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Abstract— Exhaust Gas Temperature (EGT) is a key parameter in 
diagnosing the health of gas turbine engines (GTEs). In this paper, 
we propose a model-driven spectroscopic network with strong 
generalizability to monitor the EGT rapidly and accurately. The 
proposed network relies on data obtained from a well-proven 
temperature measurement technique, i.e., wavelength modulation 
spectroscopy, with the novelty of introducing underlying physical 
absorption model and building a hybrid dataset from simulation 
and experiment. This hybrid model-driven network enables strong 
noise resistance of the neural network against real-world 
experimental data. The proposed network is assessed by in situ 
measurements of EGT on an aero-GTE at millisecond-level 
temporal response. Experimental results indicate that the 
proposed network substantially outperforms previous neural-
network methods in terms of accuracy and precision of the 
measured EGT when the GTE is steadily loaded. 

Index Terms— deep neural network, signal processing, gas turbine 
engine, exhaust gas temperature, wavelength modulation 
spectroscopy 

I. INTRODUCTION

AS Turbine Engines (GTEs) provide efficient energy 
solutions for many industrial sectors, such as electrical 

power generation and propulsion systems, particularly in 
aviation. As an indicator of the thermal health condition of a 
GTE, Exhaust Gas Temperature (EGT) is critically important 
and must be monitored with good temporal resolution [1, 2]. 
Although thermocouples (TCs) have been employed for EGT 
monitoring, their slow response is inadequate for the 
assessment of the instantaneous energy conversion process, 
which strongly relates to the combustion characteristics and 
control efficiency of the GTE. In contrast, optical diagnostics 
offer non-intrusiveness and much faster responses and thus 
facilitate timely engine fault diagnosis [3, 4].   

Among the various optical diagnostic tools, Wavelength 
Modulation Spectroscopy (WMS) is unique for robust, rapid, 
accurate and sensitive temperature measurement in harsh 
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environments [5, 6]. WMS is implemented by extracting 
harmonics of the laser transmission signal, which are then fitted 
using a spectral database, typically using an algorithm based on 
a least-squares metric, to retrieve the mean temperature along 
the laser path [7]. The fast wavelength-scanning capabilities of 
available laser sources, combined with the excellent temporal 
response characteristics of photodetectors [8] and associated 
electronics [9-11], mean that WMS can be carried out at kHz-
level temporal resolution [12], and recently up to 1 MHz [13]. 
However, the iteration-based spectral fitting process limits the 
real-time response of WMS in industrial applications to the 
second or sub-second level, even using modern high-level 
processors. Therefore, acceleration of the WMS signal 
processing stage is a critical requirement to enable its 
application on rapid EGT retrieval.  

Deep neural networks (DNNs) have been utilized for rapid 
signal processing in absorption spectroscopy [14-17]. Some 
attempts rely on training the DNN using simulated datasets 
established by the spectral database. For example, Liu et al [14] 
used this approach to establish a back-propagation neural 
network to retrieve isotopic CH4 abundance with enhanced 
sensitivity. Tian et al [15] introduced a pre-trained DNN for gas 
concentration retrieval using a simulated dataset and employed 
transfer learning to tackle the shortage of experimental data. 
Since the above neural networks are mainly trained with 
simulated data, the result strongly depends on the match 
between the trained model and the physical circumstances when 
acquiring the real-world data. However, such models rely 
heavily on the dataset and thus have poor generalizability for 
more unpredictable circumstances, such as GTE exhaust. 

Recent efforts have been made on integrating physical 
models and experimental data into the training process to 
improve the generalizability and robustness of DNNs. For 
example, Xie et al [16] integrated the absorption model into a 
neural network via outputting the temperature-dependent line-
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shape function with ultra-low spectral sampling. Sun et al [17] 
introduced a physically-motivated recurrent neural network 
(RNN), in which de-noised spectra were incorporated into the 
training process. These state-of-the-art algorithms can 
effectively obtain features from experimental absorption 
spectra to calculate gas parameters. However, the experimental 
data used in the datasets were sampled under well-controlled 
lab conditions. In harsh industrial environments, for example, 
the test cell of a GTE, these algorithms suffer from significant 
uncertainties in their performance against real-world 
measurement data, in which unpredictable noise arises from 
mechanical vibration and optical interference. Moreover, 
industrial environment can also make the laser performance, 
e.g., linearity and wavelength stability, different than that in the
lab, and thus make the lab-based neural network no longer
effective.

