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Abstract— In recent years, most existing domain-adapted bearing 

fault diagnoses for rotating machinery are designed to decrease 

domain drifts for various operating conditions with an 

assumption that sufficient tag data are available. To overcome 

data scarcity, a possible solution is to use fault information of 

other machines of the same category to diagnose the status of a 

target machine (i.e., cross-machine diagnosis). This paper 

proposes a variational auto-encoder based multi-source deep 

domain adaptation model using optimal transport for 

cross-machine fault diagnosis of rotating machinery (named 

MDVAEOT). This is fundamentally different from most 

diagnostic models where both train and test data belong to the 

same machine. Firstly, it uses unlabeled samples of the machines 

to be diagnosed to establish the target dataset and faulty samples 

of machines of the same category (containing labels) to form the 

source dataset. Additionally, the method performs feature 

extraction on the dataset using variational auto-encoder networks 

and improves the reliability of extracted data features by the 

approximation of fixed probability. Finally, to shrink 

cross-machine differences between the two domains, we introduce 

optimal transport (OT) theory. OT distance is used to shares 

fault-related features between the two domains mentioned above 

to complete the cross-machine diagnosis task. Better accuracy and 

timeliness are offered by this proposed means compared to other 

existing intelligent methods in this field. 

Index Terms— Fault diagnosis, rotating machinery, variational 

auto-encoder, domain adaptation, optimal transport, 

cross-machine. 

I. INTRODUCTION 

FFECTIVE fault diagnosis applied to rotating machinery is 

a prominent way for risk reduction of serious damage, 

which is essential for improving engineering reliability and 

ensuring system safety [1], [2]. With the increasing demands of 
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modern industry on system safety and economic costs, the 

development of effective and reliable fault diagnosis methods 

has gradually become one of the most important research topics 

[3]. 

Fault diagnosis methods are able to be broadly categorized as 

four sorts: 1) model-based methods, 2) signal analysis-based 

methods [4], 3) feature extraction and machine learning-based 

methods [5], and 4) transfer and deep learning-based methods 

[6]. Model-based methodologies usually start with modelling 

the input-output relationship, together with some important 

environmental conditions, relating to an object or process of 

interest. Although such methods are highly interpretable, they 

sometimes require a lot of expert knowledge of the diagnosed 

object and its environment. Methods based on signal analysis 

mainly utilize time domain, frequency domain and 

time-frequency domain analysis of the signals of interest to 

discern the state of the underlying system. Such methods can 

usually improve the accuracy to a certain extent, but they may 

cost a lot of labor to process data. Methods based on feature 

extraction and machine learning mainly use traditional signal 

processing methods to extract features and then use machine 

learning models (e.g., k-means, SVM) to discriminate the 

processed features. This type of approaches provides some 

good ideas of using machine learning models, but the 

performance of feature engineering and machine learning 

models extremely guides the precision of the diagnosis. 

With the strong development of data-driven technologies, 

many intelligent diagnostic methodologies have been presented 

that rely on deep learning in such a diagnostic field. Such 

methods extract feature-hidden depth structures by multiple 

training [7]. For example, Peng et al. [8] improved a multi-scale 

multi-branch convolutional neural network to reduce the effect 

of noise on diagnosis. Tang et al. [9] used the complete 

ensemble empirical mode decomposition, fast Fourier 

transform (FFT), and the recursive feature elimination (RFE) to 

select the optimal feature subset. The feature subsets extracted 

by this method are all used to train deep networks, and the 

resulting network models achieve good accuracy. Hou et al. 

[10] used multipoint optimal minimum entropy inverse fold 

product and sparse operations to increase the signal-to-noise 

ratio for fault feature enhancement and robust diagnosis. Yang 

et al. [11] used conditional generative adversarial networks 

(CGAN) to generate new samples with similar data 
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distribution. A two-dimensional convolutional neural network 

(2D-CNN) was also adopted to address the two-dimensional 

grey-scale images converted from one-dimensional data. This 

method improves the accuracy in small samples. 

In addition, other methods such as domain adaptation [12] 

and transfer learning [13] have also been introduced to 

overcome the imbalance issue in data distributions between 

training and test data due to different machine conditions (e.g. 

different loads, noise). In domain adaptation and transfer 

learning, the training and test data sets are usually called the 

source and target domains, respectively. Domain adaptation 

and transfer learning can reduce domain drifts in data 

distributions of two domains and enable related knowledge to 

be shared across domains, thus improve the diagnostic 

performance [14]. Pan et al. [15] suggested a transfer 

component analysis-based (TCA) domain adaptation technique 

to shrink the feature differences between two domains. In [16], 

domain invariant features were extracted by joint distribution 

adaptation (JDA). In [17] an attention mechanism was 

incorporated into auto-encoders with different activation 

functions and used dynamic domain factors to assign weights to 

marginal and conditional distributions to enhance the 

diagnostic performance in various operating conditions. In [18] 

proposes a two-stage transfer adversarial network in 

combination with transfer learning to complete the diagnosis 

task of multiple new faults under the target domain. Hu et al. 

