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Multi-kernel Correntropy-based Orientation
Estimation of IMUs: Gradient Descent Methods

Shilei Li, Lijing Li, Dawei Shi, Yunjiang Lou, Ling Shi

Abstract—This paper presents two computationally efficient
algorithms for the orientation estimation of inertial measure-
ment units (IMUs): the multi-kernel correntropy-based gradient
descent (CGD) and the multi-kernel correntropy-based decoupled
orientation estimation (CDOE). Traditional methods, such as
gradient descent (GD) and decoupled orientation estimation
(DOE), rely on the least square (LS) criterion in algorithm
derivation, making them vulnerable to external acceleration and
magnetic interference. To address this issue, we first demonstrate
that the multi-kernel correntropy loss (MKCL) is an optimal
objective function under the maximum likelihood estimation
(MLE) framework when the noise follows a specific type of heavy-
tailed distribution. Then, we provide some important properties
of the MKCL as a cost function. By replacing the LS cost with
the MKCL, we develop the CGD and CDOE algorithms. We
evaluate the effectiveness of our proposed methods by comparing
them with existing algorithms in various situations. Experimental
results indicate that our proposed methods (CGD and CDOE)
outperform their conventional counterparts (GD and DOE),
especially when faced with external acceleration and magnetic
disturbances. Furthermore, the new algorithms demonstrate
significantly lower computational complexity than Kalman filter-
based approaches, making them suitable for applications with
low-cost microprocessors.

Index Terms—multi-kernel correntropy, gradient descent, ori-
entation estimation, IMUs

I. INTRODUCTION

The use of micro-electro-mechanical-based IMUs has be-
come widespread in various fields, including robotics [1],
navigation [2], and localization [3]. Additionally, they can be
found in many consumer electronics, such as smartphones,
tablet computers, and smartwatches. IMUs can provide infor-
mation about the carrier’s orientation and can give additional
localization information when combined with other sensors
(e.g., ultra-wideband, camera, ultrasound, and GPS [4], [5]).
Compared with optical motion capture systems that suffer
from non-line-of-sight conditions, limited capture range, ex-
pensiveness, and post-processing, IMUs have the advantages
of low cost, small size, portability, and real-time processing.
Recently, IMUs have been utilized in health monitoring [6],
joint angle estimation [7], and robot control [8]. These applica-
tions require IMUs to maintain specific precision in a disturbed
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environment and to execute at a faster sampling frequency.
Therefore, the development of computationally efficient and
robust algorithms is necessary.

IMUs are composed of gyroscopes, accelerometers, and
magnetometers. The gyroscope measures the angular rate and
the orientation can be obtained by integrating gyroscope read-
ings. However, long-term integration may cause an unbounded
orientation error due to gyroscope drift and numerical integra-
tion errors. To this end, noisy but drift-free accelerometers
and magnetometers are utilized to correct the orientation
estimation. The orientation estimation algorithms of IMUs can
be broadly categorized into three groups: the complementary
filter, the Kalman filter (KF), and the gradient descent (GD).
The complementary filter was initially proposed by Mahony et
al. [9], [10] for aerospace applications, which was designed
on the special orthogonal group (SO3) and offered robustness
to noise. The KF-based methods, which are widely used in
commercial IMUs, have higher accuracy than complementary
filters but require higher computational complexity and more
challenging parameter-tuning procedures. Typical algorithms
of this type include the extended KF [11], [12], the indirect
KF [13], and the error state KF (ESKF) [14]–[16]. The GDs,
proposed by Madgwick et al. [17], and its enhanced version
by Seel et al. [18], have fewer parameters to tune and are
reported of owing similar performance with the Kalman filter-
based methods. Note that some algorithms may fall outside
of the aforementioned three categories, such as the sliding
mode observer [19] and the Luenberger observer [20]. In this
work, we use the GDs [17], [18] and ESKF [15], [16] as the
benchmark methods due to their popularity.

The challenges associated with IMU algorithms are their
heavy computation cost and sensitivity to external distur-
bances. The high computation complexity would induce a low
execution frequency, which may hinder the real-time control
of robots [6]. Another challenge is the accuracy degeneration
due to external disturbances, i.e., external acceleration and
magnetic interference. Many strategies have been deployed to
mitigate the negative impacts of these disturbances. One of
the most straightforward approaches may be the normalization
of the accelerometer and magnetometer readings, which was
employed in [10], [17], [18]. Another way is to model the
disturbance as a first-order Markov model and augment it
as a new state to attenuate its bad effects [11], [13]–[15].
Some other strategies, e.g., covariance matrices adaption [13],
[15], disturbance detection [21], and the combination of them,
are also frequently used to increase the robustness of the
algorithm. In some indoor applications, magnetic disturbance,
caused by surrounding ferromagnetic materials (e.g., iron,
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steel, and magnets), is a major reason for deteriorating both the
heading (yaw) and the inclination (roll and pitch) accuracy. To
handle this issue, Seel et al. proposed a decoupled orientation
estimation (DOE) scheme that designed an analytical solution
for sensor fusion of IMUs so that the magnetometer readings
only affected the heading estimation [18]. A similar idea is
also deployed in [22] where a decoupled quaternion solution
was developed.

Although many algorithms have been developed to coun-
teract the defects caused by disturbance, they directly or
indirectly relied on the Gaussian noise assumption and utilized
the LS criterion in algorithm derivation [15], [17], [18], [23],
[24]. In this work, we demonstrate that great freedom can be
obtained by generalizing the LS to the multi-kernel correntropy
loss (MKCL) where the underlying MLE interpretation is to
extend the Gaussian assumption to a type of heavy-tailed dis-
tribution. The correntropy is the local similarity measurement
of two random variables. It has been successfully utilized
in KF [25]–[27], adaptive filtering [28], and machine learn-
ing [29]. In [30], we extended the definition of correntropy
from random variables to random vectors and defined the
terminology multi-kernel correntropy (MKC) which greatly
alleviates the conservatism of the traditional correntropy (note
that the MKC proposed in our previous work is different with
the concept in [29]). Based on this idea, in [23], [24], we
proposed two MKC-based KFs for orientation estimation of
IMUs, which achieved satisfactory performance both with and
without disturbance [23], [24].

Although the performances of [23], [24] are satisfactory
compared with [15], [17], [18], they have some drawbacks.
Firstly, they require accurate covariance matrices of sensors,
which increases the difficulty of implementation. Secondly,
these algorithms possess heavy computational complexity and
are not suitable for low-cost IMUs with limited computational
capability. Thirdly, the relationship between the objective func-
tion and the underlying noise distribution is not very clear. In
this paper, we derive two computationally efficient algorithms,
i.e., the CGD and CDOE, which are built upon the GD [17]
and DOE [18] and utilize the MKCL as objective func-
tions. Specifically, we first demonstrate that accelerometer and
magnetometer noises generally are heavy-tailed the Gaussian
assumption is not suitable. Then, we provide some important
properties of the MKCL and reveal that the MKCL is linked to
a type of heavy-tailed distribution. Finally, we derive two novel
algorithms by substituting the LS criterion with the MKCL.
It is worth mentioning that the aim of this work is not to
develop the “best” orientation estimation algorithms but to
illustrate the performance of many existing algorithms can be
further improved by matching the objective function with the
underlying noise distribution. The contributions of this paper
are summarized as follows.
1) Based on the maximum likelihood estimation (MLE)

framework, we demonstrate that the MKCL is an optimal
objective function when the noise follows a type of heavy-
tailed distribution. Moreover, some important properties of
the MKCL are given.