To address the aforementioned limitations, this paper 
proposes a new hybrid model-driven neural network, named 
HMD-WMS. The proposed algorithm is evaluated against TC 
measurements in the retrieval of EGT behind an Auxiliary 
Power Unit (APU), a GTE that provides energy for purposes 
other than propulsion on large aircraft. The main novelties of 
this paper are:  
1) A new HMD-WMS network is designed for real-time spectra

recovery and EGT monitoring. It combines a transformer-
based encoder and a Convolutional Neural Network (CNN)-
structured decoder. Such an architecture efficiently captures
temporal and shape information of the WMS harmonic
spectra, de-noises spectral sequences and enables efficient
neural network testing.

2) The developed HMD-WMS, for the first time, integrates both
the physical model of absorption spectroscopy and
industrially-relevant experimental WMS data. The hybrid
model enables strong noise resistance against real-world
experimental data.

3) An experiment is carried out on an APU under steady-state
load to examine the performance of the developed HMD-
WMS on retrieving both the spectra and the EGT at 250 Hz.
The retrieved spectra fit well with the least-square metric,
while the EGT agrees with the TC measurements in its
temporal and spatial coverage.
The remainder of this paper is organized as follows: In

Section II, the WMS principles and the detailed architecture of 
the HMD-WMS are briefly presented. Section III illustrates the 
experiment setup and dataset construction. Section IV presents 
the experimental results and validation of the HMD-WMS. 
Finally, conclusions are presented in section V. 

II. METHODS

A. Fundamentals of WMS

In our case, frequency-division multiplexing (FDM) is
applied in WMS by simultaneously measuring  two absorption 
transitions of the same chemical species to calculate EGT via 
ratio thermometry [18, 19]. As shown in Fig. 1, two lasers at the 
central wavenumbers of vത1vത1 [cm-1] and vത2 [cm-1] are driven by 
sinusoidal signals at fmv1 [Hz] and fmv2 [Hz], respectively, 
superimposed on a low-frequency carrier at fs [Hz]. In general, 
fmv  100 × fs, where v is either v1 or v2. The emitted laser 
intensity of either laser, I0,v, can be expressed as 

00, 0, 1, 2, 2, ,( ) [1 cos(2 ) cos(4 )]
v vv v m v v m vvI t i f t iĪ f t          (1) 

where Ī0,v refers to the time-average emitted laser intensity, i0,v 

is the amplitude of linear intensity modulation with linear phase 
shift 1,v, and i2,v and 2,v are the second-harmonic intensity 
modulation amplitude and phase shift, respectively.  

The two emitted laser signals are combined with a fiber 
coupler and collimated to penetrate the target plume with a path 
length of Labs [cm]. The transmitted laser intensity It,v is received 
by a photodetector and can be expressed as:  

abs

, 0, 0, 0
( ) ( ) ( ( )) ( ) exp( ( ) )

L

t v v v v v vI t I t v t I t P X S T dl          (2) 

where  is the absorbance, vv(t) the instantaneous laser 
wavenumber, P [atm] the pressure and X the mole fraction of 
targeted gas species. Sv(T) [cm-2atm-1] is the temperature-
dependent line strength when the temperature is T [K]. v is the 
line-shape function and can be integrated against wavenumber 
to unity, i.e., ∫ v

-∞

+∞
dv≡1.

Further, It,v is demodulated by a digital lock-in amplifier 
(DLIA) at the frequencies of fmv and 2×fmv, resulting in the 
extraction of the first- and second-order harmonics of It,v(t), i.e., 
1f and 2f, respectively. The absorption spectrum at frequency 
2f, normalized to the absorption spectrum at 1f,  noted as WMS-
2f/1f, can be expressed as [20]: 

abs

0,
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WMS-2 /1 ( cos )cos2v
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v
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f f v a d

i 

  
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
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
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where a is the amplitude of modulation depth. The WMS-2f/1f 
spectra of the two transitions are saved as two vectors, sv1 

Fig. 2.  Architecture of the proposed HMD-WMS.  
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ℝL×1 and sv2  ℝL×1. L is the number of demodulated 
wavenumber samples of each transition. Traditionally, T will be 
retrieved after least-square fitting sv1 and sv2 to the 
spectroscopic models generated by the HITRAN database [21]. 
It generally costs a few hundred milliseconds to a few seconds 
for fitting a single transition even using modern processors, 
such as those with 2.5 GHz (or higher) base frequency and 8 
MB cache. Such computational cost limits the real-time 
temporal resolution of WMS even if fs is set at kHz or above. 
To solve this issue, HMD-WMS is designed in the next 
subsection to replace the least-square fitting by effectively and 
rapidly mapping both the temporal and shape features of sv1 and 
sv2 to T with high accuracy and generalizability.  