[19] used various statistic-based multi-scale sample entropies 

to improve the feature recognition of diverse failure modes 

under different operating conditions. In [20] minimizes the 

source and target domain feature differences by maximum 

mean difference. In [21] aligns the category distribution within 

each source-target domain pair and reduces the negative 

migration of the global domain alignment. This method 

achieves good results in the case of coexisting field and 

category inconsistencies. The transfer learning in the literature 

[22], [23] all introduced optimal transport theory to reduce 

domain drifts, demonstrating superiority in terms of accuracy 

of fault diagnosis. 

The deep learning and transfer learning-based approaches   

mentioned above focus on cross-domain fault diagnosis for the 

same system (process, machine, etc.) under different operating 

conditions. Data used for training and testing models comes 

from the same system. It is usually assumed that the training 

dataset has sufficient labelled data. However, such an 

assumption may not always be reasonable for real diagnosis 

tasks in engineering. In real industry, available labelled data for 

machines, especially negative samples, is scarce or even 

non-existent. Recently, researchers have embarked on a new 

idea of using diagnostic expertise acquired from other relevant 

ones to discriminate the state of the targeted machine. In [24] 

uses an auto-coder network to project features from different 

devices into the same subspace and then uses maximum mean 

difference to minimize differences of the data distributions 

from different devices. In [25] proposes to extract features from 

different devices using the structure of convolutional networks 

and dynamically align the edge probability distribution and 

conditional probability distribution of the data by a weighting 

factor based on the maximum mean difference. In [26] 

processes the data through a shared feature extraction module 

and a private feature extraction module to ensure that the 

extracted features are representative and shared. Most of these 

methods are based on Maximum Mean Difference and some 

still need a low quantity of available labelled samples in the 

target domain. The literature review shows that cross-machine 

fault diagnosis is also becoming an emerging trend. 

This paper proposes a variational auto-encoder based 

multi-source deep domain adaptation model using optimal 

transport for cross-machine fault diagnosis of rotating 

machinery (MDVAEOT). In the proposed method, a source 

dataset is built through usage of fault samples of the machine in 

the laboratory and a target dataset is built with unlabeled 

samples from another machine to be diagnosed in the same 

class. The shared fault-related features serve to diagnose the 

targeted device. It performs unsupervised learning with 

pseudo-labels without requiring the target domain samples to 

be labelled. Its major contributions are outlined below. 

1) We propose a new variational auto-encoder based 

multi-source deep domain adaptation model using 

optimal transport for cross-machine fault diagnosis in 

rotating machinery. It can automate the extraction of 

cross-machine domain invariant features and perform 

class discriminant analysis to accomplish end-to-end 

fault diagnosis. 

2) To the issue that labeled data for a single working 

condition may be insufficient, we fuse multi-source 

domain data in the source domain. Additionally, we use 

variational auto-encoder networks (VAE) to improve the 

reliability of extracted data features. This is, as far as we 

know, the very first use of this network in this field. 

Experiments show that the deep model of VAE can 

extract the category features more efficiently. 

3) To solve the cross-machine diagnosis problem, we 

introduce optimal transport (OT) theory. OT distance is 

adopted to discriminate the discrepancies in the data 

distributions among source and target domains. This 

allows fault-related features to be efficiently shared to 

the target domain. 

The rest of this article continues with the problem 

formulation in Section II. Section III describes the model 

structure. Section IV provides an experimental analysis of it. 

We conclude the paper in Section V. 

II. PROBLEM FORMULATION 

Rotating machinery, as the supporting mechanical rotating 

body of the equipment, is affected by many elements, such as 

variable operating conditions, different loads and changing 

noise. In practice, relatively small or scarce of the fault data is 

available under a single operating condition. Moreover, we 

often do not earn substantial available labeled data of the target 

machine, especially fault information. This makes it difficult to 

diagnose the status of the machine by making use of the tag data 

of the machine.  

In addition, many new machines that are not in service before 
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do not have pre-existing status information. We still need to 

check their status for industrial safety after they come into use. 

However, the data distribution varies greatly from one machine 

to another, with e.g., different sampling frequencies, 

mechanical structures and resonance characteristics. These 

differences are much greater than the inter-domain differences 

of the data distribution on the same machine. Owing to the 

wider domain drift, the corresponding commonalities between 

the different machines become lesser, as shown in Fig. 1. 

Domain drift of different machines 

Sample of machine 1 under 

working condition 1

Sample of machine 1 under 

working condition 2

Domain drift of the same machine

Sample of machine 2

 
Fig. 1. The smaller domain drift in cross-machine fault diagnosis tasks. 