2) We replace the LS with the MKCL and develop two
new algorithms, namely the CGD and CDOE. The newly

derived algorithms are robust to external acceleration and
magnetic disturbance. Moreover, the CDOE retains the
advantage that the magnetometer readings do not affect
the inclination estimation.

3) We conduct intensive and comprehensive experiments to
verify the performance of the proposed algorithms. The
results demonstrate that the two proposed methods out-
perform their traditional counterparts (i.e., GD and DOE
in [17], [18]), especially when dealing with external dis-
turbances. Additionally, the two proposed algorithms have
comparable accuracy with our previous correntropy-based
KF approach [24], but with significantly lower computa-
tional cost.

The remainder of this paper is organized as follows. In Section
II, we give sensor models of IMUs, provide some properties
of the MKCL, and present a general algorithm framework for
IMUs. In Section III, we derive two correntropy-based algo-
rithms (i.e., the CGD and CDOE). In Section IV, we validate
the performance of the proposed algorithms. In Section V, we
draw a conclusion.

II. PRELIMINARIES AND PROBLEM FORMULATION

We first provide the sensor models of IMUs and give
the properties of the MKCL. Then, we introduce a general
framework for sensor fusion of IMUs and reveal that existing
algorithms largely rely on the LS criterion. Finally, we demon-
strate that the robustness of many algorithms can be enhanced
by substituting the LS with the MKCL.

A. Multi-kernel Correntropy

The correntropy is a local similarity measure of two random
variables X,Y ∈ R with

V (X,Y ) = E[κ(X,Y )] =

∫
κ(x, y)dFXY (x, y) (1)

where E[·] is the expectation operator, κ(x, y) is a shift-
invariant Mercer kernel, FXY (x, y) is the joint distribution,
and x and y are realizations of X and Y . The kernel uti-
lized in this paper is the squared exponential function, i.e.,
κ(x, y) = Gσ(x, y) = exp(− e2

2σ2 ) where σ is the kernel
bandwidth and e = x − y is the realization error. In [24],
we extended the correntropy from random variables to random
vectors and proposed the multi-kernel correntropy (MKC) for
random vectors X ,Y ∈ Rl:

V (X ,Y) =

l∑
i=1

E[σ2
i κi(Xi,Yi)] (2)

with

E[σ2
i κi(Xi,Yi)] =

∫
σ2
i κi(xi, yi)dFXiYi(xi, yi)

κi(xi, yi) = Gσi
(xi, yi) = exp(− e2i

2σ2
i

)

where σi is the bandwidth for random pair Xi and Yi, ei =
xi−yi is the realization error for channel i, and FXiYi(xi, yi)
is the joint distribution. In many applications, FXiYi(xi, yi)
is not available whereas only samples xi,k and yi,k can be
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obtained. In this case, the simple mean estimator is utilized
and MKC can be estimated as

V̂ (X ,Y) =

l∑
i=1

σ2
i V̂i(Xi,Yi) (3)

with V̂i(Xi,Yi) =
1
N

∑N
k=1 Gσi

(
xi,k, yi,k

)
. Then, the MKCL

can be written as

JCL(ek) =

l∑
i=1

σ2
i (1− V̂i) =

1

N

N∑
k=1

l∑
i=1

σ2
i

(
1−Gσi

(ei,k)
)
.

(4)
where ei,k = xi,k − yi,k and ek = [e1,k, e2,k, . . . , el,k]

T .
Correspondingly, the LS cost can be expressed as

JLS(ek) =
1

2N

N∑
k=1

eTk ek =
1

2N

N∑
k=1

l∑
i=1

e2i,k. (5)

Theorem 1. JCL and JLS in (4) and (5) are identical when
setting σi → ∞ for i = 1, 2, . . . , l.

The proof of this theorem is shown in Appendix VI-A.

Remark 1. It is worth mentioning that the MKC proposed
in our previous work [24] is different from the conventional
correntropy in two folds: it utilizes different kernel bandwidths
for different random pair of variables. Moreover, specified
weights are associated with the MKC so that the MKCL is
compatible with the LS criterion.

B. Sensor Models and Sensor Fusion Frameworks

In this section, we first introduce the sensor models of
IMUs. Then, we provide general frameworks for orientation
estimation. Finally, we explain the conventional Gaussian
assumption for accelerometers and magnetometers is not suit-
able.

Definition 1. The orientation from frame A to frame B can
be represented by a unit quaternion B

Aq ∈ R4 with

B
Aq =

[
cos(α/2)

sin(α/2)xrot

]
, ∥BAq∥2 = 1

where α ∈ R is the rotation angle and xrot ∈ R3 is the rotation
axis with ∥xrot∥2 = 1. In the following section, we restrain
the quaternion to be a unit quaternion when representing
the orientation without further mentioning. Moreover, the
multiplication of two quaternions p and q is denoted as p⊗ q.

The gyroscope model is given by

yG,k = wk + bk + vG,k (6)

where yG,k ∈ R3 is the sensor reading at time step k, wk is
the angular velocity, bk is a slow-varying bias, and vG,k is the
noise. The accelerometer model has

yA,k = −Sgk + Sak + vA,k

Sgk = R(SEqk)
Eg

(7)

where yA,k ∈ R3 is the sensor reading, Sgk and Eg =
[0, 0, 9.81]T is the gravity vector on the sensor frame and earth
frame, Sak is the free acceleration on the sensor frame, S

Eqk is

the orientation (in a quaternion form) from the earth frame to
the sensor frame, the operator R(SEqk) converts the quaternion
to a rotation matrix, and vA,k is the noise. The magnetometer
model has

yM,k = Smk + Sdk + vM,k

Smk = R(SEqk)
Em

(8)

where yM,k is the sensor reading, Smk and Em is the earth
magnetic vector on the sensor frame and earth frame (note that
Em is a constant and hence the subscript k is ignored), Sdk
is the magnetic disturbance on the sensor frame, and vM,k is
the noise.

As shown in [17], the quaternion S
Eqk at the current step

can be obtained by the quaternion at the precious step S
Eqk−1

and the current angular velocity using

S
Eqk = S

Eqk−1 +
1

2

(
S
Eqk−1 ⊗ wq

k

)
∆t (9)

where ∆t is the sampling time, wq
k = [0,wT

k ]
T is the

quaternion composed of true angular velocity wk. In a practical
application, we use yG,k to approximate wk, which gives the
following equation

S
Eqk = S

Eqk−1 +
1

2

(
S
Eqk−1 ⊗ yqG,k

)
∆t+ vG,k (10)

where yqG,k = [0, yTG,k]
T and vG,k is the associated noise

caused by the approximation of wk. Denoting xk = S
Eqk, (10)

can be generalized as

xk = f(xk−1, yG,k) + vG,k (11)

where f(xk−1, yG,k) = xk−1 +
(
S
Eqk−1 ⊗ yqG,k

)
∆t. Simi-

larly, (7) and (8) can be reformulated as

yk = h(xk) + vAM,k. (12)

with

yk =

[
yA,k

yM,k

]
, h(xk) =

[
hA(xk)
hM (xk)

]
, vAM,k =

[
vA,k

vM,k

]
where hA(xk) = −R(xk)

Eg, hM (xk) = R(xk)
Em, vA,k =

Sak + vA,k, and vM,k = Sdk + vM,k. Equations (11) and
(12) provide a general nonlinear state space model for IMUs.
We then discuss the existing orientation estimation algorithms
under the framework of maximum a posteriori (MAP) and
maximum likelihood estimation (MLE).

