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Abstract—Deep learning-based fault diagnosis (FD) ap-
proaches require a large amount of training data, which are
difficult to obtain since they are located across different entities.
Federated learning (FL) enables multiple clients to collaboratively
train a shared model with data privacy guaranteed. However, the
domain discrepancy and data scarcity problems among clients
deteriorate the performance of the global FL model. To tackle
these issues, we propose a novel framework called representation
encoding-based federated meta-learning (REFML) for few-shot
FD. First, a novel training strategy based on representation en-
coding and meta-learning is developed. It harnesses the inherent
heterogeneity among training clients, effectively transforming it
into an advantage for out-of-distribution generalization on unseen
working conditions or equipment types. Additionally, an adaptive
interpolation method that calculates the optimal combination of
local and global models as the initialization of local training
is proposed. This helps to further utilize local information
to mitigate the negative effects of domain discrepancy. As a
result, high diagnostic accuracy can be achieved on unseen
working conditions or equipment types with limited training data.
Compared with the state-of-the-art methods, such as FedProx, the
proposed REFML framework achieves an increase in accuracy
by 2.17%-6.50% when tested on unseen working conditions of
the same equipment type and 13.44%-18.33% when tested on
totally unseen equipment types, respectively.
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I. INTRODUCTION

FAULT diagnosis (FD) plays a significant role in modern
industry, ensuring safety and reliability, and preventing

breakdowns and losses [1]. Traditional FD methods require
expert knowledge, such as identifying faults through analyzing
abnormal sounds or utilizing signal processing techniques.
However, these methods increased the labor intensity and
difficulty for equipment operators as the industry continues
to grow rapidly in size and frequently change its operational
modes. The application of machine learning has made FD
intelligent enough to automatically recognize health states
and shorten maintenance cycles. Early on, sensitive features
are extracted from data and fed into traditional machine
learning models, such as expert systems, artificial neural
network (ANN), support vector machine (SVM), and others
[2]. However, challenges arise from the difficulty of extracting
specialized and proper features from large volumes of data and
achieving accurate results with the limited learning capability
of traditional diagnosis models.

Deep Learning (DL) has become increasingly popular as
a solution to address the aforementioned problems as it can
learn abstracted representations without human intervention.
A novel motor condition monitoring system with 1D convo-
lutional neural network (CNN) was proposed and shown to
achieve an elegant classification performance [3]. Liu et al.
proposed a novel method for FD with recurrent neural network
(RNN) in the form of an autoencoder [4]. To realize efficient
FD with low-quality data, an improved deep fused CNN-based
method combined with a complementary ensemble empirical
mode decomposition and a short-time Fourier transform was
proposed to fully mine fault features [5]. To alleviate the
data imbalance in FD, a weakly supervised learning-based
method was proposed to introduce real-world samples into
the imbalanced dataset [6], and a novel method based on
pre-training Wasserstein generative adversarial network with
gradient penalty was proposed to generate high-quality faulty
samples [7]. However, these data-driven methods require a
large amount of labeled data. Although there is a vast amount
of data collected by sensors in modern industry, generating
labeled data is very expensive and time-consuming. Moreover,
in real industrial scenarios, data is scattered across different
entities and privacy-sensitive, rendering it unfeasible to be
gathered into centralized servers for training.
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Federated learning (FL) [8]–[14] empowers multiple clients
to collaboratively train a global model without compromising
data privacy. An FL method for machinery FD with a self-
supervised learning scheme was proposed in [15]. The FL
framework is also utilized in the context of class-imbalanced
FD classification to facilitate the implementation of privacy-
preserving functionalities [16]. However, in practical industrial
environments, working conditions and equipment types signif-
icantly vary across different companies and change frequently.
This means the presence of domain discrepancy extends be-
yond the traditional demarcation between the training and test-
ing stages. It involves the domain discrepancy between training
clients and new clients, with inherent variations observed
among individual training clients. As a result, the trained
model cannot generalize well to out-of-distribution (OOD)
data on new tasks with limited samples, because most learning
algorithms heavily rely on the independent and identically
distributed assumption on source/target data. Collecting and
labeling sufficient data to address this issue is costly and
impractical. Data-based approaches such as data sharing and
augmentation work well, but may increase the risk of data
privacy leakage under the FL framework [17].