Therefore, there is a need to design a new framework to 

create a diagnosis model that can be well utilized in the target 

machine by making use of the fault information of the machine 

in the same class. Moreover, it is expected that the framework 

can effectively utilize multi-condition data (i.e., multi-source  

domain data) for feature learning. This can compensate the 

shortcoming of scarce single-condition fault data and address 

the domain drift problem of fusing data of the same machine in 

multiple conditions. 

The emphasis of the work in this article on the task of 

cross-machines diagnosis. The designed algorithm can learn 

transferable feature knowledge from the source machine and 

apply it to diagnosis of the target machine. In summary, this 

research is conducted with the following basic facts: 

1) the source fault types contain the target fault types; 

2) sufficient multi-source labeled samples are available for 

supervised learning; 

3) sufficient unlabeled samples in the target domain are 

available for unsupervised learning; 

4) the differences in the distribution of the same class of 

features across machines are smaller than the differences 

in the distribution of different classes of features on the 

same machine. 

Fact 2 allows us to use labeled data from multiple conditions 

of the same machine to construct enough multi-source domain 

data for extracting valid and comprehensive fault category 

features to make up for the shortage of single condition data. 

This is more in line with industrial reality. Facts 1 and 4 ensure 

the validity of knowledge migration across machines under the 

condition of Fact 3. 

III. THE PROPOSED CROSS-MACHINE FAULT DIAGNOSIS MODEL 

BASED ON VARIATIONAL AUTO-CODER AND OPTIMAL 

TRANSPORT DISTANCE  

The flow chart of the suggested methodology is presented in 

Fig. 2. First, a feature extractor is constructed based on VAE 

[27] to extract features from the both domains. Then, the OT 

distance is used to shrink domain drifts across machines. 

Finally, a multi-category label discriminator is used to predict 

the labels. 

A. Variational Auto-encoder-based Feature Extractor 

Good feature extraction is a prerequisite for accurate 

classification. The feature extractor constructed based on VAE 

is able to obtain effective features in multi-source domain 

scenarios with various working conditions of the same 

machine. VAE is a type of auto-coder network that combines 

neural networks and Bayesian formula with a basic 

encoder-decoder structure, as shown in Fig. 3. The structure of 

VAE is unique in that it has an additional latent layer. This 

latent layer fits the distribution of the input data to a Gaussian 

distribution, and then samples over this Gaussian distribution to 

reconstruct the original input data. Therefore, VAE can be used 

to estimate the probability distribution of the hidden variables. 

Cross-machine 
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Fig. 2. Flow chart of the proposed cross-machine fault diagnosis model based on variational auto-coder and optimal transport distance. 
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Fig. 3. Architecture of VAE-Based Feature Extractor. 

Denote by X= { }1 2, ,..., mX X X  the whole sample set. For a 

sample Xk, assume that there exists a posterior distribution P(Z 

|Xk) that is exclusive to Xk. Note that for a given sample Xk, it is 

assumed P(Z |Xk)=N (0,I). From the Bayesian rule 

( ) ( ) ( )k kP Z P Z X P X=                                 (1) 

It is reasonable to assume that a sampled Zk from the 

distribution P(Z |Xk) can be reduced to Xk by the assumption of 

exclusive membership. For the sample set { }1 2, ,..., mX X X , 

there should be m independent, multivariate Gaussian 

distributions. To discover the variance and mean of the 

Gaussian distribution P(Z |Xk) belonging exclusively to Xk, we 

construct two neural networks to compute as the following: 
2

1 2( ), log ( )k k k kf X f Xµ σ= =                         (2) 

The corresponding Gaussian distribution P(Z |Xk) can then be 

determined using the results given in (2).  In this way, we can 

sample a sample Zk from that distribution and reduce it to Xk by 

defining a generator  ( )k kX g Z=  and a reconstruction loss 

function  2( , )k kD X X . To align P(Z |Xk)  to N (0,I), we measure 

the KL distance of the Gaussian distribution from the standard 

normal distribution, i.e., 2( ( , ) (0, ))KL N N Iµ σ , as follows: 

2

2 2 2

,
1

1
( log 1)

2

d

i i i

i
µ σ

µ σ σ
=

= + − −∑                       (3) 

where d is the dimensionality of the sampled hidden variable Z. 

iµ and
2

iσ  represent the ith component of the mean and 

variance vectors of Gaussian distributions. 

Since the operation "sampling" cannot compute the gradient, 

and the result of sampling has a gradient, we introduce the 

reparameterization trick to sample a Z from 
2( , )N µ σ . This 

trick is equivalent to sampling a ε  from N(0,I), and making 

Z µ ε σ= + ∗ .In this way, the "sampling" operation does not 

participate in gradient descent, but the sampled result does, 

making the whole model trainable. 

