three classification distributions of dg, ;.
In total, 41,359 image pairs with {+1,—1} labels, 42,186
image pairs with {—1,+1} labels, and 30,289 image pairs
with {0,0} labels are generated in training dataset. Morcover,
4565 image pairs with {+1, —1} label, 4643 image pairs with
{=1,+1} labels, and 3339 image pairs with {0,0} labels
are included in the validation dataset, and 4,888 pairs with
{+1, -1} labels, 4,930 pairs with {—1,+1} labels, 1,578
pairs with {0, 0} labels constructed in the testing dataset. Fig.3
illustrates samples of the image pairs. The paired images for
training are available at https://github.com/JOU-UIP/PUIQC.

55@7 > 55007",«;“751Li1 < - |551mem

lij= 05:; < =0S00maes O1Li; = 1081 fmean|

‘5517‘ < 0So0man ‘51L” <1681 Lmean|
6]

C. Overview of the proposed method

The proposed PUIQC architecture is presented in Fig.4(a),
highlighting that a CNN pair captures the basic visual elements
and a Transformer encoder obtains the correlation of these
basic visual elements and their effects on each other’s quality
perception.

The inputs with shape [b, 3, 512, 512] are input into the
CNN-pair, comprising base and stem networks. The developed
model exploits the pre-trained inceptionresnetv2 as the base
network to extract perceptually meaningful features. Two
feature maps of size [b, 192, 61, 61] are forwarded to different
stem networks instead of pooling to down-sample the feature
maps and obtain the difference perception of the two images.
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Fig. 2. The distribution of dg,, in the three categorizations.

(c) The image above is hard to distinguish with the one below in quality.

Fig. 3. Samples of the underwater image pairs in the three categorizations.

Subsequently, the merged feature maps are flattened into
patch tokens with shapes [b, 128, 50]. Similar to ViT [56] and
BERT [57], a learnable extra class token is appended before
patch tokens, and then the learnable position embeddings
are added. Therefore, the combination of patch tokens, class
tokens, and position embedding is input into the Transformer

encoder. Moreover, we consider six encoder layers, each
comprising a multi-head attention and a feed-forward network,
as illustrated in Fig.4(b). Layer normalization and residual
connection are performed in each of sub-layers.

The output of the Transformer encoder is the final represen-
tation of the quality-aware aggregated information that is input
into an MLP head. The latter consists of 4 fully connected
layers and 3 dropout layers to predict the class label of the
underwater image pairs.

D. Training

For a given underwater image pair p; ; and the correspond-
ing preference label [; ;, we utilize the cross-entropy loss to
learn the visual perception of the quality difference constrained
by the image view position to the preference label. Moreover,
we adopt the L2 regularization and the Adam stochastic
gradient, and the Leaky ReLU (LReLU) activation function
is applied as the derivative is always non-zero, preventing the
gradient disappearance. The batch size is set to 16, and we
adopt a learning rate scheduler with warm-up and cosine de-
cay. The learning rate increases to Se-5 after three epochs, and
decreases according to a cosine function in the last six epochs.
The model ends training after 9 epochs. The convergence curve
is illustrated in Fig.5. Finally, the PUIQC model involves 82M
parameters, less than the 276M parameters of the Samiment
network (two VGG 16 backbones), and is more complex than
the 3-FC-layers RankNet adopted in the dipIQ [23].

E. Accumulated image quality label score

Suppose the pairwise image dataset to be predicted is P.
By obtaining the predicted preference label /; ; for all image
pairs p; ; in P, the APL score S for image ¢ can be computed
as:

Si=> L i#j )
J

IV. EXPERIMENTS

Initially, we present the databases and the settings used to
conduct the comparison experiments. Moreover, we compare
the accuracy against the state-of-the-art BIQA, ranking algo-
rithms and the UIQA metrics to verify the proposed method’s
performance for underwater image quality comparison. The
performance of the proposed model is also validated in
underwater image enhancement application. Furthermore, an
ablation experiment is performed to prove the optimization
network architecture of the PUIQC model.