Denote measurement set as M1:N = {yA,k, yM,k}Nk=1,
gyroscope reading set as G1:N = {yG,k}Nk=1, and assume that
vG,k, vAM,k and the noise distribution for the initial guess
x0 are mutually independent. Under the MAP, the posterior
distribution of x1:N given M1:N [note that we regard G1:N as
known inputs of (11)] has

p(x1:N |M1:N ) =
p(M1:N |x1:N )p(x1:N )

p(M1:N )

=
p(x0)

∏N
k=1 p(yk|xk)

∏N
k=1 p(xk|xk−1)

p(M1:N )

∝ p(x0)

N∏
k=1

pvAM,k (yk − h(xk))

N∏
k=1

pvG,k (xk − f(xk−1, yG,k))

(13)
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where pvAM,k
(·) and pvG,k

(·) denotes the corresponding den-
sities of vAM,k and vG,k, respectively. By assuming that
vAM,k ∼ N (0, R) (we will disclose this assumption is
inappropriate in the following part), vG,k ∼ N (0, Q), x0 ∼
N (µ,Π) and ignoring the normalizing constant, the posterior
distribution is given by

exp

(
−
1

2
∥Π−1/2(x0 − µ)∥22

) N∏
k=1

exp

(
−
1

2
∥R−1/2(yk − h(xk))∥22

)

×
N∏

k=1

exp

(
−
1

2
∥Q−1/2(xk − f(xk−1, yG,k))∥22

)
.

(14)
Maximizing (14) is equivalent to minimizing its negative
logarithm, which gives

x1:N = arg min
x1:N

1

2
∥Π−1/2(x0 − µ)∥22

+
1

2

N∑
k=1

∥R−1/2(yk − h(xk))∥22

+
1

2

N∑
k=1

∥Q−1/2(xk − f(xk−1, yG,k))∥22.

(15)

This optimization problem can be solved by extended
Rauch–Tung–Striebel smoother [31] or Gauss-Newton opti-
mization [32].

Under the MLE, by assuming that gyroscope readings
yG,k is independent with measurements yk, the likelihood of
observing the data {G1:N ,M1:N} given x1:N has

x1:N = argmax p({G1:N ,M1:N}|x1:N )

= p(G1:N |x1:N )p(M1:N |x1:N )

=

N∏
k=1

pvG,k
(xk − f(xk−1, yG,k))

N∏
k=1

pvAM,k
(yk − h(xk)).

(16)
Taking negative logarithm on the right side of (16) gives

x1:N = argmin
1

2

N∑
k=1

∥R−1/2(yk − h(xk))∥22

+
1

2

N∑
k=1

∥Q−1/2(xk − f(xk−1, yG,k))∥22

(17)

which can be seen as a nonlinear regression problem with
parameter vector x1:N . Solutions for this problem include
the Levenberg-Marquardt algorithm [33], Gauss-Newton op-
timization [32], etc.

In many applications, we are much more interested in the
current state xk based on all previous measurements. Then,
under the MAP, the filtering problem becomes

xk = argmin
xk

1

2
∥R−1/2(yk − h(xk))∥22

+
1

2
∥(P−

k )−1/2(xk − f(xk−1, yG,k))∥22
(18)

where P−
k is the a priori estimate of error covariance. Using

(18) as an objective function, one can derives the extended
Kalman filter [4], [34]. Under the MLE, the filtering problem

becomes

xk = argmin
xk

1

2
∥R−1/2(yk − h(xk))∥22

+
1

2
∥Q−1/2(xk − f(xk−1, yG,k))∥22.

(19)

One solution of (19) is the gradient descent method. Taking
partial derivative on the right side of (19) with respect to xk

and setting it to zero gives

−
[
∂h

∂x

∣∣∣
xk

]
R−1(yk−h(xk))+Q−1(xk−f(xk−1, yG,k)) = 0

Denoting the a priori estimate of the state as x−
k =

f(xk−1, yG,k) and approximating h(xk) as h(x−
k ), it follows

that
xk = x−

k +Q
[∂h
∂x

∣∣∣
x−
k

]
R−1(yk − h(x−

k )). (20)

Assuming that Q and R are diagonal with the same diagonal
entities with

Q = diag([q, . . . , q]), R = diag([r, . . . , r]), (21)

it follows that

xk = x−
k + λ

[∂h
∂x

∣∣∣
x−
k

]
(yk − h(x−

k )) (22)

with λ = q
r determining how confident we are in believing

the measurements compared with the prediction. It is worth
mentioning some authors utilize h(xk−1) to approximate
h(xk) [17], which gives

xk = x−
k + λ

[∂h
∂x

∣∣∣
xk−1

]
(yk − h(xk−1)). (23)

This small difference usually does not have a big impact on
the algorithm performance of IMUs since both xk−1 and x−

k

provide a good initial guess of xk.

An alternative is to use the inverse of the nonlinear mea-
surement model rather than the original model in problem
formulation, i.e., constructing xk = h−1(yk) + v̆AM,k and
assuming v̆AM,k ∼ N (0, R̆). By this conversion, (19) can be
rewritten as

xk = argmin
xk

1

2
∥R̆−1/2(xk − h−1(yk))∥22

+
1

2
∥Q−1/2(xk − f(xk−1, yG,k)∥22.

(24)

Taking partial derive on the right side of (24) and setting it to
zero gives

xk = [Q−1 + R̆−1]−1Q−1x−
k + [Q−1 + R̆−1]−1R̆−1h−1(yk).

(25)
If Q and R̆ are diagonal matrices with the same entities
on the main diagonal, i.e., Q = diag([q, . . . , q]) and R̆ =
diag([r̆, . . . , r̆]), the above equation can be reformulated as

xk = γx−
k + (1− γ)xAM,k (26)

where γ = r̆
q+r̆ and xAM,k is the state determined by measure-

ment yk with xAM,k = h−1(yk). Equation (26) gives a general
form of complementary filter for orientation estimation [35]. A
remaining question is the obtainment of xAM,k. One method
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is to solve the following LS-based objective function:

xAM,k = argmin
1

2
∥yk − h(xAM,k)∥22. (27)

Applying one-step gradient descent update with the initial
guess of xAM,k as x−

k gives

xAM,k = x−
k + µ

[∂h
∂x

∣∣∣
x−
k

] (
yk − h(x−

k )
)
. (28)

where µ is the learning rate. Substituting (28) into (26), one
obtains

xk = γx−
k + (1− γ)

(
x−
k + µ

[∂h
∂x

∣∣∣
x−
k

] (
yk − h(x−

k )
))

= x−
k + µ(1− γ)

[∂h
∂x

∣∣∣
x−
k

] (
yk − h(x−

k )
)
.