To simplify the calculation, we perform dimensionality 

reduction on the original data. In the basic structure of VAE, we 

add 2 implicit layers z1 and z2 as shown in Figure 3. The 

mathematical relationships between the layers are as follows: 


1 2

1 2

1 1 2 2( ) , ( )z f X b X f z bϖ ϖω ω= + = +              (4) 

where ω  and b in { },bϖ ω  are the weight matrix and bias 

vector, and fϖ  is the activation function. Similar to the 

auto-coder network, the reconstructed loss function is as 

follows: 


2

1

1

2

m

R

i

X X
m =

= −∑                           (5) 

Combining (5) with equation (3), the loss function of the 

feature extractor constructed based on the VAE is 

2,f Rµ σ
= +   . 

B. Optimal Transport Distance for Cross-machine Adaptation 

In general, we minimize some predefined distance measures 

of domain differences to achieve knowledge sharing between 

domains. These distance measures include Kullback-Leibler 

divergence (KL) [28], maximum mean difference (MMD) [29], 

[30] and Jensen-Shannon divergence (JS) [31]. In the 

non-overlapping area of two distributions, KL may obtain 

meaningless results and JS can increase abruptly. MMD also 

requires cumbersome consideration of changes in the relevant 

weights of marginal and conditional probability distributions 

for significant increase of accuracy when measuring 

S (1,2,3,4)  T

F
a
u

lt A

Unseen

F
a
u

lt
 C

Normal S1

F
a
u

lt A

Fault B

U
n
se

e
n

Normal S2

F
a
u

lt A

Fault B

F
a
u

lt
 C

Unseen
S3

U
n
se

e
n

Fault B

F
a
u

lt
 C

Normal S4

Samples of the 

source machine 

F
a
u

lt A

Fault B

F
a
u

lt
 C

Normal T

Samples of the 

target machine

Normal

Fault A

Fault B

Fault C

Discriminant function

 Condition 1

 Condition 2

 Condition 3

 Condition 4

# s tT µ µ=

tµ

 
Fig. 4. Optimal transport distance for domain and category inconsistencies coexist in cross-machine fault diagnosis tasks. 

differences in data across machines. To effectively characterize 

the large differences in data between different machines of the 

same type, there is a need to develop more effective methods to 

weigh the discrepancies between the both domains. Optimal 



Final Accepted Manuscript (19 Oct 2023) for publication by IEEE Transactions on Instrumentation & Measurement 

 

transport (OT) theory is a robust probability measure [32] for 

quantifying and comparing two different probability 

distributions. The OT distance is calculated directly from the 

samples of the distribution, rather than performing density 

estimation. This distance is computed smoothly and does not 

have abrupt changes like JS or KL, which is well suited as a loss 

function for deep neural network models building. The OT 

distance uses linear programming, which incurs a higher 

computational cost. Fortunately, many effective algorithms 

[33] have been presented to enhance the simplicity of the 

computation. Considering gradient stability and ease of 

training, we choose the optimal transport to share knowledge 

across machines, as shown in Fig. 4. 

Optimal transport distance can be defined as the distance 

between non-overlapping probability distributions. Let the loss 

function be c, consider the problem: how to minimize the cost 

of transporting a pile of sand of shape 
sµ  to a pit of shape 

tµ . 

This problem was first defined by the Monge problem: 

{ }inf ( , ( )) ( ) #T s tc x T x d x Tµ µ µ=∫                (6) 

where ( , ( ))c x T x is the cost function. T denotes a transport 

planning. # s tT µ µ= is the transport mapping from 
sµ to 

tµ . 

The Kantorovich problem defines a relaxation explanation of 

the optimal transport problem. There exists a transportation 

plan ( , )s tγ µ µ∈ Γ  with ( , )s tµ µΓ  being the set of all 

probabilistic couplings with marginal distributions 
sµ and

tµ . 

Then the p-order Wasserstein distance between 
sµ and

tµ  is 

defined as  
1/

( , )( , ) : inf ( ( , ) ( , ))
s t

p p

p s tW c x y d x yγ µ µµ µ γ∈Γ= ∫         (7) 

The OT distance needs to be discretized to address 

cross-machine domain drifts. Let the marginal distributions of 

the samples in the both domains be 
Sµ and

Tµ , and the optimal 

transport plan γ ∗  be given as follows: 

1 1

,S T
i i

m n
S T

S i T iX X
i i

p pµ δ µ δ
= =

= =∑ ∑                  (8) 

1 1

1
m n

S T

i i

i i

p p
= =

= =∑ ∑                               (9) 

{ ( ) 1 , 1 }m n

n S m Tγ γ µ γ µ+ × ΤΓ = ∈ = =              (10) 

arg min ( , ),S T

i i Fc X X
γ

γ γ∗
∈Γ

= 〈 〉                     (11) 

where S
iX

δ  and T
iX

δ  are the Dirac functions corresponding to 

S

iX  and 
T

iX , .,. F〈 〉 is the Frobenius norm, ( , )S T

i ic X X  is the 

cost matrix. In this way, the source sample 
S

iX  can be mapped 

into the target sample S

iX  as the following: 

 1( ) ( 1 )S S

i i n tX X diag Xγ γ γ
∗

−
∗ ∗= Τ =                   (12) 

The joint distribution optimal transport [34] is usually used 

when reducing the domain drift problem across machines with 

OT distance, considering both feature and label differences. 