The proposed model is challenged against the most fre-
quently used methods in the previous BIQA studies, i.e.,
BRISQUE [29], BLIINDS - II [31], CORNIA [34] and SNP-
NIQE [33] algorithms, and the new no-reference CNN-based
image quality method KonCept512 [15], CNN-based ranking
methods DipIQ [23], rankIQA [24] and UNIQUE [48]. We
also compare the proposed PUIQC method with the two
UIQA algorithms [20], [21]. For a fair and comprehensive
comparison with the other methods, we adopt the experimental
settings suggested in their original works and re-trained them
on the PLUIQD with APL-C values as labels.
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Fig. 5. The loss curve of the proposed model.

A. Accuracy experiment on image pairs

The predicted quality scores of the 200 underwater images
in the testing dataset output from other methods are fit to the
true APL-C values using the S-parameter mapping function
[29] before image pairing, denoted as ¢;,1 < 7 < 200. To
ensure the true labels are included in the subsets constructed
for other BIQA methods, the predicted labels [; ; for each
image pair in the three testing subsets are determined by:

{+1 71} 6qLJ > 6Sll()m,nm

lij - {_17 +1} 5%’]’ < _650077“”; 3)
{0,0} 106i5] < 0Sg0mean
where 64, = q; — q; is the difference of predicted quality for
a given pair p; ;. It is worth noting that the difference gap for
the discriminated image pairs has been enlarged compared to
Formula (1).

Fig.6 illustrates the confusion matrix of eleven metrics
for three categories of underwater image pairs, highlight-
ing that most BIQA methods designed for natural images
underperform in predicting the quality difference between
underwater image pairs, although the quality gap for the
discriminable image pairs has been enlarged. The accuracy
obtained by the UNIQUE is higher than the other natural

Position
Embedding

(b) Transformer encoder layer

BIQA methods benefiting from training on the cross-data
set. Furthermore, predicting significant quality differences is
easier than predicting underwater images with similar qualities
for the two UIQA methods (Figs.6(g) and (h)). Opposing
current methods, the proposed PUIQC has better accuracy
than the other BIQA and UIQA methods regardless if the
image pairs have distinct quality differences or similar quality.
Particularly, the proposed method distinguishes the noticeable
quality difference for underwater image pairs affording better
correctness. Additionally, the accuracy on the {0,0} category
is lower than on the other two categories, possibly due to the
uncertainty of the image quality difference being related to
the observing environment and the psycho-physiology fluctu-
ations of the observers’ subjective perception and experience.
Nevertheless, the accuracy for {0,0} labels reaches 84.10 %,
and reaches 97.11 %, 96.91 % for {+1,—1} and {—1,+1}
labels, respectively.

Three groups of instances are shown in Fig.7 and the
comparison results produced using the competitor methods
are listed in Table II. The wrong outputs are marked in red.
Table II shows that the underwater images with similar quality
are hard to compare, and most statistical-based metrics in the
BIQA methods fail to identify the perceptual quality differ-
ence. By using the proposed PUIQC model, the underwater
image pairs with different quality are classified correctly and
correlated well with visual perception, based on which a
reliable quality ranking can be established.

B. Testing on tank image sequences with gradual distortion

We also conduct tests on the OUC underwater database
[55] to verify the ranking for images with the same distortion
type but under different levels. The OUC database contains
64 experimental images, divided into four groups according
to their contents. We examine U, U = 4 groups of underwater
images, each containing 20 underwater images acquired at the
same position and angle but with increased water turbidity
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Fig. 6. The confusion matrices for the eleven methods.
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simulated by adding milk. Therefore, 20x19/2 image pairs for
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group decreases monotonically. The list-wise ranking consis-
tency test (L-test) [23] is applied to inspect the consistency
of a BIQA method under the sequential test images differing
only in their distortion levels.