(29)
One can observe that (29) is identical with (22) by assigning
µ(1 − γ) = λ. This indicates that the optimization problems
(19) and (24) are interchangeable under certain situations and
the key of (24) is solving (27).

From (18), (19), and (24), one can see that conventional
orientation estimation algorithms rely heavily on the Gaussian
assumptions [15], [17], [18], [35]. This assumption may be
valid for gyroscope noise vG,k, but not for accelerometer noise
vA,k and magnetometer noise vM,k due to the existence of
unknown acceleration Sak and magnetic disturbance Sdk [4].
A better density representation for vA,k and vM,k should be
the heavy-tailed distribution. To illustrate this, we investigate
the probability density functions (pdfs) of vA,k and vM,k

in two situations: without and with disturbances. We first
keep the IMU being static and free of disturbances and the
corresponding pdfs of vA,k and vM,k are shown in Figs. 1(a)
and 1(c). Then, we manually generate external acceleration
and magnetic disturbance, and the corresponding results are
shown in Figs. 1(b) and 1(d). The disturbance generation
method is described in the caption of Fig. 5(a) (hence is
ignored here). Not surprisingly, The densities of vA,k and
vM,k are Gaussian-like when without disturbances and are
heavy-tailed when involving disturbances. Unfortunately, in
many practical applications of IMUs, external acceleration and
magnetic disturbance are unavoidable, which degenerates the
conventional algorithms significantly.

C. Properties of the MKCL as a Cost Function

In this section, we discuss the properties of the MKCL as an
objective function from the perspective of noise distribution,
likelihood function, and influence function.

The MLE viewpoint in (16) can be easily extended to the
general case of noise distributions, i.e.,

p(vAM ) ∝ exp(−Jr(R
−1/2vAM ))

p(vG) ∝ exp(−Jq(Q
−1/2vG))

where Jr(·) and Jq(·) are nonlinear functions with respect to
its argument. Then, based on (16), we can replace the mean
squared errors ∥R−1/2vAM∥22 and ∥Q−1/2vG∥22 by nonlinear
functions Jr(R

−1/2vAM and Jq(Q
−1/2vG) and construct the
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Fig. 1. The pdfs of vA,k and vM,k without and with disturbances. (a) and (c)
show the pdfs of vA,k and vM,k when IMU is static and free of disturbances.
(b) and (d) show the pdfs of vA,k and vM,k when IMU is with disturbances.
The IMU used in this experiment is Xsens MTI-670 and the disturbed data
is generated by the translation experiment as shown in Fig. 5(a).

following problem:

x1:N = argmin

N∑
k=1

Jr

(
R−1/2(yk − h(xk)

))
+

N∑
k=1

Jq

(
Q−1/2(xk − f(xk−1, yG,k)

))
.

(30)

The corresponding filtering problem becomes:

xk = argmin Jr

(
R−1/2(yk − h(xk)

))
+ Jq

(
Q−1/2(xk − f(xk−1, yG,k)

))
.

(31)

A good candidate for the nonlinear Jr(·) and Jq(·) is
the MKCL. To investigate the properties of the MKCL as a
cost function, we consider the following nonlinear regression
problem:

yk = g(x, uk) + ek (32)

where yk ∈ Rl is the output, uk is the input, x is the parameter
vector to be estimated, g(·) is the nonlinear function, ek is the
noise, and k = 1, 2, . . . , N is the sample index. We assume
that the nominal distribution of ek has ek ∼ N (0, R). Then,
we compare the following two objective functions:

argmin
x

JLS(ẽk) =
1

2N

N∑
k=1

l∑
i=1

ẽ2i,k (33a)

argmin
x

JCL(ẽk) =
1

N

N∑
k=1

l∑
i=1

σ2
i

(
1−Gσi(ẽi,k)

)
(33b)
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where ẽk ≜ R−1/2(yk − g(x, uk)) and ẽk =
[ẽ1,k, ẽ2,k, . . . , ẽl,k]

T . Then, we have the following theorem.

Theorem 2. JLS in (33a) is an optimal loss function when
ẽk ∼ N (0, I) based on MLE. On the contrary, JCL in (33b)
is an optimal cost function if ẽi,k follows

p
(
ẽi,k

)
= ci exp

(
− σ2

i (1− exp
(
−

ẽ2i,k
2σ2

i

)
))

(34)

where ci is a normalization coefficient and i = 1, 2, . . . , l.

The proof of this theorem is shown in Appendix VI-B. A
comparison of Gaussian distribution N (0, 1) and p(ẽi,k) in
(34) with different kernel bandwidth is shown in Fig. 2. As
depicted, when σi is large, p(ẽi,k) approaches a Gaussian dis-
tribution, which aligns with Theorem 1. When σi is relatively
small, it represents a type of heavy-tailed distribution. This
indicates that the MKCL is a good candidate when the noise
is heavy-tailed.

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 2. The pdfs of N (0, 1) and p(ẽi,k) in (34) with different kernel
bandwidths. The error ẽi,k is assumed to be bounded within [−20, 20] for
p(ẽi,k) and the coefficient ci is obtained by ci = 1/

∫ 20
−20 exp

(
− σ2

i

(
1−

exp(−
ẽ2i,k
2σ2

i

)
))

dẽi,k .

To further explore the properties of the MKCL as a loss
function, we use the log-likelihood function as a metric to
investigate how well different objective functions explains the
data. We consider the following mixture noise distribution with

ẽk ∼ (1− p)N (0, 1) + pU(−20, 20), 0 ≤ p < 0.5 (35)

where N (0, 1) is the nominal Gaussian distribution,
U(−20, 20) is a uniform distribution with boundary [−20, 20],
and p is a probability that determines ẽk generated by
which distribution. The log-likelihood for the MKCL can
be obtained by logLCL = 1

N

∑N
k=1 p(ẽk) where p(ẽk) is

shown in (34) and the value for the LS has logLLS =
1
N

∑N
k=1

1√
2π

exp
(
− ẽ2k

2

)
. We compare logLCL and logLLS

under different p. The results are shown in Fig.3. We observe
that LCL > LLS always holds when σ is bigger than a certain
threshold σ∗ and p > 0, which indicates that the MKCL
is much more preferable when the noise is heavy-tailed. We
also observe that the potential benefits of the MKCL over the
LS [i.e., maximum values of (logLCL − logLLS)] increases
with the growth of p, which implies that a higher profit can
be obtained by replacing the LS with the MKCL when the

noise has a heavier tail. This fact also reveals that the LS
criterion is sensitive to heavy-tailed noises but the MKCL is
not, especially when the kernel bandwidth is properly selected.

0 10 20 30 40 50 60 70

-15

-10

-5

0

Fig. 3. A comparison of logLCL and logLLS under differ p.

The influence function measures the derivative of the loss
with respect to the residual and quantifies the effect of the size
of a residual on the loss [36]. In the case of l = 1 and N = 1
in (33), one has JLS = 1

2 ẽ
2 and JCL = σ2(1−Gσ(ẽ)). Then,

we visualize the objective function and influence of JLS and
JCL with different kernel bandwidths in Fig. 4. One can see
that the LS gives each residual constant influence as shown in
Fig. 4(b), which indicates that they are sensitive to outliers.
On the contrary, the influence function of the MKCL is close
to that of the LS when the residual is small, but goes towards
zero with the growth of the residual (when using small kernel
bandwidth). This redescending property makes it an attractive
option when the underlying noise is heavy-tailed.