The Euclidean distance is employed as a metric for the feature 

space. The cross-entropy loss metric is implemented in the 

label space. As a result, the loss function is defined as 

( ( ) ( )) ( ,( , , , ) , )S S T T S T S T

i i j j i j ic jEud fc X Y X Y X X YL Yf +=    (13) 

where ( ).,.Eucd refers to the Euclidean distance, (.,.)L refers to 

the cross-entropy function, and ( )z f X= refers to the 

dimensionality reduction feature. Therefore, the optimization 

function equation (11) can be rewritten as: 

,

,

,

( ( ) ( ))

( ,
a

g( (
m

)

,
in

))
rg

i j

S T

i j
S Tj

Euc

i j

i
i j

X

f

X

Y

d f f

L Xγ
γ γ∗

∈Γ

 +


 
= ∑           (14) 

where g( ( ))T

jf X represents the target pseudo labels. 

C. Multi-category Label Discriminator 

The probability is derived from the Softmax function that a 

sample Xi belongs to a specific class as the following: 

1

1

( ) ( ),..., ( )

exp( )1

ex

;

p( ) exp(

1 ; ;

)
K

i i i

i

k i ik K

P Y X Y X kP P Y X

X

X X

ϖ ϖ ϖ
ϖ

ϖ ϖ

Τ

Τ

Τ

=
Τ

=   
 
 =

=

 

=

∑


   (15) 

For the multi-classification problem, we use the Softmax 

function as the label classifier. The cross-entropy is used as the 

loss function of the probability distribution of the predicted 

labels prey and the probability distribution of the true labels 

aucy  as the following: 

1
log( )( )

( )
pre

a

classify

uc

y
y

P
P

= ∑ (16) 

D. Optimization Strategy 

The parameters require to be optimized of the feature 

extractor f, label predictor g and OT plan γ , when the above 

method is adopted for cross-machine fault diagnosis. This is 

obtained by minimizing the objective function of Eq. (17) 

defined as 

( )
{ }

,
,

,

,

,

,

( ))

( ( ) (

)m

)) ( ,g( ( )

in , , , ( (

, ))

i j
classify

i

S S

i j i i
f g

S T S T

i j i jE iuc

i j

j

f

d f f

f g Y g X

X X L Y Xf

γ
γ

γ
∈Γ

= +

+

∑
∑

 
     (17) 

Eq. (17) is able to be achieved by holding the value of ,i jγ  to 

solve for f and g, i.e., equation (18). Fixing the values of f and g 

to solve for γ , i.e., equation (19). 

( )
,

,
, ,
min , , , ( ( )( ))

i j
c

S S

i j i ilassify
f g

i

f g Y g f X
γ

γ
∈Γ

= ∑         (18) 

( )
,

, ,

,
, ,

( ( ) ( ))

( ,g
m

( ( ))
,

)

,
in ,
i j

S

S
Eu

T

i j
Ti j i j

f g
i

c

i j j

d f
g

Xf

L

X
f

fY Xγ
γ γ

∈Γ

 +
=  

 
∑    (19) 

In practice, it could be the case where not only the data 

distribution varies greatly between cross-machine tasks, but 

also the data magnitudes are not matched. Therefore, 

performing feature extraction and an OT scheme on source and 

target samples simultaneously inevitably suffers from data 

magnitude mismatch in the process of parameter optimization. 

We unify the data in the both domains to the same order of 

magnitude to reduce the convergence time. The gradient 

descent algorithm is adopted to optimally refresh the 

parameters of each part (Fig. 5). Conditions 1 and 2 merely 
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determine a certain number of iterations. Thus, the conditions 

are easily satisfied. Table I shows its specific parameters. 
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Fig. 5. Optimization strategy for the proposed cross-machine fault diagnosis 

model based on variational auto-coder and optimal transport distance. 