J
1
Ly= 5> SRCC(L,U;) )

i=1

where I; indicates the images included in the i-th group,
and U; is the corresponding APLs computed according to
the model predictions. Obviously, J in formula (4) is 4.
The L-test is listed in Table III, and the data illustrates the
comparable performance of the proposed PUIQC method in
gradual distortion distinction. The L, value of the proposed
PUIQC is smaller than the UCIQE because the content remains
unchanged, and the UCIQE is trained for fuzzy and low-
contrast underwater images. Some images with equal labels
arc illustrated in Fig.8, revealing that the quality difference lies
in the fact that these images are difficult to identify visually.

To further validate the comparative performance of the pro-
posed method in gradual distortion distinction, we conducted
tests on TankImage-I database [58]. TankImage-I is a dataset
of underwater sequence images collected in a tank, where the
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TABLE 11
LABELS FOR THE SAMPLES OF IMAGE PAIR.

Method Fig.7(a)(left)  Fig.7(a)(right)  Fig.7(b)(left)  Fig.7(b)(right)  Fig.7(c)(left)  Fig.7(c)(right)
BRISQUE {0,0} {+1,-1} +1,-1} {—-1,+1} {0,0} {0,0}
BLIINDS-IT {+1,-1} {+1,-1} {0,0} {0,0} {0,0} {0,0}
CORNIA {+1, -1} {0,0} {+1,—-1} {0,0} {-1,+1} {-1,+1}
SNP-NIQE {+1,-1} {+1,-1} {+1,-1} {0,0} {-1,+1} {0,0}
DlplQ {+1:71} {00} {71a+]} {+17_1} {_17+1} {070}
RankIQA {+1,-1} {+1,-1} {0,0} {0,0} {-1,+1} {-1,+1}
KonCept512 {+1,-1} {+1,-1} {+1,-1} {+1,-1} {-1,+1} {0,0}
UNIQUE {+1,-1} {0,0} {+1,-1} {+1,-1} {—1,+1} {0,0}
UIQM {—1,+1} {+1, -1} {0,0} {0,0} {0,0} {0,0}
UCIQE {—1,+1} {+1,-1} {-1,+1} {+1,-1} {0,0} {0,0}
OURs {0,0} {0,0} {+1,-1} {+1,-1} {—1,+1} {—1,+1}

Fig. 8. Samples of indistinguishable image quality.

TABLE III
L-TEST ON TANK IMAGE SEQUENCES WITH GRADUAL DISTORTION.
Method  RankIQA  DiplQ UNIQUE UCIQE UIQM  OURs
L-test 0.5243 0.9819 0.4775 1.000 0.6722  0.9760

camera distance gradually varies. The sharpness and color
distortion of the images worsen as the distance from the
camera increases. We selected six groups for testing, including
SFR board and ColorChecker card targets with three different
water transparency levels (325 cm clear, 182 ¢cm medium
turbid, and 85 cm turbid). The transparency of the water was
altered by adding aluminum hydroxide. Each group was tested
with 8x(8-1)/2 = 28 (or 7x(7-1)/2 = 21) image pairs, and
the APLs was obtained by formula (2). The sorting results
of the tank sequence images of ColorChecker card based on
the PUIQC under a water transparency of 325 cm (clear) are
shown in Fig.9. The results demonstrate that sorting results are
consistent with the level of distortion. Due to space limitations,
we provide all six group testing results in the supplementary
materials.

C. Ablation experiment

In this experiment, we check whether the input size and
structure of the PUIQC model are optimal. The experimental
setup involved a GTX1070 GPU and an Intel i7-6700 CPU at
4.00 GHz. The corresponding experimental results are reported
in Table IV.

1) Size of input image: As demonstrated in Table IV, the
performance of the proposed model is optimal when the input
image preserves its original size, as assigning the label of the
two images to each patch pair is unsuitable for comparing
an image pair. When viewing two images simultaneously, the
overall information from both images is involved in voting.
Indeed, comparing the image blocks cannot replace the quality
comparison of the two images.