In addressing challenges related to deep model construction
and diverse data distributions, an approach with adaptive and
independent learning rate design and structure optimization
was proposed to enhance both the timeliness of FD and its
adaptability to dynamic conditions [18]. A novel method com-
bining 2-D-gcForest and L2,p-PCA was proposed to improve
the feature representation for different data sources [19]. A
distribution-invariant deep belief network was proposed to
learn distribution-invariant features directly from raw vibration
data [20]. Transfer learning (TL) is another way against the
domain discrepancy problems [21], in which the knowledge
from one or more tasks in the source domain can be reused for
other related tasks in the target domain. Shao et al. developed
a fast and accurate FD framework using TL [22]. A federated
TL framework with discrepancy-based weighted federated
averaging was proposed to train a good global FD model
collaboratively [23]. Meta-learning, a technique that also refers
to leveraging previous knowledge to improve learning on new
tasks [24], focuses on learning to learn across a broader range
of tasks rather than specific source and target tasks in TL.
In industrial scenarios of frequently changing work condi-
tions and equipment types, training a meta-learning model
to achieve strong generalization capabilities can greatly meet
practical demands. A novel meta-learning method based on
model agnostic meta-learning (MAML) [25] for FD in rolling
bearings under varying working conditions with limited data
was proposed in [26]. Hu et al. proposed a task-sequencing
meta-learning method that sorts tasks from easy to difficult
to get better knowledge adaptability [27]. Moreover, meta-
learning could also be combined with semi-supervised learning
utilizing unlabeled data for better fault recognition [28].

However, as mentioned earlier, it is challenging to aggregate
data from different entities and train models using centralized
algorithms above in real-world production environments. In
practical and common scenarios, it’s necessary to exploit
privacy-preserving distributed training algorithms to address

the issue of poor diagnosis performance on new tasks caused
by domain discrepancy and data scarcity, which has not been
fully researched. Furthermore, when considering the inherent
domain discrepancies among the data from various participants
in FL, it raises a fundamental question: how can we leverage
this aspect to strengthen the model’s robustness when faced
with unobserved tasks?

In this study, we tackle this challenge and propose a
novel representation encoding-based federated meta-learning
(REFML) framework for few-shot FD. REFML harnesses
federated meta-learning (FML) and draws inspiration from
representation learning for capturing discriminative feature
representations [29]–[33]. It leverages inherent heterogeneity
among training clients by extracting meta-knowledge from
different local diagnosis tasks and training a domain-invariant
feature extractor in a privacy-preserving manner, effectively
transforming it into an advantage for OOD generalization.
Without compromising the privacy data of participating clients,
the trained model can achieve high performance with very few
training samples when encountering new tasks, such as those
involving previously unseen working conditions or equipment
types, making it well-suited for practical industrial FD scenar-
ios with domain discrepancy and data scarcity problems.

The main contributions of this paper are as follows:

1) We propose REFML, an innovative FML-based privacy-
preserving method for few-shot FD, a relatively underex-
plored area in prior research. This approach consists of a
novel training strategy based on representation encoding
and meta-learning and an adaptive interpolation module.

2) We develop a novel training strategy based on rep-
resentation encoding and meta-learning to harness the
heterogeneity among training clients to improve OOD
generalization in FL with limited training samples. With
this strategy, the trained model is capable of capturing
domain-invariant features and adapting well to unseen
tasks to achieve high performance with limited data.

3) We design an adaptive interpolation method by calcu-
lating the optimal combination of the local and global
models as the initialization of local training. It is capable
of mitigating the negative effects of domain discrepancy
for better model performance.

4) Experiments are conducted on two bearing datasets
and one gearbox dataset. Compared with state-of-the-art
methods like FedProx, the proposed REFML framework
increases accuracy by 2.17%-6.50% when generalizing
to unseen working conditions and 13.44%-18.33% when
generalizing to unseen equipment types, respectively.

The rest of this paper is organized as follows. In section II
and section III, the preliminary work and problem formulation
are introduced. Section IV presents the proposed method in
detail. Numerical experiments are conducted in Section V to
verify the effectiveness of the proposed REFML framework.
Section VI concludes this article.
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II. PRELIMINARIES

A. Federated Learning

FL enables multiple clients to obtain a globally optimized
model while safeguarding sensitive data. It generally consists
of a central server and multiple clients. The central server man-
ages multiple rounds of federated communication to obtain a
global model, extracting valuable information from distributed
clients without accessing their private data. Throughout this
process, the only elements transmitted are the model param-
eters. Currently, the prevailing paradigm considers supervised
horizontal FL as an empirical risk minimization problem,
where the goal is to minimize the aggregated empirical loss,
shown as

min
W

U∑
u=1

|Du|
n

LDu
(W ), (1)

where W represents the parameters of the global model, and
U is the number of total clients. Du and |Du| are the local
dataset of client u and its size, respectively. The total number
of samples is n =

∑U
u=1 |Du|. LDu

(W ) is the empirical loss
of client u in the form of an expected risk on local dataset
Du to reflect the model performance, given by

LDu
(W ) =

1

|Du|
∑

(x,y)∈Du

l(W (x); y), (2)

where l(W (x); y) is a loss function that penalizes the distance
of model output W (x) from label y.

B. Meta-Learning

Meta-learning, also known as learning to learn, is a tech-
nique aiming at enhancing performance on new tasks by
utilizing prior knowledge from known tasks. In traditional
machine learning, the objective is to train a high-performing
model on specific tasks with a fixed algorithm, including
artificially designated network architecture, initialization pa-
rameters, update methods, and so on. However, in meta-
learning, the aim is to find a high-performing algorithm that
can adapt well to a set of tasks, particularly those that are
unseen.