TABLE I  

PARAMETER SET OF PROPOSED METHOD 

Input layer Input size 
Connection 

method  
Output 

size 
Output layer 

X _layer 600 sigmoid 400 z1_layer 

z1_layer 400 linear 2 ,µ σ _layer 

,µ σ _layer 2 µ ε σ+ ∗  2 Z_layer 

Z_layer 2 sigmoid 400 z2_layer 

z2_layer 400 sigmoid 600 X _layer 

z1_layer 400 linear 4 classifier_layer 

Optimizer:            Adam 

IV. CASE VERIFICATION 

A. Descriptions of Datasets 

Dataset 1: The CWRU [35] experiments were performed on 

the test stand on Fig. 6. Bearing failure types: inner ring failure 

(IF), rolling element failure (BF), and outer ring failure (OF). 

The failures were implanted with EDM on the motor bearings, 

with each type of failure measuring 0.007", 0.014", 0.021" and 

0.028". The motor speed range was from 1720 to 1797 rpm. In 

this paper, the data from the accelerometer at the DE end was 

selected for the study, and the normal and fault data were 

sampled at 48 kHz and 12 kHz, with an acquisition time of 10 

seconds. The normal data and fault data of 0.007" were selected 

for three operating states (i.e., 0hp, 1hp and 2hp) depending on 

the speed. 

 
Fig. 6. Experimental equipment of CWRU. 

Dataset 2: The PT100 test was performed on the test stand on 

Fig. 7. Selected bearing failure types: IF, BF and OF with 

0.2mm cracks respectively. Motor speed range was 1800 to 

2100 rpm, accelerometer sampling frequency was 48 kHz, and 

acquisition time was 2.78 seconds. Three operating states (i.e., 

0hp, 1hp and 2hp) fault data were selected with normal data 

depending on the speed. 

 
Fig. 7. Experimental equipment of PT100. 

Dataset 3: The HD-FD-H-03X rotor gearbox comprehensive 

fault simulation test bench (Fig. 8) was used for the experiment. 

The selected bearing failure types: IF, BF and OF. Details are as 

follows: radial loading force of 1000 N, motor speed range of 

1000 to 5700 rpm, sampling frequency of 16 kHz, sampling 

time of 4 seconds, and 3 sets of acceleration data (vertical, 

horizontal, and axial) for each working condition. Three 

operating conditions (i.e., 0 hp, 1 hp and 2 hp) fault data and 

normal data were selected according to the speed. 

 
Fig. 8. Experimental equipment of HD-FD-H-03X. 

Task 1: Take all samples of 3 working conditions in 

Dataset1 to form the multi-source dataset, and take the samples 

of 1 working condition in Dataset 2 to form the target dataset. 

Then reverse the process, and use the data of 3 conditions in 

Dataset 2 to form the multi-source dataset, and use the data of 1 

condition in Dataset 1 to form the target dataset.  

Task 2:  Similar to task 1, only the Dataset 2 is replaced with 

the Dataset 3. 

In this paper, every 1200 data points are considered as one 

sample. According to previous studies, the use of frequency 

domain signals is better than time series signals when using 

vibration data for analysis. Therefore, we use the fast Fourier 

transform (FFT) to process the vibration data in the frequency 

domain. The dimension 600 of the calculated one-sided 

frequency amplitude is employed as the final input dimension 

of the training model. The data set is disrupted before training. 

Let n
S

m
x and n

S

m
y denote the mth sample with label in the nth 

working condition in the source domain, and T

n
x denote the mth 

sample of the target domain data. The source domain dataset 

with its label set and the target domain dataset are 

= 1 1 1 2 2 2

1 2 1 2 1 2
{ , ,..., , , ,..., ,..., , ,..., }n n n
S S S S S S S S S

S m m m
D x x x x x x x x x ,

= 1 1 1 2 2 2

1 2 1 2 1 2
{ , ,..., , , ,..., ,..., , ,..., }n n n
S S S S S S S S S

S m m m
L y y y y y y y y y and

=
1 2
{ , ,......, }T T T

T n
D x x x . 

The diagnostic tasks are shown in the first and second 

columns of Table Ⅱ, and the both domains of the diagnostic 

tasks contain a total of 4 status categories of normal and fault. 

Task 1_1 refers to the first subtask of Task 1: D1_0_1_2 hp 

->D2_0 hp, i.e., use the samples of 3 working conditions of 
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Dataset1 to diagnose the samples of working condition 0 hp in Dataset 2. 
TABLE Ⅱ 