TABLE IV
ACCURACY COMPARISON FOR DIFFERENT PARAMETERS AND
ARCHITECTURES OF THE PROPOSED MODEL ON UNDERWATER DATABASE.

Changed conditions Test accuracy

Model 1 Input: 128x 128 0.84
Model 2 Using image patches as input 0.57
Model 3 Using 2 encoder layers 0.91
Model 4 Using 4 encoder layers 0.93
Model 5 Pre-trained on TID2013 0.92
Model 6 Pre-trained on CSIQ 0.92
Model 7 . Without pre-traine.d of 090
inceptionresnetV2 on imagenct
Model 8 Mergi.ng two feature maps 093
on dimension of channel
Model 9 Our model:Input: 512x512 0.94

2) Effect of the Transformer encoder layers: To demon-
strate the suitability of the number of encoder layers in
the Transformer encoder, we test 2 and 4 encoder layers,
respectively. The results presented as Model 3 and Model 4 in
Table IV illustrate that the proposed model performs the best
for this quality comparison task.

3) Impact of pretraining: Many DNN-based IQA models
have their backbones pre-trained with VGG-16 [24] or the
FRIQA metric. Hence, we check the performance of the
PUIQC model for underwater image quality comparison by
pre-training it on the TID2013 or CSIQ database. As reported
in Table IV, the classification accuracy of Models 5 and 6
is undesirable because the distortion type and the influencing
factors in the underwater image degradation are complicated.
Pre-training the model on the TID2013 or the CSIQ database
forces the model to focus on a single distortion under different
levels in natural images while perceiving the distortions in
underwater image pairs is a different learning process. We also
investigate the performance when the inceptionresnetV2 is not
pre-trained on ImageNet. In this case, the final accuracy rate
is 90%, highlighting that the feature extraction capabilities of
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201610919 10:34'55
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2016/09:19 10 35 23 20160919 10 35 08

(¢) d=70cm(0) (d) d=80cm(-2)

20160919 10 34 28 2016.09:19 10 34 12

(g) d=110cm(-3) (h) d=120cm(-3)

Fig. 9. The sorting results of the tank sequence images taken from various distance (d) under water with transparency of 325 cm by the proposed PUIQC.

(e) GEnh(19)

(f) DeepSESR(19)

(d) YEnh(23)

(g) Original(11)

(h) FUNIEGAN(9)

Fig. 10. Ranking (order) of the results produced by different enhancement methods on the underwater image I.

the inceptionresnetV2 learned from the ImageNet benefit the
proposed PUIQC model.

D. Ranking for underwater image enhancement results

Objectively evaluating an enhancement or restoration algo-
rithm’s performance for underwater images is always chal-
lenging. Given that the UIQA metrics such as UCIQE [21]
and UIQM [20] can be biased for over-enhanced images,
a user study (subjective experiment) is recently applied to
evaluate the restoration or enhancement results among all
the competitor methods [59], [60]. However, collecting the
opinion of several observers by a 10-grade or 6-grade single
stimulus voting is not a rigorous procedure, and inaccurate
scoring due to repeatedly viewing the same image content
is likely. Competitively, the image quality ranking of the
enhanced results provides an effective solution. To validate
the ranking performance of the proposed method on results

from different underwater enhancement methods, we process
four images representing the bluish, greenish, whitish, and
yellowish underwater images, respectively, using the methods
proposed by Galdran et al. [61] (abbreviated as GEnh), Fu
et al. [62] (FuEnh), Li et al. [63](LiEnh), Peng et al. [64]
and Yang et al. [1] (YEnh), deep learning methods including
DeepSESR [65], UWCNN [66], FUNIE-GAN [67] and Hy-
bridDetectionGAN [68] (abbreviated as HDGAN). The out-
puts of underwater image enhancements are same in content,
and different in perceptual quality. Therefore, we concatenate
the image feature maps of the CNN pairs along the channel
dimension, and the shape of the merged image quality patch
tokens is [b, 256, 25]. In this way, the Transformer encoder
module focuses on the same positions of the two images. We
characterize this model as Model 8 in Table IV. We compare
all 780 (N(N-1)/2, N=10x4) image pairs using the alternative
PUIQC model. The APLs of per image are obtained by
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(a) HDGAN(30) (b) FuEnh(27)

10

(c) LiEnh(25) (d) YEnh(23)

(e) DeepSESR(17) (f) GEnh(16)

(g) Original(12) (h) FUNIEGAN(7)

Fig. 11. Ranking (order) of the results produced by different enhancement methods on the underwater image II.