-3 -2 -1 0 1 2 3
0

2

4

6

8

(a) Objective function

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

(b) Influence function

Fig. 4. Objective functions and influence functions for JLS and JCL with
different kernel bandwidths.

D. Problem Formulation

As explained in Section II-B, the Gaussian assumption is
valid for gyroscopes but not for accelerometers and magne-
tometers. Taking this prior knowledge into consideration, one
can construct the following problem:

xk = argmin
xk

JCL

(
R−1/2(yk − h(xk)

))
+ ∥Q−1/2(xk − f(xk−1, yG,k)

)
∥22.

(36)
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Denoting ẽk = R−1/2
(
yk − h(xk)

)
∈ Rl, it follows that

JCL(ẽk) =
∑l

i=1 σ
2
i

(
1−Gσi

(ẽi,k)
)
. By taking partial deriva-

tive on the right side of above equation with respect to xk,
one has

−
[∂h
∂x

∣∣∣
xk

]
W̃R−1(yk − h(xk)) +Q−1(xk − f(xk−1, yG,k)) = 0

(37)
where W̃ = diag([Gσ1

(ẽ1,k), Gσ2
(ẽ2,k), . . . , Gσl

(ẽl,k)]). By
analogy with (20), one obtains

xk = x−
k +Q

[∂h
∂x

∣∣∣
x−
k

]
W̃R−1(yk − h(x−

k )). (38)

A much more straightforward method is to follow the
procedure shown in (24) to (29) and construct the following
problem

xAM,k = argmin JCL (yk − h(xAM,k)) . (39)

Denoting ek = yk − h(x−
k ) ∈ Rl and by analogy with (28), it

follows that

xAM,k = x−
k + µ

[∂h
∂x

∣∣∣
x−
k

]
W

(
yk − h(x−

k )
)

(40)

where ek = [e1,k, e2,k, . . . , el,k]
T and W =

diag([Gσ1
(e1,k), Gσ2

(e2,k), . . . , Gσl
(el,k)]). Substituting

(40) into (26) gives

xk = x−
k + µ(1− γ)

[∂h
∂x

∣∣∣
x−
k

]
W

(
yk − h(x−

k )
)
. (41)

One can observe that the only difference between (41) and
(29) is the attenuating matrix W . The utility of this matrix
can be understood intuitively: when no external disturbances
are involved in the measurements, one can expect that the
discrepancy yk − h(x−

k ) is small and hence W ≈ I . In this
case, equation (41) is similar to (29). On the contrary, with
the presence of disturbances, the discrepancy yk − h(x−

k ) is
expected to be big, and hence W is close to a zero matrix.
By this technique, the MKCL-based methods are much more
robust than their LS-based counterparts where the “robustness
level” is controlled by the kernel bandwidth.

Remark 2. It is worth mentioning that the purpose of Sections
II-B and II-D is to provide a general framework for orien-
tation estimation algorithms. In specific algorithms, different
orientation parametrizing strategies, e.g., quaternions, rotation
matrices, rotation vectors, and Euler angles, are employed
by different authors in different applications. Moreover, some
other variables, e.g., the gyroscope bias, the external dis-
turbance, and the magnetic disturbance, may be augmented
into the state to enhance the algorithm’s performance. The
purpose of this work is not to obtain the best orientation
estimation algorithm but to demonstrate that an improvement
can be further obtained by replacing the LS cost with the
much more generic MKCL. The newly derived algorithms
would inherit the advantages of the original method but with
enhanced robustness to disturbances.

III. MAIN RESULTS

In this section, we first demonstrate that two popular algo-
rithms, i.e., the GD and DOE, are derived under the LS-based

objective functions. Then we use MKCL to substitute LS and
derive two novel algorithms, i.e., the CGD and CDOE. Before
proceeding, we denote the normalized accelerometer readings
as yA,k =

yA,k

∥yA,k∥2
= [yax, yay, yaz]

T and the normalized mag-
netometer readings as yM,k =

yM,k

∥yM,k∥2
= [ymx, ymy, ymz]

T .

A. Two Traditional Solutions for IMUs

In this section, we provide a brief overview of the derivation
of the GD [17] and DOE [18], emphasizing that they are
derived using LS-based objective functions (note that this fact
is not pointed out by their original authors).

1) The GD: The GD algorithm in [17] is composed of two
steps: the a priori estimate of orientation by gyroscope read-
ings and the correction by accelerometer and magnetometer
readings. Based on (10), the a priori estimate of quaternion
S
Eq

−
k has

S
Eq

−
k = S

Eqk−1 +
1

2

(
S
Eqk−1 ⊗ yqG,k

)
∆t (42)

where S
Eqk−1 is the quaternion at previous time step, and

yqG,k = [0, yTG,k]
T . For accelerometers, the constant gravity

vector quaternion is set to be Eg = [0, 0, 0, 1]T and the
measured gravity quaternion is Sg = [0, yTA,k]

T . The following
LS-based objective function is utilized:

min
S
Eqk∈R4

fg(
Eg, Sg, SEqk) =

1

2
∥Eg,k∥2 (43)

where Eg,k = S
Eq

∗
k ⊗ Eg ⊗ S

Eqk − Sg is the error quater-
nion, S

Eqk = [q1, q2, q3, q4]
T is the quaternion to be de-

termined, and S
Eq

∗
k is the conjugate quaternion of S

Eqk. For
magnetometers, the constant magnetic vector quaternion is
set to be Em = [0,mx, 0,mz]

T (due to magnetic dip) with√
m2

x +m2
z = 1 and the measured magnetic vector quaternion

is Sm = [0, yTM,k]
T . The following LS-based cost function is

employed:

min
S
Eqk∈R4

fm(Em, Sm, SEqk) =
1

2
∥Em,k∥2 (44)

where Em,k = S
Eq

∗
k ⊗ Em⊗ S

Eqk − Sm. Combining (43) and
(44), one has

min
S
Eqk∈R4

fg,m(Eg,Em, Sg, Sm, SEqk) =
1

2
∥Ek∥2 (45)

where Ek =

[
Eg,k

Em,k

]
∈ R8 is the aggregated error quaternion.

By applying one step gradient descent update with the initial
guess S

Eq
−
k , the recursive solution of (45) can be obtained as

S
EqAM,k = S

Eq
−
k − µ∇fg,m (46)

with
∇fg,m =

∂Ek

∂S
Eqk

∂fg,m
∂Ek

= JEk
(SEqk)Ek (47)

where JEk
(SEqk) = ∂Ek

∂S
Eqk

=
[

∂Ek

∂S
Eqk

∣∣
S
Eq−k

]
, S

EqAM,k is the
quaternion obtained by accelerometer and magnetometer read-
ings and µ is the learning rate. Following the method used in
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[17], we modify (46) as

S
EqAM,k = S

Eq
−
k − µ

∇fg,m
∥∇fg,m∥2

. (48)

Remark 3. The benefit of using normalized gradient direction
is to increase the robustness with respect to unexpected large
Ek, at the price of decreased smoothness when Ek is small
(this is the reason why the GD seems much more noisy
than the KF-based method when the IMU has slow-varying
dynamics).