ACCURACY (%) OF TASKS 

Diagnostic task Domain shift SVM CORAL TCA JDA SAEOT Proposed 

Task 1_1 D1_0_1_2 hp ->D2_0 hp 50.0 37.5 25.3 25.4 96.4 100 

Task 1_2 D1_0_1_2 hp ->D2_1 hp 50.0 37.5 25.3 25.4 96.5 98.9 

Task 1_3 D1_0_1_2 hp ->D2_2 hp 50.0 37.5 25.3 25.4 94.9 99.9 

Task 1_4 D2_0_1_2 hp ->D1_0 hp 25.0 60.3 25.0 32.5 100 100 

Task 1_5 D2_0_1_2 hp ->D1_1 hp 25.0 60.3 25.0 32.5 100 100 

Task 1_6 D2_0_1_2 hp ->D1_2 hp 25.0 60.3 25.0 32.5 100 100 

Task 2_1 D1_0_1_2 hp ->D3_0 hp 25.0 50.0 50.0 50.0 100 100 

Task 2_2 D1_0_1_2 hp ->D3_1 hp 25.0 50.0 50.0 50.0 99.6 100 

Task 2_3 D1_0_1_2 hp ->D3_2 hp 25.0 50.0 50.0 50.0 75.1 98.9 

Task 2_4 D3_0_1_2 hp ->D1_0 hp 25.0 25.0 50.0 58.5 100 100 

Task 2_5 D3_0_1_2 hp ->D1_1 hp 25.0 25.0 50.0 58.5 100 100 

Task 2_6 D3_0_1_2 hp ->D1_2 hp 25.0 25.0 50.0 58.5 100 100 

TABLE Ⅲ 

ABLATION EXPERIMENTS 

 (A=VAE_FEATURE, B=LABEL, C=OT, D=SAE, SAMPLE SIZE = 100) 

 ACC. (%) ANOVA. Params(m) Runtime (s) 

A 25.0 —— —— —— 

A+B 25.0 —— —— —— 

A+C 81.6 0.061 —— —— 

A+B+C 98.2 0.008 0.49 40 

D+B+C 99.9 0.019 0.48 32 

(f)-Proposed(e)-SAEOT (d)-JDA

(a)-SVM (b)-CORAL (c)-TCA

 
Fig. 9. Confusion matrix for each method of Task 1_1. 

B. Compared Approaches 

For comparison purposes, several machine learning 

techniques are deployed in the experiments of this paper, 

including support vector machine (SVM), correlation 

alignment (CORAL), transfer component analysis (TCA), and 

joint distribution adaptation (JDA). In addition, a stacked 

auto-encoder network is used instead of VAE network for 

comparison experiments in this paper, and this method is noted 

as SAEOT. 

The laboratory settings and detailed descriptions of these 

alternatives are as follows: for all adjustable parameters of 

SVM, CORAL, we use the default values suggested by the 

Pycharm software. Among them, CORAL's classification 

algorithm uses the k-Nearest Neighbor (KNN). The Gaussian 

kernel functions of TCA and JDA are chosen to run in 

MATLAB environment. Additionally, the average maximum 

accuracy is taken under different kernel function widths (1, 2, 4, 

8) and regularization parameters (0.1, 0.01, 0.001). SAEOT and 

MDVAEOT choose their respective optimal parameters (e.g., 

learning rate, number of iterations, activation function) except 

for their own encoder structure.  

We also performed ablation experiments shown in Table III. 

“A” indicates that VAE is used as the feature extractor. “A+B” 



 

denotes consideration of joint distribution of features and labels 

with VAE as the feature extractor. “C” represents the inclusion 

of the optimal transport distance. “D” indicates that SAE is 

used as the feature extractor. Since the last two methods in 

Table III contain the same section that references the OT 

library, we only count the number of parameters for these two 

methods in addition to the OT section. We use Task 2 (sample 

size = 100) as an example of an ablation experiment to verify 

the validity of each part of the proposed method  

C. Experimental Results and Analysis 

1) Cross-machine fault diagnosis results 

The accuracies of 6 methods in 12 cross-machine situations 

are shown in Tables Ⅱ. It can be seen that the average accuracy 

of the proposed method is much higher than that of the other 

five compared methods. It is clear that the traditional intelligent 

algorithms and domain adaptation methods are not effective for 

cross-machine diagnosis. Even in Task 1, where the 

effectiveness of TCA with JDA is lower than that of the 

traditional method without domain adaptation. This is caused 

by the excessive differences in data distribution across 

machines and the absence of a better common subspace to 

project features. 

The confusion matrix for each method in the Pycharm 

environment for Task 1_1 (i.e., D1_0_1_2 hp -> D2_0 hp) is 

shown in Fig. 9, panels (a) to (f) represent the confusion matrix 

plots for SVM, CORAL, TCA, JDA, SAEOT and the suggested 

solution, respectively.From the classification details of the 

confusion matrix diagrams, it can be seen that the first four 

methods are less effective. Additionally, CORAL, TCA, and 

JDA can basically classify only one state accurately. Combined 

with Table III, although SAEOT can perform better than the 

four methods mentioned above and basically achieves the 

accuracy of the proposed method, its stability is inferior to that 

of the suggested approach. 

2) Visualization of learned features 

To visualize the classification performances of the compared 

methods, we take Task1_1 task (i.e., D1_0_1_2 hp -> D2_0 hp)  

 
Fig. 10. Original feature distribution of Task1_1. 