B. HMD-WMS architecture

The architecture of the HMD-WMS is shown in Fig. 2. It
contains four modules, i.e., a data pre-processing module, an 
encoder, a decoder, and a temperature predictor. Overall, the 
measured {sv1, sv2} are concatenated as s  ℝ2L×1, as the input 
of the data pre-processing module.  Then, the pre-processed 
data go through a transformer-based encoder, followed by a 
CNN-structured decoder. These three modules aim to recover a 
de-noised WMS-2f/1f spectral sequence srec  ℝ2L×1, which is 
physically constrained by the line-shape function. Finally, the 
temperature predictor maps srec to T via fully-connected layers. 
The functionalities of these four modules are detailed below.   
1. Data pre-processing

This module aims to extract data features to maximize the
efficiency of the subsequent encoder. Fig. 3 shows a simulated 
WMS-2f/1f spectral sequence s of water vapor (H2O) 
absorption centred at vത1=7185.6 cm-1 and vത2=7444.4 cm-1. The 
primary features of such spectral sequences are manifested as 
a) the potential temporal correlation between neighboring
wavenumber samples arising from time-dependent wavelength
scanning; b) the shape features of the whole WMS-2f/1f spectra,
such as the temperature-related absorption peaks, broadened
lineshape and phase shift [22]. In this module, data embedding
and positional encoding are introduced to pre-process s and then
output Pℝ2L×demb which retains the temporal and shape

features. demb is the embedding dimension.
Data embedding will convert s to a higher-dimensional 

matrix. Data embedding has been widely used in Natural 
Language Processing for converting the categorical variable to 

a vector of numerical values for semantic meaning 
representation [23]. In our case, data embedding is mainly used 
for maintaining the spectral information of each wavenumber 
sample sl (l = 1, 2,…, 2L) by an embedded vector el  ℝ1× demb  
for the following positional encoding, where el is the l-th row 
vector of an embedded matrix E ℝ2L×demb. E is given by: 

 E s w        (4) 

where wℝ1×demb is the trainable weight.
 Positional encoding generates a unique code for the 

embedded matrix to preserve and enhance its position 
information [24]. The positional encoding matrix 
Posℝ2L× demb is obtained for E. The element of the l-th row 

vector posl can be expressed as: 

emb,2 2 /
pos sin( )

10000l j j d

l
  (5) 

emb,2 1 2 /
pos cos( )

10000l j j d

l
    (6) 

where j = 1, 2, …, demb/2. demb is an even number. The use of 
sinusoidal functions here is due to a) their nature of continuity 
and differentiability to benefit model training; and b) their 
reliability of frequency adjustment to generate unique position-
involved vectors. Finally, the data pre-processing module will 
output P ℝ2L× demb: 

+P = E Pos   (7) 
2. Encoder

A transformer benefitting from its effectiveness on learning
long-term dependencies via parallel computation [24], is used 
in HMD-WMS encoder to capture the temporal features of P. 
Here, M series of encoder blocks are concatenated, as shown in 
Fig. 2, to form an encoder. In each block, there are a multi-head 
self-attention (MHSA) sublayer and a feedforward sublayer. 
The principles of MHSA have been demonstrated in [24]. In our 
case, the structure of the encoder can be simplified as: 

sublayer1 LayerNorm(MHSA( )) O P P  (8) 

sublayer2 sublayer1 1 1 2 2LayerNorm( ( ) )   O O W b W b P (9)

where Osublayer1ℝ2L×demb and Osublayer2ℝ2L×demb are the outputs 
of MHSA and the feedforward sublayer, respectively. 
W1ℝdemb×dff  and W2ℝdff×demb  represent the trainable 
weights for the first and the second linear layers within the 
feedforward sublayer. b1ℝ1×dff and 
b2ℝ1×demb are bias vectors.  is the ReLU activation function. 
3. Decoder

The decoder consists of a depth-wise CNN (DW-CNN) and
a residual submodule. It further learns and refines the shape of 
the WMS-2f/1f spectra to recover the de-noised spectra. 
1) Depth-wise Convolutional Neural Network

CNNs are well-suited for discovering intricate shape features
of matrices. Here, we choose DW-CNN to prevent crosstalk 
among different channels by setting the number of kernels as 
2L to avoid the distortion on the extracted temporal information 
from the sequence. In standard CNNs, each convolutional layer 
performs convolution across all input channels using a shared 
set of learnable kernels. In contrast, DW-CNN will employ an 
individual kernel set for each input channel, i.e., each Fig. 3.  Pre-process of concatenated {sv1, sv2} via data embedding and 

positional encoding. 
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wavenumber sample in the spectral sequence, thus preserving 
the existing temporal features among different channels. In our 
model, DW-CNN is composed of two depth-wise convolutional 
layers, i.e., Conv1 and Conv2, each followed by a batch 
normalization layer and an activation function. Osublayer2 is 

reshaped to Cℝඥdemb×ඥdemb×2L  as the input. The forward
propagation is expressed as: 