Combining (42) and (48) in a complementary form gives
S
Eqk = γS

Eq
−
k + (1− γ)SEqAM,k (49)

where γ is a coefficient to balance between the gyroscope es-
timation and the accelerometer and magnetometer estimation.
Substituting (48) into (49), one has

S
Eqk = S

Eq
−
k − µ(1− γ)

∇fg,m
∥∇fg,m∥2

. (50)

By setting λ = (1− γ)µ, one obtains

S
Eqk = S

Eq
−
k − λ

∇fg,m
∥∇fg,m∥2

(51)

where β is the only parameter to be tuned in the GD. The
whole algorithm is then summarized as follows:

• Prediction: estimate the orientation using (42).
• Update: correct the orientation using (51).

Remark 4. The detailed derivation procedure of the GD
described in the above paragraphs is slightly different from
the original work [17], but in fact, they are mathematically
equivalent.

2) The DOE: The DOE algorithm in [18] shares the same
strategy in terms of the a priori estimate of orientation using
gyroscope readings as shown in (42). The difference is that it
employs an analytical solution for the orientation correction.
Define

Eg =

[
0

Era

]
, Sg =

[
0

Sak

]
,Em =

[
0

Erm

]
, Sm =

[
0

Smk

]
where Era = [0, 0, 1]T and Erm = [1, 0, 0]T are the reference
z-axis and x-axis in the earth frame, and Sak = yA,k and
Smk = yM,k are the normalized accelerometer and mag-
netometer readings. Then, equations (43) and (44) can be
equivalently written as

min
S
Eqk∈R4

fg(
Eg, Sg, SEqk) =

1

2
∥Eg,k∥2 (52a)

min
S
Eqk∈R4

fm(Em, Sm, SEqk) =
1

2
∥Em,k∥2 (52b)

with

Eg,k =
∥∥∥SEq∗k ⊗

[
0

Era

]
⊗ S

Eqk −
[

0
Sak

] ∥∥∥2 (53a)

Em,k =
∥∥∥SEq∗k ⊗

[
0

Erm

]
⊗ S

Eqk −
[

0
Smk

] ∥∥∥2. (53b)

Note that here [0, Erm]
T in (52b) is slightly different with

Em in (44) since the magnetic dip is ignored in [18]. The
above optimization system is overdetermined since each of
the two equations provides two independent constraints on
S
Eqk, whereas S

Eqk only has three degrees of freedom. Con-
ventionally, we can solve (52) by minimizing both Eg,k and
Em,k simultaneously. However, it could result in disturbances
in the magnetic field affecting the roll and pitch. To solve
this problem, an analytical solution of (52) was developed in
[18] by constraining the magnetometer readings only affecting
the heading. Specifically, for sub-problem (52a), the included
angle between Sra and Sak has αerr,a = ∢(Sra, Sak) =

arccos( ⟨Sra,Sak⟩
∥Sra∥2∥Sak∥2

) where ⟨·, ·⟩ is the inner product. More-

over, the rotation axis can be written as xa =
Sra×Sak

∥Sra×Sak∥2
.

Finally, the analytical solution of (52a) has

S
Eqacc,k =

[
cos( 12αerr,a)
sin( 12αerr,a)xa

]
(54)

where S
Eqacc,k denotes the quaternion obtained by the ac-

celerometer readings. Since the accelerometer measurement
is noisy, it is feasible to use only a small portion of αerr,a to
correct the gyroscope drift, which gives

S
Eqga,k = S

Eq
−
k ⊗ qacor,k (55)

with
qacor,k =

[
cos( 12kaαerr,a)
sin( 12kaαerr,a)xa

]
(56)

where ka ∈ (0, 1) is an adjustable weight, S
Eq

−
k is the

a priori estimate of the quaternion as shown in (42), and
S
Eqga,k is the obtained quaternion by fusing the gyroscope and
accelerometer measurements.

To fulfill the constraint that magnetometer readings only
affect the heading, one can project Smk into the horizontal
plane (in the sensor frame), i.e, Sm̄k = Smk−(Smk ·Sra) ·Sra.
Then, the included angle between Sm̄k and Srm has αerr,m =

∢(Sm̄k,
Srm) = arccos( ⟨Sm̄k,

Srm⟩
∥Sm̄k∥2∥Srm∥2

) and the rotation axis

has xm =
Sm̄k×Srm

∥Sm̄k×Srm∥2
. Finally, by analogy to (54) and (55),

one has
S
Eqk = S

Eqga,k ⊗ qmcor,k (57)

with
qmcor,k =

[
cos( 12kmαerr,m)

sin( 12kmαerr,m)xm

]
(58)

where km ∈ (0, 1) is an adjustable weight and S
Eqk is fused

quaternion at time step k. To further mitigate the gyroscope
drift bk, the following gyroscope bias update equation is
utilized

bk = bk−1 + kb,aαerr,axa + kb,mαerr,mxm (59)

where kb,a, kb,m ∈ (0, 1) are two adjustable gains. The bias
estimation bk is then utilized to correct the gyroscope readings
yG,k with

ycG,k = yG,k − bk (60)

where yG,k is the raw gyroscope readings and ycG,k is the
corrected one. Correspondingly, yqG,k = [0, (ycG,k)

T ]T is
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utilized in (42) ro replace yqG,k = [0, yTG,k]
T . The whole

algorithm of the DOE is summarized as follows:
• Predict the orientation by gyroscopes using (42) and (60).
• Update the orientation by accelerometers using (55).
• Update the orientation by magnetometers using (57).

B. The CGD

To increase the robustness of the GD with respect to external
disturbances, we use the following MKCL-based objective
function

min
S
Eq∈R4

fcl(
Eg,Em, Sg, Sm, SEqk) =

8∑
i=1

σ2
i

(
1−Gσi

(Ei,k)
)

(61)
where Ei,k is i-th element of Ek, σi is i-th bandwidth for
channel i. Correspondingly, the derivative of fcl with respect
to S

Eqk can be calculated as

∇fcl =

[
∂Ek

∂S
Eqk

∣∣∣∣
S
Eq−k

]
∂fcl
∂Ek

= JEk
(SEqk)WEk (62)

with

W = diag[Gσi(E1,k), Gσi(E2,k) . . . , Gσi(E8,k)]

Ek =

[
Eg

Em

]
, JEk

(SEqk) =
[
JEg (

S
Eqk), JEm(SEqk)

]

Eg =


0

2(q2q4 − q1q3)− yax
2(q1q2 + q3q4)− yay
2(0.5− q22 − q23)− yaz



Em =


0

2mx(0.5− q23 − q24) + 2mz(q2q4 − q1q3)− ymx

2mx(q2q3 − q1q4) + 2mz(q1q2 + q3q4)− ymy

2mx(q2q3 + q1q4) + 2mz(0.5− q22 − q23)− ymz



JEg (
S
Eqk) =


0 0 0 0

−2q3 2q4 −2q1 2q2
2q2 2q1 2q4 2q3
0 −4q2 −4q3 0



JEm(SEqk) =


0 0

−2mzq3 2mzq4
−2mxq4 + 2mzq2 2mxq3 + 2mzq1

2mxq3 2mxq4 − 4mzq2

0 0
−4mxq3 − 2mzq1 −4mxq4 + 2mzq2
2mxq2 + 2mzq4 −2mxq1 + 2mzq3
2mxq1 − 4mzq3 2mxq2

 .