(e) GEnh(17) (f) DeepSESR(15)

(g) Origina( 12) (h) FUNIEGAN(10)

Fig. 12. Ranking (order) of the results produced by different enhancement methods on the underwater image III.

applying Formula (2), according to which the quality ranking
of the enhanced results is predicted. The maximum label score
for these 40 images is +34, and the minimum label score
is -35. The ranking of eight out of ten enhancement results
are compared in Table V, and the ranking results for the
four image groups using the proposed model 8 are presented
in Figs.10 to 13. By comparing the label values obtained
from each image, we obtain the quality ordering among the
outputs of various methods of the same image and the quality
comparisons between different images. From Table V and
Figs.10 to 13, we conclude that the improved contrast and

colorfulness attain a better quality rank. The pictures presented
in Figs.10(a)-(d) have a better visual quality, and the image
in Fig.10(h) has the worst quality due to the opposite color
casting. However, the image presented in Fig.10(h) achieves
the first ranking position under the UIQM metric, as listed in
Table V. A similar situation occurs in Figs.12 and 13, where
the result obtained by the FUNIEGAN method has a better
quality due to its high UIQM score, obviously inconsistent
with the fact. By counting all the labels listed in Figs.10 to
13, the enhanced whitish image in Fig.12(a) is the best, and the
whole group achieves a higher average quality ranking, i.c.,
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(a) HDGAN(12) (b) YEnh(7)
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(c) GEnh(6) (d) FuEnh(5)

(e) LiEnh(4)

(f) DeepSESR(3)

(g) Original(2) (h) FUNIEGAN(1)

Fig. 13. Ranking (order) of the results produced by different enhancement methods on the underwater image IV.

TABLE V
RANKING OF THE ENHANCEMENT RESULTS.

Quality metric UCIQE

UIQM PUIQC

LiEnh>YEnh>HDGAN >FuEnh
>GEnh >FUNIEGAN>DeepSESR >Original
LiEnh >YEnh>HDGAN>FuEnh
>GEnh >FUNIEGAN >Original = DeepSESR
LiEnh>HDGAN>YEnh >FuEnh
>GEnh >FUNIEGAN >DeepSESR >Original
LiEnh>YEnh>FuEnh >GEnh
>HDGAN>FUNIEGAN >DeepSESR>Original

Ranking of groupl
Ranking of group2
Ranking of group3

Ranking of group4

FUNIEGAN>Original >LiEnh >HDGAN
>YEnh>DeepSESR>FuEnh >GEnh
Original=DeepSESR >LiEnh >YEnh

>FUNIEGAN>FuEnh>GEnh >HDGAN

FUNIEGAN >FuEnh>DeepSESR>LiEnh
>Original >YEnh>GEnh >HDGAN

FUNIEGAN >LiEnh>GEnh >Original
>HDGAN >YEnh>DeepSESR>FuEnh

HDGAN>LiEnh>FuEnh>YEnh
>GEnh=DeepSESR >Original >FUNIEGAN
HDGAN>FuEnh>LiEnh>YEnh
>DeepSESR >GEnh >Original >FUNIEGAN
HDGAN>LiEnh>YEnh>FuEnh
>GEnh>DeepSESR>Original >FUNIEGAN
HDGAN >YEnh>GEnh>FuEnh
>LiEnh >DeepSESR>Original >FUNIEGAN