 Conv1 Conv1 Conv1( )  O BN W C b  (10) 

 Conv2 Conv2 Conv1 Conv2( )  O BN W O b  (11) 

 dec
Conv2( )o FC O  (12) 

where the operator * represents convolution, BN and FC the 
batch normalization and the fully-connected calculation, 
respectively.  OConv1ℝHO1×WO1×CO1   ( OConv2ℝHO2×WO2×CO2 ), 
WConv1ℝHW1×WW1×CW1 ( WConv2ℝHW2×WW2×CW2 ) and 
bConv1ℝ1×CO1  ( bConv2ℝ1×CO2 ) are the output maps, 
convolutional kernels and bias vectors of Conv1 (Conv2), 
respectively. HO1 (HO2), WO1 (WO2), are the height and width of 
OConv1  ( OConv2 ), respectively. CO1 (CO2) is the number of 
channels. HW1 (HW2), WW1 (WW2), and CW1 (CW2) are the kernel 
height, width, and the number of kernels of WConv1 and WConv2, 
respectively. CO1 = CO2 = CW1 = CW2 = 2L. odec

  ℝ2L×1 is the 
reconstructed feature vector from the DW-CNN module. 
2) Residual module

This module tackles the issues of vanishing gradient and
degradation in accuracy via short-cut connections when the 
depth of the neural network increases [25]. Here, the input s will 
shortcut to the output of DW-CNN, odec, for residual mapping. 
The output of the residual module is defined as: 

 rec dec s o s  (13) 

where srec  ℝ 2L×1 is the reconstructed WMS-2f/1f spectral 
sequence, ‘+’ the operand of element-wise addition.  
4. Temperature Predictor

The Temperature Predictor retrieves the mean path
temperature Trec based on srec. According to Eq. (3), the 
dependence of srec on Trec can be represented by the following 
mapping: 

rec rec( )g Ts                                    (14) 

We construct three fully-connected layers TP1, TP2 and TP3 to 
train this mapping. Finally, Trec can be expressed as: 

rec rec
TP3 TP2 TP1 TP1 TP2 TP3tanh{ { ( { ( )} } b }T     w W W s b b (15) 

where WTP1ℝdTP1×2L , WTP2ℝdTP2×dTP1 and wTP3ℝ1×dTP2  are 
the trainable weights for the first, second and third layers, 
respectively, bTP1ℝ1×dTP1,  bTP2ℝ1×dTP2 and bTP3 are the bias 
of each layer, and ‘tanh’ is the activation function Tanh. Since 
srec is noise-free, Trec retrieval using srec gives more stable results 
compared to those obtained from the noise-contaminated raw s. 

III. EXPERIMENT AND RESULTS

A. Experiment setup

To assess the performance of the proposed HMD-WMS
method, an industrial-scale experiment was carried out by 
measuring the EGT of an aircraft APU (Honeywell, Model: 
GTCP85-129) mounted in a test cell at the University of 

Sheffield, UK. Fig. 4 shows the APU exit, laser sensors and the 
layout of the optical path. In this experiment, we selected H2O 
as the target gas species, as it is a common combustion product 
and has rich absorption spectra in the near infrared. Here, H2O 
transitions at vത1=7185.6 cm-1 and vത2=7444.4 cm-1 are used for 
ratio thermometry due to their good sensitivity in the target 
temperature range [3]. The two FDM laser diodes at vത1 (NTT, 
NLK1E5GAAA) and vത2  (NTT, NLK1B5EAAA) were both
scanned at fs =1 kHz, and modulated at fmv1 = 100 kHz and 
fmv2=130 kHz, respectively. The transmitted laser signal was 
received by a photodetector (Hamamatsu, G12182-110K) and 
then digitized by a customized DAQ system [9] at fsamp = 15.625 
Mega samples/second. The DLIA is integrated into the DAQ. It 
utilizes a cascaded integrator-comb (CIC) filter [26][27] to 
down-sample the raw transmission signals with a decimator of 
c = 32. As a result, each of the 1f and 2f signals for each 
transition has Nsamp = 488 wavenumber samples, where Nsamp = 
fsamp / (fs ∙ c). Here, we use the central 120 wavenumber samples 
for each absorption transition, i.e., L = 120, that adequately 
cover all the features of the absorption spectra as the input to 
the HMD-WMS, i.e., sv1 ℝ120×1, sv2 ℝ120×1. The total laser 
path length Labs is 50 cm, whereas the estimated path length Lplu 
through the APU exhaust plume is 24 cm. To enable operation 
of the optics under ambient conditions, both the laser emitter 
and detector are located at a distance along the radius of 13 cm 
(denoted Lamb) outside the edge of the APU exit (Fig. 4). In 
downstream direction, the laser beam path is positioned 3 cm 
from the APU exit. For line-of-sight WMS measurement, ratio 
thermometry retrieves mean path temperature 𝑇 =