(a)-

TCA

(b)-

JDA

(c)-

SAEOT 

(d)-

Proposed

 
Fig. 11. Comparative analysis of the distributions of features of different methods for Task1_1. 

as an example and check the scatter plots of the first two 

features extracted. The visualization of feature differences 

using t-SNE [36] is shown in Figures 10 and 11. There are four 

categories in both domains, which are represented by four 

notations. All source samples are represented in green in Figure 

10 and all target samples are represented in red. Figure 11 

shows the features obtained using the last four transfer learning 

methods, with yellow and red representing samples in the 



 

source and target domains respectively. We expect samples of 

the same shape with different colours to be classified within a 

domain. 

As shown in Figure 10, the gaps between the samples of the 

same category across machines are much smaller than that of 

the different categories of the same machine, which verifies 

fact 4. As shown in Figure 11, TCA and JDA cannot apply the 

discriminative knowledge of fault states from the source 

domain to the target domain effectively. SAEOT and the 

proposed method both achieve relatively good results. 

However, observing the accuracy of using SAEOT in Task 2, it 

is noticed that the accuracy sometimes appears to be around 

75%.  Such low accuracy has occurred in every subtask of the 

training task. This indicates that the diagnostic algorithm of 

SAEOT is not stable enough. Such a phenomenon can be 

explained by the distribution of features obtained by processing 

the data with SAE and VAE. 

As can be seen from the feature distribution in Figure 11(c), 

the SAE-based training makes the features tend to be tightly 

clustered in the center and gradually become sparse and 

scattered. The ultimate goal in reducing the dimensionality of 

the features is to retain the main structural information of the 

features in a simplified representation while reducing the 

number of dimensions. Due to the lack of regularity in the 

hidden space of SAE, such an approach makes the feature 

distribution between classes prone to overlap and reduces the 

accuracy of the classification after training. For the VAE 

approach, the feature visualization results are revealed in 

Figure 11(d). In comparison with SAE, VAE has a more 

uniform distribution in the hidden variable space. This result 

can more clearly delineate feature distribution between 

categories, and helps to improve the accuracy and stability of 

the classification. Such an advantage is attributed to the 

presupposition of the probability distribution of the hidden 

variables in the VAE method. 

3) Hyperparametric analysis 

We analyzed the effect due to different numbers of source 

samples and different learning rates on the accuracy, which is 

shown in Figures 12 and 13. The quantity of source samples 

under each working condition is selected to 100, 200, 300, and 

400. Additionally, various learning rates of 0.001, 0.0015, 

0.002, 0.0025, 0.003, 0.004, and 0.0005 are set. 

The outcomes reveal that the proposed method does not 

require a consistent sampling frequency (e.g., 12kHz to 48kHz) 

for cross-machine fault diagnosis. The accuracy analysis in Fig. 

12 and the corresponding ANOVA in Fig. 13 show that the 

proposed method maintains good accuracy and stability at a 

learning rate of 0.002. And the source dataset of the method 

only needs to mix a sample set of about 6000 sample points 

(sampling frequency from 12kHz to 48kHz, sample size = 100) 

for each working condition to achieve good results. Therefore, 

it is not necessary for the method to collect numerous samples 

for a single working condition in the source domain. Combined 

with Table III, it only takes about 40s to complete such an 

end-to-end process from acquiring the sampled data to 

diagnosing the result. The advantage of small computational 

load of proposed method is greatly beneficial for industrial 

applications. 

 
Fig. 12. Accuracies of various learning rates and sample sizes for Task2. 

 
Fig. 13. ANOVA of accuracies for various learning rates with sample sizes for 

Task2. 

All experiments in this paper were conducted on an Intel 

i5-10400 CPU, but more capable CPU or GPU could shrink the 

algorithm convergence time.  

V. CONCLUSIONS 

In this article, we investigate the cross-machine fault 

diagnosis problem of rolling bearings, and propose a new 

variational auto-encoder based multi-source deep domain 

model using optimal transport for cross-machine diagnosis. It is 

radically dissimilar to most diagnostic models where both train 

and test data belong to the same machine. 

The method enables end-to-end cross-machine fault class 

diagnosis using multi-source data from a labeled machine and 

unlabeled target data (from another machine to be diagnosed). 

Furthermore, the OT distance measures the difference of the 

both domain features, allowing source fault features to be 

shared to the target domain. The experimental outcomes 

confirm the superiority of VAE over SAE by t-SNE 

visualization. The impact of two hyperparameters (learning rate 

and sample size) on the accuracy of the algorithm is also 

examined. Experiments show that the suggested approach 

outperforms the main existing ones in terms of computational 

speed, accuracy and practicality, and is more suitable for 

industrial applications. 
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