Among different meta-learning methods, MAML is a repre-
sentative algorithm that focuses on the optimization of initial-
ization parameters. The algorithm trains the model among a
series of tasks {Γi}Ni=1 from the distribution of p(Γ ) to obtain
high-quality initialization parameters, aiming to perform well
on new tasks after training on a few labeled samples. Each task
Γi (i = 1, 2, ..., N) comprises training and testing samples,
known as support set Ds

Γi
and query set Dq

Γi
, respectively.

Firstly, MAML makes a fast adaptation from W to W ′
i in

each task’s support set Ds
Γi

, which can be represented by

W ′
i = W − α▽W LDs

Γi
(W ), (3)

where α is the learning rate of this fast adaptation. LDs
Γi
(W )

is computed in the form of an expected risk on Ds
Γi

, given by

LDs
Γi
(W ) =

1

|Ds
Γi
|

∑
(x,y)∈Ds

Γi

l(W (x); y), (4)

where |Ds
Γi
| is the size of the support set, l is the cross entropy

loss function.
Then, the performance of the adapted parameters W ′

i on task
Γi is evaluated on its query set Dq

Γi
in the form of empirical

loss which reflects the generalization ability of W . Hence, the
optimization objective is

min
W

∑
Γi∼p(Γ )

LDq
Γi
(W ′

i ). (5)

The aggregated loss values of each task are used to update the
model parameters W , given as

W = W − β▽W

∑
Γi∼p(Γ )

LDq
Γi
(W − α▽W LDs

Γi
(W )), (6)

where β is the meta-learning rate. The purpose of training on
multiple tasks is to find a high-quality initial model. As shown
in Fig. 1, W are the parameters of the model before updating,
and ∇l1, ∇l2, and ∇l3 are corresponding update directions
of three training tasks. The objective of MAML is not to
attain the best possible performance on a single task, which
means reaching any one of the three optimal weights W ∗

1 ,
W ∗

2 , and W ∗
3 of three training tasks, but rather to converge on

parameters that can swiftly adapt to similar, especially unseen
tasks.

ꞏ
ꞏ ꞏ

ꞏ∇lଵ

Wଵ
 ∗

W ∇lଷ

∇lଶ
Wଷ

 ∗

Wଶ
 ∗

Fig. 1: The learning process of MAML. The model is trained
to learn general knowledge for adapting to similar, especially
unseen tasks quickly and effectively.

III. PROBLEM FORMULATION

The core problems of FD in practical applications can be
summarized as follows:

1) Security privacy: Data privacy has been widely and
highly valued worldwide. Enterprises are increasingly cautious
about the application of data, making it difficult to centralize
sufficient data from mutually isolated “data islands” to train a
well-performing model.

2) Domain discrepancy and data scarcity: Working con-
ditions and equipment types from which data is collected
significantly vary across different companies, and change fre-
quently. Domain discrepancy problems not only exist between
participating clients and new clients but also between clients
participating in FL. Collecting and labeling sufficient data on
new tasks is costly and impractical. It is challenging for models
to perform well on new tasks with only a small amount of
samples.
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Under the FL framework, suppose there are U training
clients and V testing clients, whose datasets collected under
different working conditions or equipment types are regarded
as training tasks and testing tasks. It is noteworthy that
clients’ private data is not allowed to be shared, and each
of them has a relatively small amount of data. Let {Du}Uu=1,
{Dv}U+V

v=U+1 denote the datasets of training clients and testing
clients, respectively. The dataset Dm = {(xi, yi)}|Dm|

i=1 (m =
1, 2, ..., U+V ) of each client m is divided into support Ds

m =

{(xi, yi)}
|Ds

m|
i=1 and query set Dq

m = {(xi, yi)}
|Ds

m|+|Dq
m|

i=|Ds
m|+1 . Here

|Ds
m| + |Dq

m| = |Dm|. Vector xi ∈ Rd is a d-dimensional
real-valued feature vector regarded as the input of the model,
and scalar yi ∈ {1, 2, 3, ..., N} is a class label, where N is
the number of categories. The expected loss of the prediction
made with the model parameters Wm of client m on its dataset
Dm is defined as LDm(Wm), which could be computed by

LDm
(Wm) =

1

|Dm|
∑

(x,y)∈Dm

l(Wm(x); y)

= − 1

|Dm|
∑

(x,y)∈Dm

N∑
c=1

1[y=c]log(Wm(x)),

(7)

where l(Wm(x); y) is the cross entropy loss function, and 1
is the indicator function.