f(Av1,abs,  Av2,abs), where Av,abs=P∙Sv(T)∙X·Labs is the integrated 
absorption from the transition v and f(·) represents the mapping 
between the integrated absorption of the two transitions and the 
temperature. Transmitted laser signals were also collected when 
the APU was not in operation in order to calculate the ambient 
temperature Tamb and H2O concentration Xamb via the traditional 
fitting method. Then, the integrated absorption along the 
ambient path length Lamb is calculated as 
Av,amb=P∙Sv(Tamb)∙Xamb·Lamb , leaving that in the plume as 
Av,plu=Av,abs-2×Av, amb. Finally, the EGT is calculated by Tplu= 
f(Av1,plu , Av2,plu ). As the standard instrument on the APU, a 
Class 2 K-type TC (IEC 60584-2, OMEGA Engineering Ltd, 
UK) was used to record Tplu. As demonstrated in [28], the 
plume temperature is nearly uniform and consistent with the TC 
measurement. Therefore, the TC-measured Tplu can be regarded 
as a reference for the mean path temperature measurement.  

B. Dataset construction

As shown in Fig. 5, a hybrid dataset was built by combining
both simulated data and a small portion of experimental data. 
Among different APU working conditions, the measured 

Fig. 4.  Auxiliary Power Unit and laser system setup 
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temperature range by TC was from 400 K to 880 K, whereas 
the mole fraction measured by a gas sampler was 0.00052 to 
0.02. To improve the diversity of training samples, we 
generated a simulated training dataset utilizing the HITRAN 
database, allowing simulated average temperature and H2O 
concentration to cover the above range with the step size of 4 K 
for temperature and 0.0002 for H2O mole fraction. As a result, 
14400 simulated WMS-2f/1f spectral sequences 
sm

sim={sv1,m
sim , sv2,m

sim } ℝ240×1, m= 1, 2, …, 14400, were generated.
To further improve noise robustness, 20 dB, 30 dB and 40 dB 
white noises (the reasonable noise levels in real experiments [5, 
9]) were added to sm

sim, resulting in 57600 noise-contaminated 
simulated spectra sm

sim. Each sm
sim spectrum is associated with its 

corresponding reconstruction sm
rec,sim , i.e., the output of the

decoder, and with the ground-truth temperature Tm
sim , to be a

simulated training sample.  
For the experimental training dataset, we randomly selected 

100 measured spectra for each absorption feature when the 
APU was working at steady-state, noted as sn

exp={sv1,n
exp , sv2,n

exp } 

ℝ240×1 , n= 1, 2, …, 100. The traditional least-squares fitting 
method is used to obtain a de-noised spectral sequence sn

rec,exp

and thus retrieve Tn
exp. The combination of sn

exp, sn
rec,exp

 and Tn
exp

are regarded as the experimental training samples. Therefore, 
there are 𝒩train training samples in total, denoted as ((sn

sim, sn
exp),

(sm
rec,sim, sn

rec,exp), (Tm
sim, Tn

exp)), 𝒩train = 57700.
Using the above training dataset, empirical risk minimization 

(ERM) and structural risk minimization (SRM) are deployed on 

the HMD-WMS for model training. Specifically, ERM is 
applied to minimize the weighted mean-square-error (MSE) 
loss in terms of the reconstructed spectral sequence and 
temperature, whereas SRM is used to avoid overfitting. Given 
the training dataset with a batch size of B, the total loss function 
Ltot_loss is defined as: 

  2rec tru 2 rec tru 2
tot_loss 2

1 1

1 1
( ) (1 ) ( )

B B

b b b b
b b

L T T
B B

   
 

        s s   (16) 

where α is the hyperparameter to trade off MSE loss between 
the b-th reconstructed spectral sequence  sb

rec෢  and temperature 

Tb
rec෢ , sb

tru(sm
rec,sim, sn

rec,exp)  and Tb
 tru(T m

sim, Tn
exp)  are the

corresponding ground-truth values, λ is the penalty parameter 
for L2 regularization ∥⋅∥2

2. ψ is the set of trainable weights. The 
other hyper-parameters in HMD-WMS are shown in Table I. 