the images taken in shallow coastal waters have the potential
for quality improvement. Moreover, the UCIQE designed for
a contrast and color variance measure, is more desirable than
the UIQM when comparing underwater image quality. Due to
the limited space, we present the results of the four groups
of underwater images sorted by the UIQM and UCIQE in the
supplementary materials. Outputting a judgment label based
on the quality comparison between two images from a deep
learning model rather than the statistical computation reduces
the inaccuracy presented in the BIQA methods. Due to the
undefined gap during pairing, some image pairs attain equal
scores, e.g., the pictures in Figs.10(e) and (f). An exception
in Fig.11 is the fake colorfulness in Figs.11 (a) and (c),
receiving many votes because most underwater images win
quality comparisons due to better global contrast. Generally,
the sorting results are illustrated in Figs.10 to 13 highlight that
the PUIQC model provides a more effective ranking for the
quality comparison than other UIQA methods when comparing
the enhanced underwater images. This is a good indicator of
the relative quality difference between the two images.

E. Applications

Underwater image enhancement techniques can improve
the performance of vision-based tasks such as local keypoint

matching, edge detection and saliency detection. We used the
Scale Invariant Feature Transform (SIFT) operator to compare
the number of effective local keypoint matches between the
images in Group I and their counterpart rotated by 30 degrees,
e.g., Fig.14 (a). The results indicate that as the APLs increases,
the number of matched local keypoints also increases. They
have a correlation coefficient of 0.85, indicating a strong
correlation, as shown in Fig.14 (b). To investigate the impact of
occlusion on the relationship between the number of matches
and the APLs of image, we conducted experiments by rotating
the images 330 degrees, which resulted in the occlusion of
the diver shown in Fig.15. Based on the experimental results,
we also fitted the number of matches and the APLs of
image in Fig.15 (b). Despite the occlusion of the diver, the
correlation coefficient remains above 0.8 at 0.82. This indicates
a strong correlation between them, regardless of the presence
of occlusion. The edge detection results of Group I underwater
images are shown in Fig.16 , which is ordered by a cumulative
score that is the same as in Fig.10. The results indicate that
the higher-ranked images are detected with more edge features.
Moreover, as presented in Fig.17, the saliency detection results
of the underwater images of Group II are arranged in the same
permutation order as Fig.11. The results demonstrate that more
saliency information is detected on the images in the first row
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(a) Example of local keypoint matching (b) Correlation between the num-
ber of matches and the APLs.

Fig. 14. Example of local keypoint matching.

(a) Example of occluded local keypoint (b) Correlation between the num-
matching ber of occluded matches and the
APLs.

Fig. 15. Example of occluded local keypoint matching.

than in the second row.

There are several common scenarios in underwater envi-
ronments: overlapping, occlusion, and underwater background
interference. The object detection results for these scenarios
are shown in Fig.18. By using the proposed PUIQC model,
images with different enhancement methods are compared
based on pairs, and the images are arranged from left to
right in descending order of cumulative scores. From the
analysis of the last two cases in Fig.18, it can be seen that
because the image quality of Fig.18(a) is higher than that
of Fig.18(b-d), the model can easily distinguish the occluded
holothurian and the originally blurred starfish. In addition, the
underwater environment scenes are complex and changeable.
Some background objects are similar in shape and texture
to the target object. While the image quality is improved,
the characteristics of scallops are more similar to those of
stones, which is easy to cause missed detection, as shown
in the first case. Overall, the improvement of image quality
is beneficial for human experts’ annotation work and also
helps improve the accuracy of object detection. Therefore, the
established ranking order of the underwater images obtained
by the proposed PUIQC model has a guiding significance for
subsequent tasks.

V. DISCUSSION

A. Influence of the threshold of image-pair generation on the
model accuracy

Subjective experiments show that the consistency of the
quality difference judgment between the observers fluctuates
when two images are too similar. Different observers may give
controversial results. Gao et al. [22] constituted the image
pairs with completely distinguishable image quality differ-
ences (when the absolute image quality difference computed

12

(b) LiEnh (c) FuEnh (d) YEnh

(f) DeepSESR (g) Original (h) FUNIEGAN

(a) HDGAN

(e) GEnh

Fig. 16. Edge detection results of the underwater images shown in Fig.10.