In the meta-training phase, the meta-goal is to find param-
eters W ∗ that perform well among training clients after fast
adaptation, given by

W ∗ = argmin
W

U∑
u=1

LDq
u
(W − α▽W LDs

u
(W )). (8)

In the meta-testing phase, the learned parameters W ∗ are used
to initialize models {Wv}U+V

v=U+1 of testing clients. Then the
model will use a small number of samples (the support set) to
quickly adapt to the task and expect to achieve good diagnostic
accuracy on the query set. The optimization objective during
the fast adaptation phase can be expressed as

min
{Wv}U+V

v=U+1

U+V∑
v=U+1

LDs
v
(Wv). (9)

The problem can be formulated as a N -way K-shot classifica-
tion task. The term N refers to the number of categories that a
meta task needs to classify, while K represents the number of
labeled samples in the support set available for each category.
Thus, each task has N ×K samples in the support set, which
is equivalent to |Ds

m| = N × K (m = 1, 2, ..., U + V ). All
the training clients use both the support set and the query set
to train their model, and all testing clients use the support set
and the query set to fine-tune and test the model, respectively.

IV. PROPOSED METHOD

This section presents the proposed REFML method for few-
shot FD. It consists of two main components: a central server
and local clients, which are divided into U training clients
and V testing clients. As shown in Fig. 2, the server and
clients collaborate through multiple communication rounds to
jointly train a model that can adapt well to testing clients

with very limited data. In each round, every training client
downloads the global model, conducts adaptive interpolation,
representation encoding, meta-updating of the predictor, and
uploads the model in sequence. Every testing client downloads
the global model, conducts adaptive interpolation, and fine-
tunes the model. In the following subsections, the proposed
training process and the overall workflow of the proposed
REFML method will be introduced in detail.

A. Adaptive Interpolation

In general FL, clients download global model parameters at
the beginning of each round and initialize their local models
with these parameters. Facing data heterogeneity challenge in
FL, a method of mixing global and local models has been
proposed to balance generalization with personalization [34].
Inspired by this, we further exploit personal information in
the model communication stage, that is using the optimal
interpolation of the global model and the local model as the
initial model rather than the global model itself, where the
optimal interpolation weights are calculated adaptively using
gradient-based search on local data.

In communication round t, training client u receives global
model Wt and aims to find the best combination of the global
model Wt and its local model Wu

t−1 as the initialization of its
local training, which is formulated as

Wu
t = Au

t ⊙Wt + (O −Au
t )⊙Wu

t−1, (10)

where Wu
t is the interpolated model of client u in the t-th

communication round, and ⊙ is a Hadamard product. Au
t are

the optimal interpolation weights of the global model Wt,
whose elements are all between 0 and 1, with the same shape
as Wt. O is an all-ones matrix, and O−Au

t are the interpolation
weights of the local model. This arrangement ensures that the
summation of interpolation weights for the global and local
models pertaining to each element position consistently equals
1, thus normalizing the weighting process.

To find the optimal interpolation weights Au
t , the interpo-

lation weights Au
t−1 of the last round are used to compute a

temporary combination Wu′

t , given by

Wu′

t = Au
t−1 ⊙Wt + (O −Au

t−1)⊙Wu
t−1. (11)

Then the temporary combination Wu′

t is evaluated on local
data, and the interpolation weights can be updated as

Au
t = Au

t−1 − δ ▽Au
t−1

LDu
(Wu′

t ), (12)

where δ is the learning rate.
Finally, the best combination of the local and global models

is computed using (10) with the updated interpolation weights
Au

t . By utilizing this process, every client has the ability to
acquire a model that is better tailored to their specific local
objective adaptively.

B. Representation Encoding

As shown in Fig. 3, the related models consist of feature
extraction and classification layers, which we refer to as
the encoder and the predictor, respectively. We consider the
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Fig. 2: Workflow of the proposed REFML framework. It contains a central server and multiple training and testing clients.
The server and clients collaborate through multiple communication rounds to train a model that can effectively adapt to testing
clients using extremely limited data with guaranteed privacy protection.

Input Representations

Encoder Meta-based Predictor

Output

Convolution
Batch normalization

ReLU
Max-pooling

FC
FC

Fig. 3: The model structure used in the REFML framework,
which consists of an encoder and a meta-based predictor.

encoder as a domain-invariant representations learner across
clients with different data distributions and the predictor as
a meta-based classifier learning on a series of training tasks.
The encoder contains three convolution units, and each of them
is composed of a one-dimensional convolution layer, a batch
normalization layer, a rectified linear unit (ReLU) activation
layer, and a max-pooling layer. It is responsible for extracting
informative feature representations from raw data.

Training a specific module within the network while keeping
the parameters of other modules unchanged is a common
approach to improve the module’s suitability for specific tasks,
especially when dealing with limited local data. Here, our
objective is to enhance the encoder’s ability to extract features
from local data before meta-knowledge extraction is conducted
on the predictor. Once trained, the aggregated encoder can
capture domain-invariant features accurately, and the predictor
with high-quality initialization parameters can adapt well to
new tasks. Correspondingly, the parameters of the model Wu

t

are divided into Eu
t and Pu

t , representing the parameters of
the encoder and predictor, respectively.