The ablation study is carried out when designing the HMD-
WMS to examine the robustness of the proposed network 
architecture. To further assess the HMD-WMS, the traditional 
fitting method and the TC measurement are regarded as 
benchmarks. The results obtained by the HMD-WMS are 
compared to the benchmarks, and to two other state-of-the-art 
data-driven methods that utilize the same dataset and are pre-
processed in the same way. The details of the three alternative 
methods are given below: 
 Traditional fitting method [7]: a least-squares fit to the

measured WMS-2f/1f spectra is carried out using gas
parameters in the HITRAN database, i.e., Doppler/collision
broadening, line strength, etc. to calculate the integrated
absorption for each transition. The mean path temperature is
retrieved using ratio thermometry.

 Adaptively Optimized Gas Analysis Model (AOGAM) [17]:
attention-aided long short-term memory (LSTM) algorithm
is used as its framework to reconstruct gas parameters via
absorption spectroscopy. Here, WMS-2f/1f spectra are input
to the AOGAM and flow through the same data pre-
processing module, an attention-aided LSTM-structured
encoder and decoder to retrieve the de-noised spectral
sequence and thus the temperature.

 Convolutional autoencoder (ConV-AE): this method is
widely recognized in the field of absorption spectroscopy,
i.e., Y-Net [29]. Another reason to use this framework for
temperature retrieval is to compare the pure ConV-AE to the
HMD-WMS. Here, the WMS-2f/1f spectra are fed into a
DW-CNN for retrieval.

All the data-driven models were trained using PyTorch on a
single GPU of NVIDIA A100-SXM4-40GB and deployed 
Adam [30] for optimization with a learning rate of 2×10-3. α = 
0.5. B =32. λ = 2×10-6. Epoch is 50.  

Fig. 5.  Construction of the training set and the test set. 

Fig. 6.  Training loss and validation loss for (a) temperature prediction and (b) 
WMS-2f/1f spectra retrieval. 
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TABLE I 
HYPER-PARAMETERS OF HMD-WMS 

Encoder Decoder Temperature Predictor 

demb 64 Conv1 Conv2 FC TP1 TP2 TP3 

Θ 8 Input dim. 8×8×240 5×5×240 240×4 Input dim. 240 128 32 

M 4 
Weight matrix 

size 
4×4 4×4 4×1 Weight matrix 

size 
240×128 128×32 32×1 

dff 128 Stride (1,1) (1,1) ̶̶̶ 

dQ, dK, dV 8 Output dim. 5×5×240 2×2×240 240×1 Output dim. 128 32 1 
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IV. EXPERIMENTAL VALIDATION 

When the APU worked at steady-state, 900 s௛
exp (h=1, 2,…, 

900) were measured for testing, i.e., 𝒩test = 900. To accelerate

convergence of the model, (sn
sim, sn

exp) and (sm
rec,sim, sn

rec,exp) are
standardized, whereas the temperature is rescaled within the 
range of (0,1) using the low temperature Tlow of 300 K and the 
high temperature Thigh of 900 K. To examine the proposed 
HMD-WMS’s learning trajectory and its adaptability, Fig. 6 (a) 
shows both training loss and validation loss for temperature 
prediction and (b) for spectra retrieval in the training process. It 
can be seen that the optimization of the HMD-WMS in both 
cases converges rapidly and steadily. The three data-driven 
models HMD-WMS, AOGAM and ConV-AE are tested by 
comparing their outputs in terms of srec and Tplu

rec  against values 
obtained by the traditional least-squares fitting procedure and 
the TC data. Tplu

rec  represents the retrieved plume temperature. 

A. Evaluation of srec

Fig. 7 shows one example of the reconstructed WMS-2f/1f
spectra (at vത1 and vത2) sh

rec (h = 900) measured behind the APU,
obtained by deploying the least-squares spectral fitting method, 
i.e. the benchmark method, and shown as the solid curve in each
of Fig. 7 (a), (b), (c); those obtained by the three different data-

driven algorithms are given in Fig. 7 (a), (b), and (c) and 
compared separately against the benchmark. 

It can be seen that sh
rec retrieved using the proposed HMD-

WMS in Fig. 7 (a) best fits the benchmark. sh
rec  retrieved by

AOGAM in Fig. 7 (b) is smooth but deviates significantly from 
the fitting result around the peak of the absorbance. The 
retrieval using ConV-AE in Fig. 7 (c) is similarly close to the 
benchmark at the wavenumber around 7185.6 cm-1, in 
comparison to that using the HMD-WMS. However, ConV-AE 
results in a much larger residual to the benchmark at the 
wavenumber around 7444.3 cm-1. Furthermore, the Euclidean 
norms of the residual for HMD-WMS, AOGAM and ConV-AE 
are 0.2647, 0.6211 and 0.4485, respectively. This confirms that 
HMD-WMS gives the best accuracy when compared to the 
other two deep learning models. 