(63)
where S

Eq
−
k = [q1, q2, q3, q4]

T is the quaternion obtained by
gyroscope readings as shown in (42). One can observer that
the only difference between (47) and (62) is the attenuation
matrix W . By analogy to equations (48)–(51), we have

S
Eqk = S

Eq
−
k − λ

∇fcl
∥∇fg,m∥2

. (64)

In a practical application, we can use σ2 = σ3 = σ4 = σa

for the accelerometer readings and σ6 = σ7 = σ8 = σm for
the magnetometer readings due to the homogeneous property
of sensors at different axes. The selections of σ1 and σ5 are

Algorithm 1 The CGD
1: Initialize S

Eq0 by (65)
2: while k > 0 do
3: Predict the quaternion S

Eq
−
k using (42)

4: Obtain the measurement error and the gradient using (63)
5: Update the quaternion using (64)
6: k = k + 1
7: end while

redundant since E1,k = E5,k = 0 always holds (note that the
error quaternion is composed of error vectors). A remaining
question is to obtain the initial quaternion S

Eq0. In this work,
we use ecompass algorithm [37] to initialize the orientation.
Specifically, the initial rotation matrix is calculated by

R0 =
[
(yA × yM )× yA (−yA)× yM (−yA)

]
(65)

where yA and yM are the initial normalized accelerometer
and magnetometer readings, and the operator × denotes the
cross product. Then, we convert this rotation matrix to a
quaternion and obtain S

Eq0. The detailed algorithm of the CGD
is summarized in Algorithm 1.

C. The CDOE
Based on the algorithm of the DOE described in Section

III-A2, we can remodel the correction angles αerr,a and
αerr,m as

αerr,a = αca + vca

αerr,m = αcm + vcm
(66)

where αca and αcm is the ground truth correction angle
we want to obtain, and vca and vcm are the noises caused
by accelerometer and magnetometer measurement noises. By
assuming that vca and vcm are Gaussian, the obtainment of
kaαerr,a and kmαerr,m in (56) and (58) can be given by
solving the following LS-based optimization problems:

min
αca∈R

fa(αca) =
1

2
(αca − αerr,a)

2, (67a)

min
αcm∈R

fm(αcm) =
1

2
(αcm − αerr,m)2. (67b)

Solving (67a) and (67b) with the gradient descent strategy, we
have

αca,t = αca,t−1 − ka∇fa (68a)

αcm,t = αca,t−1 − ka∇fm (68b)

where ∇fa = ∂fa
∂αca

∣∣
αca,t−1

= αca,t−1 − αerr,a, ∇fm =
∂fm
∂αcm

∣∣
αcm,t−1

= αca,t−1−αerr,m, t is the iteration number and
starts from 1, αca,t−1 and αcm,t−1 are the correction angles at
the previous iteration, and ka and km are step sizes. Note that
the initial guess of the correction angle should be zero (since
the a priori estimate of the correction angle is zero) and it is
possible to iterate only one time at each time interval. Thus,
we have αca = kaαerr,a and αcm = kmαerr,m (ignoring the
subscript t), which are identical to the corrected angles utilized
in quaternion update in (56) and (58).
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Algorithm 2 The CDOE
1: Initialize S

Eq0 using (65) and set b0 = 0
2: while k > 0 do
3: Calculate S

Eq
−
k using (42) and (60)

4: Obtain the correction angles αerr,a and αerr,m, and cal-
culate qacor,k and qmcor,k using (70) and (71)

5: Correction by accelerometer readings using (73)
6: Correction by magnetometer readings using (74)
7: Gyroscope bias estimation using (72)
8: k = k + 1
9: end while

Since the Gaussian assumption of vca and vcm is generally
not valid due to the involvement of external acceleration
and magnetic disturbance, we construct the following MKCL-
based objective functions:

min
αca∈R

fcl,a(αca) = σ2
a

(
1−Gσa

(ea)
)
, (69a)

min
αcm∈R

fcl,m(αcm) = σ2
m

(
1−Gσm(em)

)
(69b)

where ea = αca − αerr,a, em = αcm − αerr,m, and σa and
σm are two bandwidths. By analogy to the one-step gradient
descent update in (68a) and (68b), we have

αca = kaGσa
(αerr,a)αerr,a

αcm = kmGσm
(αerr,m)αerr,m

(70)

and thus

qacor,k =

[
cos( 12αca)
sin( 12αca)xa

]
, qmcor,k =

[
cos( 12αcm)

sin( 12αcm)xm

]
. (71)

Similar to (59), the gyroscope drift bk can be updated as

bk = bk−1 + kb,aαcaxa + kb,mαcmxm. (72)

Then, the quaternion update by accelerometer readings is given
as

S
Eqga,k = S

Eq
−
k ⊗ qacor,k. (73)

Finally, the quaternion update by magnetometer readings is
given as

S
Eqk = S

Eqga,k ⊗ qmcor,k. (74)

The detailed algorithm of the CDOE is summarized in Algo-
rithm 2.

D. Kernel Bandwidth Tuning

The kernel bandwidths play important roles in the CGD and
CDOE. As indicated by Theorem 1, the performance of the
CGD and CDOE is almost identical to the GD and DOE when
using large kernel sizes. In this case, they perform well under
Gaussian noise but are sensitive to external disturbance. On
the contrary, a very small kernel bandwidth can reject distur-
bance effectively at the price of degraded ability in inhibiting
gyroscope drift. One method for this trade-off is to minimize
the “distance” between the objective function-induced pdf and
the practical noise distribution, which falls into the category
of MLE. Another method is to treat it as a black-box problem

and solve it with some black-box optimization algorithms,
e.g., Bayesian optimization in [24]. Although the above two
methods are effective, their performance largely depends on
the training set, and obvious generalization errors may occur
when the testing situation is different from the training case.

Inspired by the redescending property of the MKCL as
shown in Fig. 4(b), one can select kernel bandwidths man-
ually by inspecting the distribution of measurement resid-
uals. Specifically, the influence function of the MKCL in
one dimension case has ∇JGL(e) = JCL(e)

∂e = e exp−
e2

2σ2 ,
which gives its maximum (and minimum) value at point
e = σ (and e = −σ). In the case of e = ±3σ, one has
∇JGL(e) ≈ ±0.011e, which indicates that the residuals with
|e| ≥ 3σ nearly have no influence on the objective function
and hence the residuals polluted by disturbances are expected
to locate outside of the region [−3σ, 3σ]. On the contrary,
the influence functions of the MKCL and the LS are similar
within the region [−σ, σ], and therefore the residuals under
the disturbance-free experiments are expected to be in this
region. By these two principles, one can adjust the kernel
bandwidth effectively. Empirically, we advise using σa = 2da
and σm = 2dm where da and dm are the standard deviations of
the accelerometer residuals and magnetometer residuals under
the disturbance-free experiments.

IV. EXPERIMENTS

In this section, we compare the CGD and CDOE with the
GD [17], DOE [18], ESKF [15], and MKMC [24]. We first
investigate their performances using a commercial IMU. Then,
we implement them on a self-designed low-cost IMU and
compare their accuracy under some walking experiments.