After adaptive interpolation, each training client makes sev-
eral local gradient-based updates to find an optimal encoder.
For client u, it updates encoder Eu

t on local dataset Du while
its predictor Pu

t remains unchanged. The encoder is updated
as

Eu
t = Eu

t − η ▽Eu
t
LDu(E

u
t ), (13)

where η is the learning rate. The aggregated encoder will
be able to extract common feature abstraction, serving as
a shared gripper to obtain domain-invariant features. When
encountering unseen working conditions or equipment types,
the encoder can extract informative features from previously
unseen data types, thereby aiding in achieving better diagnostic
performance on new tasks.

C. Meta-updating of the Predictor

The predictor consists of two fully connected (FC) layers,
which manages the classification of the extracted features to
generate predictive results for the health states. Following the
representation encoding process, we engage in the optimiza-
tion of the predictor Pu

t . This optimization is carried out based
on the loss computed using parameters that have undergone
rapid adaptation, which we refer to as meta-updating. It’s
important to note that during this meta-updating procedure,
the encoder Eu

t remains unchanged. First the fast adaptation
Pu′

t is computed on the support set Ds
u, given by

Pu′

t = Pu
t − α▽Pu

t
LDs

u
(Pu

t ). (14)

Then the loss of Pu′

t on the query set Dq
u is computed to

evaluate the performance of meta-parameters Pu
t after rapid
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Algorithm 1: The proposed REFML method.
input : Number of communication rounds T , number

of training and testing clients U , V , learning
rates of the corresponding stages δ, η, α, β, γ.

output: Learned testing models {W v}U+V
v=U+1

1 Initialize global model W0, local models and
interpolation weights of training and testing clients
{Wu

0 }Uu=1, {W v
0 }U+V

v=U+1, {Au
0}Uu=1, {Av

0}U+V
v=U+1.

2 for each round t = 1, 2, ..., T do
3 for each training client u = 1, ..., U do
4 Compute Au

t , Wu
t with Du using (10-12).

5 Eu
t = Eu

t − η ▽Eu
t
LDu

(Eu
t ).

6 Pu
t = Pu

t −β▽Pu
t
LDq

u
(Pu

t −α▽Pu
t
LDs

u
(Pu

t )).
7 end
8 for each testing client v = U + 1, ..., U + V do
9 Compute Av

t , W v
t with Ds

v using (10-12).
10 Fine-tune the model:
11 W v

t = W v
t − γ ▽Wv

t
LDs

v
(W v

t ).
12 end
13 Wt+1 =

∑U
u=1

|Du|
n Wu

t .
14 end

adaptation. Then the parameters of the predictor will be
updated using

Pu
t = Pu

t − β ▽Pu
t
LDq

u
(Pu′

t ), (15)

where α is the learning rate of fast adaptation and β is the
learning rate of meta-updating. Minimizing this loss means
that the meta-parameters Pu

t will have a better performance
after rapid adaptation. In other words, acquiring these adap-
tation abilities through a series of training tasks constitutes
the process of extracting meta-knowledge, which in turn
aids in the development of a robust generalization capability.
When facing unobserved tasks, informative representations are
extracted by the encoder from the raw data, and the predictor
with high adaptability utilizes these representations to make
accurate diagnoses.

D. The Proposed REFML Algorithm

1) Local Training: The workflow of the proposed REFML
framework is depicted in Fig. 2. In each communication
round, the training clients engage in a series of operations,
including downloading the global model, performing adaptive
interpolation, representation encoding, and meta-updating of
the predictor, followed by uploading the updated model to
the server. On the other hand, the testing clients download the
global model, conduct adaptive interpolation, and fine-tune the
model using the support set.

2) Global Aggregation: At the end of each communication
round, the server aggregates models uploaded by training
clients using

Wt+1 =

U∑
u=1

|Du|
n

Wu
t , (16)

where n is the total number of training samples. Subsequently,
the server disseminates the aggregated model to all clients

in the subsequent round, and all participants collectively
iterate through this process until convergence. During the
federated communication process, the testing clients have
the opportunity to acquire suitable interpolation weights and
consistently leverage the domain-invariant feature extraction
capability provided by the encoder in the global model, as well
as the high-quality initialization parameters of the predictor,
to achieve robust diagnostic accuracy on their respective local
tasks.

3) The Complete Diagnostic Steps: The complete process
of the proposed REFML method is illustrated in Algorithm 1,
and the diagnostic steps are summarized below:

1) The training clients download the global model and
execute adaptive interpolation;

2) The training clients train the encoder with their local
data;

3) The training clients meta-update the predictor and upload
the model to the server;

4) The testing clients download the global model and
execute adaptive interpolation;

5) The testing clients fine-tune the model with the support
set of their local data;

6) The server aggregates the models of all training clients;
7) Repeat steps 1) - 6) until the end of training;
8) The testing clients test the model with the query set of

their local data to get diagnosis results.
In practice, the computational complexity of our method

is comparable to that of typical FL systems, and the train-
ing phase does require a certain amount of time. However,
it’s important to highlight that once the training phase is
completed, the inference process becomes highly convenient.
This characteristic is particularly advantageous in real-world
engineering deployments, where the efficiency of the inference
phase frequently surpasses that of the training phase.