Furthermore, the performance on sh
rec retrieval for the whole

experimental test set (i.e., 900 pairs of spectra) is analyzed 
statistically. We used Curve Error (CE), Correlation Coefficient 
(CC) and Peak Values (PVs) as metrics to evaluate the models’
performance. CE is defined as:

CE= 
1

𝒩test
∑

ฮsh
rec-sh

truฮ
2

ฮsh
truฮ

2

𝒩test
h=1   (17) 

where sh
tru is the vector of WMS-2f/1f spectra recovered using 

the spectral fitting method. As shown in Table II, the CE of the 

Fig. 7.  Comparison of the reconstructed WMS-2f/1f spectra using (a) HMD-WMS (b) AOGAM and (c) ConV-AE to the benchmark obtained from the traditional 
least-squares spectral fitting method. 

Fig. 8.  Reconstructed EGT in the plume Tplu
rec , using (a) traditional spectral fitting, (b) HMD-WMS, (c) AOGAM, (d) ConV-AE and their rolling averages compared

to the TC measurement. 
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HMD-WMS is 0.0464, approximately ¼ of AOGAM and ½ of 
ConV-AE. CC represents the similarity between srec retrieved 
using the deep learning models and the benchmark. Although 
CCs obtained from different models are all higher than 0.96, 
HMD-WMS gives the highest, at 0.9971. The 0.01-0.03 higher 
CC compared to the AOGAM and ConV-AE is reflected by the 
improved accuracy on the absorption peaks and the smoothness 
of the curve. PV mainly represents the local characteristics at 
the absorption peak of the two WMS-2f/1f spectra. The two 
peak values around vത1 and vത2 on srec are named PV1 and PV2, 
respectively (shown in Fig. 3). Both PV1 and PV2 obtained 
using HMD-WMS are closest to the result given by the 
benchmark. Therefore, it can be quantitatively and statistically 
concluded that HMD-WMS outperforms the other two state-of-
the-art models for reconstructing the WMS-2f/1f spectra with 
better accuracy.  

B. Evaluation of  Tplu
rec

Fig. 8 shows the comparison of the reconstructed EGT in the 
plume Tplu

rec  during the 900 ms data collection period. The least-
squares fitting method, HMD-WMS and ConV-AE show a 
similar extent of short-term temperature fluctuation, while 
AOGAM suffers from much stronger fluctuations. Regarding 
the TC measurement as the benchmark in this comparison, a 
moving average with a window length of 10 on 900 test samples 
is imposed on the raw Tplu

rec  to clearly visualize the offset
between the reconstructed temperature and the TC 
measurement. It can be observed that HMD-WMS gives the 
smallest offset. To quantitatively evaluate the offset between 
the least-squares fitting method (the benchmark) and the deep 
learning algorithms, the Bland-Altman plot is shown in Fig. 9. 
MHW, MCV and MAG represent the means of temperature offsets 
for the 900 test samples between the traditional fitting method 
and HMD-WMS, ConV-AE and AOGAM, respectively. SDHW, 
SDCV and SDAG are the corresponding standard deviation of the 
offsets. As shown in Fig. 9, MHW is 2.25 K, which is the smallest 
compared to those obtained using AOGAM (65.97 K) and 
ConV-AE (26.48 K). In addition, the results from the HMD-
WMS exhibit the narrowest variation and are closest to zero, 
falling within the range of ±1.96 SDHW. Therefore, it can be 
concluded that HMD-WMS gives the best accuracy on EGT 
retrieval, among the three deep learning methods.  

Table III shows a statistical comparison among the different 
methods using the same test set. Here, the mean value of the 
900 measurements is used to assess the accuracy of each 
algorithm and the standard deviation (STD) allows examination 
of their robustness against measurement noise. The Standard 
Error (SE) of the mean value is used to compare accuracy 
among all the TDLAS algorithms. Although the APU was 
working at steady-state, a high-speed plume passing through the 
laser beam can cause beam steering and thus distortion on the 
measurement, so there is likely to be some contribution to the 
STD from variability in the measured gas sample. In addition, 
the tolerance of the TC is 0.75%, resulting in ±5.8 K potential 
offset of the EGT, as measured by the TC, from the true value.  