(a) HDGAN (b) LiEnh (c) FuEnh

(e) GEnh (f) DeepSESR (h) FUNIEGAN

Fig. 17. Salient detection results of the underwater image shown in Fig.11.

(d) YEnh

(g) Original

by the FRIQA metrics exceeds 20). In contrast, we augment
the three categories by using Formula (1), and thus the APL-C
differences in the {—1,+1} and {41, —1} datasets are widely
distributed (Fig.2), increasing the prediction difficulty. Nev-
ertheless, the model predicts the quality difference between
the image pairs with fairly good results. To illustrate how
the generating principle of the image pairs influence accuracy,
we investigate alternative solutions to generate image pairs.
Specifically, we sort the image in the corpus by the APLs
and construct image pairs with a quality order interval of
200 pieces. For instance, the first image in the sorted image
sequence is paired with the image whose quality is located
behind the 200-th. Additionally, the image pairs with ds,
less than Jg,,, ... constitute the {0,0} dataset. Hence, the
{=1,41} and {41, -1} categories have an evident quality
difference, and the image pairs in the {0,0} dataset have a
higher certainty of unnoticeable image quality. The proposed
PUIQC model predicts the three types of tags with 100 %
testing accuracy, indicating that our method can accurately
predict the subjective judgment of images with significant
quality differences. On the contrary, we shrink the thresholds
for the image pairs with labels {+1,—1}and {—1,+1} to
evaluate a more dedicated judgment of the quality difference
between the (wo images. The constraints for constructing the
image pairs for the three categories are:
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(b) YEnh

(a) FuEnh

(¢) GEnh (d) Original

Fig. 18. Example images of object detection results by various enhancement methods.
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In this case, the identifiable quality difference gap between
the two images is reduced considerably. Due to the incon-
spicuous quality difference, the classification accuracy of the
model decreases to 83%, 87% and 89% for {0,0}, {+1, -1}
and {—1,+1} three categories, respectively.

B. Quality comparison attention analysis

Since a self-attention mechanism is employed in the Trans-
former encoder, we visualize the attention weights used to
present the contribution of each region to the quality difference
judgments (Fig.19). The attention weight of the last encoder
layer is used as a mask, and is applied to the input images.
Brighter regions represent more important regions to the final
classification, revealing that the visual attention areas are
different for image pairs with different patterns of quality
difference. For image pairs with obvious quality gaps, higher-
quality images contribute more to the quality comparison.
For example, attention in higher-quality images in Fig.19(a)
distributes mainly near the object, while attention in lower-
quality images distributes dispersively. However, the detail
areas in both images with similar quality attract keen attention
more equally. The quality comparison relies more on the edge
strength and details comparison when voting the visual quality
difference for the images with similar quality (Fig.19 (b)).
Future work will disclose more attention mechanisms when
comparing two images with different content.

(b) Two image pairs with indivisible quality difference.

Fig. 19. Regional contributions to quality difference judgement for image
pairs (upper: original image pairs; lower:image pairs with the masked attention
distribution).

VI. CONCLUSION

This work presents a novel image-pair-based CNN & Trans-
former model to compare the quality of underwater images
similar to human eye perception. The proposed PUIQC method
is the first trial of learning the image quality difference
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perception as a ternary classification problem. It explores a
new way of ranking images from various sources and does
not require a reference image. We illustrate the performance
of the PUIQC framework through several experiments and
the application of the enhancement algorithms. The results
indicate that extracting the global information by leveraging
the Transformer encoder module is a feasible visual perception
mechanism for developing a learning-based BIQA method.
Our findings suggest that the visual importance weights of
different areas that vary with the quality interval between
image pairs should be considered in UIQA methods construc-
tion. Future work will explore the full-pairwise ranking-based
BIQA for the cross-datasets to realize quality comparison of
images acquired in different environments.
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