V. EXPERIMENTS

To comprehensively evaluate the effectiveness of the pro-
posed REFML method, two bearing datasets and one gear-
box dataset are employed for few-shot scenarios, and the t-
distributed stochastic neighbor embedding (t-SNE) technique
is applied to compare the feature extraction ability of different
methods in the form of visualization.

A. Datasets

1) Case Western Reserve University (CWRU) Dataset: The
CWRU dataset is a well-known open-source dataset in FD. Its
four health states: one normal bearing (NA), inner fault (IF),
ball fault (BF), and outer fault (OF), are further classified into
ten categories according to three different fault sizes (7, 14,
and 21 mils) of each fault state. Each health state corresponds
to four distinct working conditions, characterized by varying
loads and their corresponding speeds (1797, 1772, 1750, and
1730 rpm).

2) JiangNan University (JNU) Dataset: The JNU dataset
is a bearing dataset acquired by Jiangnan University, China.
Four kinds of health states, including NA, IF, BF, and OF,
were carried out. Vibration signals were sampled under three
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TABLE I: Working Conditions of Three Datasets.

Working condition CWRU JNU PHM2009
Load(HP) Speed(rpm) Size Speed(rpm) Size Load Speed(Hz) Size

0 0 1797 2013 600 488 High 30 3640
1 1 1772 2250 800 488 High 35 3640
2 2 1750 2250 1000 488 High 40 3640
3 3 1730 2255 High 45 3640

TABLE II: Hyper Parameters.

Hyper parameters Value

length of sample 1024
communication round 1000

learning rate [0.00001, 0.001]
sample each class in support set 1, 3, 5
sample each class in query set 10

TABLE III: Experiment Settings on Unseen Working Condi-
tions.

Dataset Fold Meta-train conditions Meta-test condition

CWRU

1 1, 2, 3 0
2 2, 3, 0 1
3 3, 0, 1 2
4 0, 1, 2 3

JNU
1 1, 2 0
2 2, 3 1
3 3, 0 2

PHM2009

1 1, 2, 3 0
2 2, 3, 0 1
3 3, 0, 1 2
4 0, 1, 2 3

rotating speeds (600, 800, and 1000 rpm) corresponding to
three working conditions.

3) PHM Data Challenge on 2009 (PHM2009) Dataset:
The PHM2009 dataset is a generic industrial gearbox dataset
provided by the PHM data challenge competition. A total
of 14 experiments (eight for spur gears and six for helical
gears) were performed. It contains five rotating speeds and
two loads, corresponding to ten working conditions. Here
four experiments of spur gears as four categories are used
to conduct the experiments. These experiments are conducted
under four different working conditions, with speeds set at 30,
35, 40, and 45 Hz, all operating under high load conditions.
The details of the three datasets including corresponding
sample sizes are listed in Table I. However, it is worth noting
that in our data scarcity setup, not all the data from the original
dataset are utilized. The specific sample size configurations for
the experiments can be found in the next subsection.

B. Experiment Setup

1) Network Structure and Hyper parameters: In our exper-
iments, related FD models are based on CNN, which contains
three convolution units and two FC layers. Each convolution
unit is composed of a one-dimensional convolution layer, a
batch normalization layer, a ReLU activation layer, and a max-
pooling layer. Its output is flattened into a tensor with one
dimension and a length of 4096 and then used as input for
the following FC layers. Note that the number of the output
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Fig. 4: Visualization of extracted representations using t-SNE.
(a) Raw data. (b) FedAvg-FT. (c) FedProx-FT. (d) REFML.

units N of the last layer varies with the category number of
the specific task.

The learning rates are obtained by searching within the
range of 0.00001 to 0.001. In the federated communication
process, the maximum number of communication rounds is
1000. In the few-shot scenario, the shot number in the query
set is 10, and the shot number in the support set varies in the
range of 1, 3, and 5. Some crucial hyper parameters are shown
in Table II.

2) Baselines: We evaluate our approach against several
state-of-the-art baselines, including FedAvg [8], FedProx [35]
and their fine-tuned versions denoted by FedAvg-FT and
FedProx-FT for a fair comparison. Fine-tuned versions of these
baselines use the support set of the testing clients to fine-tune
the model received from the server before testing it on the
query set. All of these four baselines use all the data, including
support and query set on the training clients.
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TABLE IV: Experiment Results on Unseen Working Conditions.