Furthermore, Table III also shows that both the traditional 
fitting method and the proposed HMD-WMS algorithm recover 
values of EGT that are consistent with that measured by the TC, 
and they have very similar dispersion among their individual 

measured values, as indicated by their STD values, which are 
both small, yielding small SE. Adding the two SE values in 
quadrature indicates that the apparent discrepancy between the 
two mean values, 2.27K, is not statistically significant, hence 
their relative performance in recovering EGT is 
indistinguishable. Both AOGAM and ConV-AE fail to yield 
EGT values that are consistent with the TC result or with the 
traditional fitting method, even after consideration of the larger 
dispersion that they both display in their individual measured 
values.  

Fig. 9.  The Bland-Altman plot to evaluate Tplu
rec from HMD-WMS, AOGAM and 

ConV-AE in comparison to the benchmark: least-squares fitting method. 

TABLE II 
PERFORMANCES OF HMD-WMS, AOGAM AND CONV-AE ON WMS-2F/1F 

RETRIEVAL AND THEIR COMPARISONS TO THE SPECTRAL FITTING METHOD 
Method 

Matrix 
Fitting 

HMD-
WMS 

AOGAM 
ConV-

AE 

srec
 

CE -- 0.0464 0.1613 0.0968 
CC -- 0.9971 0.9685 0.9871 
PV1 0.608 0.582 0.6450 0.540 
PV2 0.528 0.507 0.589 0.504 

TABLE III  
MEAN, STD AND SE OF RETRIEVED EGT FOR THE TEST SET USING THE 

SPECTRAL FITTING, HMD-WMS, AOGAM AND CONV-AE, AND THEIR 

COMPARISON TO THE TC MEASUREMENT 
  Method  

Matrix  
TC Fitting 

HMD-
WMS 

AOGAM 
ConV-

AE 

Mean (K) 
775 

(±5.8) 
772.32 774.59 706.36 745.82 

STD (K) -- 15.50 18.45 48.39 22.00 

SE (K) -- 0.52 0.62 1.61 0.73 

TABLE IV 
COMPARISON ON THE COMPUTATIONAL COMPLEXITY FOR THE TEST SET USING 

THE SPECTRAL FITTING, HMD-WMS, AOGAM AND CONV-AE  

Method Fitting 
HMD-
WMS 

AOGAM ConV-AE 

Time elapsed 
(second) 

4.23×900 0.104 0.233 0.016 

No. 
parameters 

-- 78,575 68,642 2,128,243 

GFLOPs -- 1.77 0.040 0.7 
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C. Evaluation of computational cost

Table IV shows the computational inference time for
processing the 900 test samples, the number of trainable 
parameters and Giga Floating-Point Operations per Second 
(GFLOPs) of these different algorithms. Least-squares fitting 
takes around 4.23 s for each spectra, resulting in a total of 3807 
s for the whole test set, on a computer with the processor 
Intel(R) Core (TM) i7-6700 CPU @ 3.40GHz. In contrast, all 
the deep learning algorithms take less than 0.25 s for processing 
900 spectral pair samples, i.e., less than 0.3 ms per sample. 
Although HMD-WMS gives higher GFLOPs, its inference time 
is shorter than AOGAM. This is benefitted from parallel 
computation of transformer in HMD-WMS. Once the data-
driven model is trained, such inference time enables real-time 
EGT measurement at kHz temporal resolution or better. 
Besides, HMD-WMS has comparable trainable parameters 
with AOGAM, whereas ConV-AE has nearly three times more. 
Although ConV-AE achieves the shortest processing time, it 
has the worst estimation accuracy. Therefore, HMD-WMS is 
the best performer among all four methods presented here. 

V. CONCLUSION

A hybrid model-driven WMS, named HMD-WMS, is 
proposed to enable accurate and rapid monitoring of the EGT 
of gas turbines. The model is constructed by the combination of 
data pre-processing, encoder, decoder and temperature 
predictor. To improve the fidelity of temperature retrieval, the 
underlying physical absorption spectroscopic model is 
introduced into the deep learning model and a hybrid dataset is 
built by including data from both simulation and experiment. 

The proposed HMD-WMS is experimentally assessed by 
retrieving the EGT of an aircraft APU working at steady-state 
load. In comparison to the other two state-of-the-art deep 
learning models considered here, i.e., AOGAM and ConV-AE, 
HMD-WMS improves the accuracy in the reconstructed 
spectral sequence by 25%-50% under practical noise levels 
ranging from 20 dB to 40 dB. The new HMD-WMS method 
yields EGT values that are consistent with TC measurements 
and with the traditional least-squares fitting method, whereas 
AOGAM and ConV-AE fail in terms of the error on EGT 
estimation. The inference time of HMD-WMS for testing 900 
samples is 0.104 s, enabling EGT retrieval above the kHz rate, 
with the potential for real-time gas turbine diagnosis. 
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