Methods CWRU JNU PHM2009
1-shot 3-shot 5-shot 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot

FedAvg 78.25 78.33 84.25 68.89 72.50 72.78 71.56 71.88 72.19
FedAvg-FT 80.92 81.25 91.17 70.83 73.61 74.17 71.88 72.81 72.81

FedProx 84.75 87.25 91.25 71.67 74.17 76.67 72.50 73.44 74.38
FedProx-FT 88.13 88.25 93.88 74.17 76.67 77.50 73.13 74.06 75.16

REFML 91.38 94.75 96.05 76.94 80.83 81.11 75.94 77.19 77.82

Fig. 5: The diagnostic accuracy of the 1-shot sub-experiments
on the CWRU dataset.

C. Visual Analyses

To provide an intuitive comparison of the feature extrac-
tion ability of different methods, the extracted features from
different methods including raw data, FedAvg-FT, FedProx-
FT, and the proposed REFML are illustrated in Fig. 4 using
the t-SNE technique, where different colors represent different
health states. The feature information is contained in the output
of the first FC layer in the models, which is a 256-dimensional
vector, and the result of raw data is generated from a 1024-
dimensional vector as its original length.

It can be seen that features of the same health state learned
by REFML are clustered well while features of different health
states are separated well. In comparison, features learned by
the other methods do not cluster well. For example, as shown
in Fig. 4(c), the points of health state “2” overlapped the
points of the health state “5”, which implies that an effective
classification cannot be achieved.

D. Experiment Results on Unseen Working Conditions

In this part, we evaluate the proposed REFML method
on unseen working conditions. In each dataset, the working
conditions of the meta-train and meta-test phases do not
overlap. Among all the data corresponding to different work-
ing conditions, a portion of the data associated with certain
working conditions is selected as data for the training clients,
while another portion is chosen for the testing clients. Each
client corresponds to a specific working condition. The meta-
knowledge extraction is conducted in tasks of the training
clients, and the generalization ability of the trained model is
evaluated in the tasks of testing clients. Here we adopt K-
fold cross-validation to conduct the experiment. For example,

there are 4 working conditions in the CWRU dataset, and
we have one client for each working condition. We choose
clients 1, 2, and 3 as training clients and client 0 as testing
client in the first fold, then we choose clients 2, 3, and 0 as
training clients and client 1 as testing client in the second
fold, and complete the experiment according to this rule. The
performance of the model is then evaluated by averaging
the results obtained from each fold. The specific experiment
settings are listed in Table III. To clearly demonstrate this
process, the diagnostic accuracy of the 1-shot sub-experiments
conducted on the CWRU dataset are shown in Fig. 5. As
we can see, although the generalization difficulty varies on
different validation folds, for example, the performance of all
algorithms is worse on the first fold than on other folds, the
proposed REFML method achieves the best performance on
all validation folds.

The comparison results under different shot numbers with
different methods are shown in Table IV and a visualization
form in Fig. 6. It can be seen that the FedAvg method achieves
the lowest accuracy while the FedProx method performs better
because of its improvement against heterogeneity by restricting
the local updates to be closer to the global model. Another
observation is that the fine-tuned versions of FedAvg and Fed-
Prox outperform their original versions since they utilize the
data on the testing task to adapt the model. Most importantly,
the proposed REFML method achieves the best performance
across all datasets and all shot numbers, and within a single
dataset, the accuracy increases as the shot number increases. It
provides an increase of accuracy by 2.17%-6.50% compared to
the FedProx-FT method when generalizing to unseen working
conditions under different shot numbers. In addition, as the
shot number increases, the degree of performance improve-
ment diminishes. For example, in the CWRU dataset, the
performance increases from 1-shot to 3-shot and from 3-shot
to 5-shot are 3.37% and 1.30%, respectively. Similarly, in the
other two datasets, the corresponding performance gains drop
from 3.89% to 0.28% and from 1.25% to 0.63%, respectively.

E. Experiment Results on Unseen Equipment Types

To further examine the effectiveness of the proposed method
on generalizing to unseen equipment types, we conduct exper-
iments across the CWRU dataset and the JNU dataset, where
training data and testing data are collected from different types
of bearings. To align classification categories, we selected four
out of the ten health states from the CWRU dataset: three
fault states with size 21 and an NA state, and kept all four
health states in the JNU dataset. Thus, the tasks on these two
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(a) (b) (c)

Fig. 6: Visualization of the experiment results on unseen working conditions. The proposed REFML method outperforms other
methods and provides an increase of accuracy by 2.17% - 6.50% compared to the FedProx-FT method. (a) Test on the CWRU
dataset. (b) Test on the JNU dataset. (c) Test on the PHM2009 dataset.

TABLE V: Experiment Settings on Unseen Equipment Types.

Datasets Meta-train conditions Meta-test conditions

CWRU to JNU 0, 1, 2, 3 0, 1, 2
JNU to CWRU 0, 1, 2 0, 1, 2, 3

TABLE VI: Experiment Results on Unseen Equipment Types.

Methods CWRU to JNU JNU to CWRU
1-shot 3-shot 5-shot 1-shot 3-shot 5-shot

FedAvg 44.99 45.33 45.67 49.85 50.16 50.47
FedAvg-FT 50.83 51.67 54.17 60.32 66.10 67.50

FedProx 45.33 45.83 46.67 52.66 55.63 56.46
FedProx-FT 51.67 52.92 53.33 63.91 72.19 72.30

REFML 68.06 68.89 69.17 78.55 85.63 90.63

datasets are all 4-way classification problems. The details of
the designed experiments are listed in TABLE V.

The comparison results under different shot numbers with
different methods are shown in Table VI, and Fig. 7 presents
a visualization of the results. It can be observed that the
proposed REFML method still achieves the highest diagnos-
tic accuracy and exhibits a positive correlation between its
performance and the shot number. Another observation is the
degree of performance improvement diminishes as the shot
number becomes larger, which is consistent with the findings
of the previous experiment. Furthermore, the performances
of FedAvg-FT and FedProx-FT are significantly superior to
those of their original versions, which indicates that the fine-
tuning process has a considerable impact on accuracy improve-
ment, suggesting the severity of domain discrepancy between
training and testing. The advanced generalization ability of
the REFML method is proved by 13.44%-18.33% accuracy
improvement compared with the FedProx-FT method across
1-shot to 5-shot scenarios.

F. Ablation Analyses

To verify the necessity of adopting the FL framework under
privacy and security conditions and confirm each module

(a)

(b)

Fig. 7: Visualization of the experiment results on unseen
equipment types. The proposed REFML method outperforms
other methods and provides an increase of accuracy by 13.44%
- 18.33% compared to the FedProx-FT method. (a) General-
ization from CWRU dataset to JNU dataset. (b) Generalization
from JNU dataset to CWRU dataset.

proposed by us contributes to performance, including the
training strategy based on meta-learning and representation
encoding, and the adaptive interpolation module, the ablation
experiments were designed. As depicted in Fig. 8, “Local”
refers to testing clients performing local training without any
federated communications. We also introduced a variant of the
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Fig. 8: Results of the ablation experiments under 3-shot
settings on three datasets.

proposed REFML method called “REFML w/o AI (adaptive
interpolation) ”, which omits the adaptive interpolation module
before local training.

We observe that the diagnostic accuracy of “Local” is
relatively low due to its inability to utilize information from
the training clients, which reflects the effectiveness of FL. By
employing our training strategy, the diagnostic accuracy of
“REFML w/o AI” surpasses FedAvg-FT across all datasets.
This result indicates that our method can effectively extract
domain-invariant representations for previously unseen clas-
sification tasks to achieve an accurate diagnosis. Moreover,
the performance improvement of REFML compared with
“REFML w/o AI” demonstrates that our adaptive interpola-
tion module can efficiently utilize local information, thereby
mitigating the effects of domain discrepancy.

The experimental results on both bearing data and gearbox
data have already confirmed the effectiveness and robustness
of the proposed method in the field of industrial FD, showing
its potential for extensive applicability in industrial scenarios.
It enables multiple clients to obtain a globally optimized model
with high generalization performance. When encountering new
working conditions and equipment types, it only requires a
small number of samples to achieve good performance.

Apart from industrial FD, our proposed approach can be
readily applied to various applications with the same chal-
lenges of data privacy, domain discrepancy, and data scarcity.
For instance, in the healthcare field, especially in image clas-
sification tasks, domain discrepancy occurs due to differences
in imaging equipment and protocols across institutions.

VI. CONCLUSION

In this paper, we have developed REFML to address the
challenge of poor diagnosis performance in industrial FD
caused by data privacy, domain discrepancy, and data scarcity.
It enables multiple clients to collaboratively train a global
model with high generalization ability while ensuring data pri-
vacy. The trained model can achieve superior performance on
unobserved working conditions or equipment types even with
limited training data. Specifically, a novel training strategy
based on representation encoding and meta-learning has been
invented, which harnesses data heterogeneity among training

clients to facilitate OOD generalization in new clients by
extracting meta-knowledge from different local diagnosis tasks
and training a domain-invariant feature extractor. Furthermore,
an adaptive interpolation method has been designed to cal-
culate the optimal combination of local and global models
before local training, which further utilizes local information
to achieve better model performance.

Experiments conducted on three real datasets have demon-
strated that the proposed REFML method could perform well
on unseen tasks using very limited training data with privacy
guaranteed. Compared with the state-of-the-art methods, the
proposed REFML framework achieves an increase in accuracy
by 2.17%-6.50% when tested on unseen working conditions
of the same equipment type and 13.44%-18.33% when tested
on totally unseen equipment types, respectively.

While our results demonstrate the promise of REFML,
it suffers from high computational complexity due to the
calculation of second-order derivatives in MAML. Future
research includes exploring computationally efficient variants
of MAML to enhance the practicality, scalability, and accuracy
considering system heterogeneity.
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