A. Performance Validation Using a Commercial IMU

We validate the performance of different algorithms on a
commercial sensor, Xsens MTI-670. The sampling frequency
is 400 Hz. Two kinds of motions, translation (T) and trans-
lation adjoint with rotation (T & R), are considered. The
experimental setups are shown in Fig. 5(a) and Fig. 5(b),
and the detailed experimental descriptions are summarized in
Table. I. It is worth mentioning that the IMU is disturbed
either by acceleration disturbance Ad or magnetic disturbance
Md in experiment 1, while it is disturbed by Ad and Md

simultaneously in experiment 5. Moreover, there is almost
no external disturbance in experiment 2 since the rotation
frequency is very low.

TABLE I
EXPERIMENTS DESCRIPTION.

Exp Movement Disturbance
1 T Ad or Md

2 T & R f = 0.1Hz, almost no disturbance
3 T & R f = 0.5Hz, Ad

4 T & R f = 0.1Hz, Md

5 T & R f = 0.5Hz, Ad and Md
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(a) Translation (b) Translation and rotation

Fig. 5. The experimental setups. In Fig. 5(a), Xsens is attached to a carrier
that is connected to a rail. The movement of Xsens is controlled manually.
The external acceleration Ad is generated by the movement of Xsens, while
the magnetic disturbance Md is caused by the approaching of pliers. In Fig.
5(b), Xsens is attached to the shank of an exoskeleton, and the exoskeleton
is commanded to imitate the walking of a human. The magnitude of Ad

depends on the rotation frequency f , while Md is determined by the distance
between the pliers and Xsens. The plastic carrier has a height of 12 cm which
is sufficient to isolate the magnetic effects caused by rails or exoskeletons.

The kernel bandwidths of the correntropy-based algorithms
are tuned based on the strategies described in Section III-D.
As for the other parameters, we use the same values for each
comparison pair (i.e., the ESKF and MKMC, the GD and
CGD, and the DOE and CDOE). The root-mean-square errors
(RMSEs) and maximum errors (MEs) of different algorithms
under experiments 1-5 are summarized in Table II. One can
see that the performances of the correntropy-based algorithms
(i.e., MKMC, CGD, and CDOE) are slightly better than their
counterparts (i.e., ESKF, GD, and DOE) in experiment 2,
and significantly outperforms the ESKF, GD, and DOE in
other experiments. This reveals that the correntropy-based
algorithms can increase the robustness of the traditional al-
gorithms against disturbances but almost without sacrificing
their performances under Gaussian noises. This feature gives
its root in the redescending property of the MKCL’s influence
function.

We visualize the error performances of different methods in
experiments 1 and 5 in Fig. 8. The norm of the sensor readings
is shown in Figs. 8(a) and 8(c) while the corresponding errors
are shown in Figs. 8(b) and 8(d). One can observe that three
correntropy-based algorithms (i.e., the MKMC, CGD, and
CDOE) are very robust to external disturbances, especially
along the yaw and pitch axes since these two axes are affected
by Ad and Md the most.

To further investigate the effects of kernel bandwidths on
the proposed algorithms, we visualize the orientation errors of
the CGD and CDOE by applying different bandwidth vectors
in experiment 1 and the corresponding results are shown in
Figs. 6 and 7. Not surprisingly, the CGD and CDOE are
almost identical to the GD and DOE when applying big kernel
bandwidths (see the dashed black and yellow lines), and are
very robust to disturbances when using relatively small kernel
bandwidths. This result is consistent with the log-likelihood

Fig. 6. Performances of the CGD with different kernel bandwidth vectors
in experiment 1. The tuned bandwidth vector for the CGD has σ∗ =
[σa, σm]T = [0.02, 0.01]T .

Fig. 7. Performances of the CDOE with different kernel bandwidth vectors
in experiment 1. The tuned bandwidth vector for the CDOE has σ∗ =
[σa, σm]T = [0.05, 0.04]T .

comparison as shown in Fig. 3 which indicates that small
kernel bandwidths generally are robust to heavy-tailed noises.

B. Performance Validation on a Low-cost IMU

We implement our algorithms to a low-cost IMU (micro-
processor: STM32F405RGT6, embedded sensor: ICM20948)
which integrates an SD card and an onboard battery. The IMU
has been calibrated based on the procedure introduced in [38].
We attach the IMU to a shoe and investigate its performance
under some walking tests. The experimental setup is shown
in Fig. 9 and a detailed experimental description is shown
in Table IV. The ground truth orientation is obtained by the
Vicon motion capture system with 8 cameras (Vicon Vero
v2.2), which is highly reliable with 0.017 mm (mean) position
tracking error [39]. For comparison, the optical data and the
IMU output are time-synchronized and aligned. The time
synchronization is achieved by correlating the norms of the
gyroscope readings and of the angular velocity estimated by
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TABLE II
RMSES AND MES OF DIFFERENT ALGORITHMS USING XSENS.

Test Axis RMSE (deg) ME (deg)
GD CGD DOE CDOE ESKF MKMC GD CGD DOE CDOE ESKF MKCM

1
yaw 10.22 0.69 8.10 0.13 13.54 0.31 28.40 1.68 15.83 0.26 32.95 0.97
roll 0.21 0.09 0.22 0.06 0.39 0.05 0.93 0.42 1.17 0.33 1.44 0.16

pitch 0.62 0.04 0.46 0.01 0.77 0.05 3.07 0.16 2.41 0.13 4.40 0.17

2
yaw 1.87 1.84 1.29 0.95 1.34 0.50 5.55 5.41 2.88 2.16 3.82 0.82
roll 0.60 0.52 0.39 0.21 0.59 0.30 2.02 1.68 1.41 0.67 1.46 0.79

pitch 0.16 0.27 0.10 0.09 0.51 0.13 0.47 0.88 0.27 0.29 1.38 0.58

3
yaw 0.94 0.44 0.74 0.53 0.67 0.15 2.69 1.29 2.65 1.18 2.01 0.50
roll 0.79 0.11 1.88 0.23 0.82 0.14 3.26 0.65 7.72 1.11 3.35 0.79

pitch 0.23 0.16 0.44 0.14 0.33 0.14 0.82 0.77 1.40 0.73 1.47 0.58

4
yaw 17.03 2.38 12.96 2.31 17.77 0.69 31.16 4.74 27.56 3.72 34.25 1.47
roll 1.67 0.40 0.34 0.17 3.48 0.23 4.94 1.35 1.20 0.58 9.93 0.69

pitch 1.46 0.17 0.06 0.08 2.56 0.09 4.31 0.79 0.22 0.30 6.32 0.64

5
yaw 16.30 1.29 13.12 1.67 16.60 1.42 26.63 2.64 24.05 2.93 28.81 2.98
roll 1.07 0.78 1.61 0.20 2.70 0.33 3.79 2.34 7.34 1.05 8.37 1.19

pitch 0.92 0.16 0.34 0.19 1.82 0.19 3.46 0.66 1.30 0.80 4.87 0.52
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(a) Norm of sensor readings in experiment 1 (b) Orientation errors of different methods in experiment 1
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(c) Norm of sensor readings in experiment 5 (d) Orientation errors of different methods in experiment 5

Fig. 8. Performances of different algorithms in experiments 1 and 5. The left two figures show the norm of the accelerometer and magnetometer readings
while the right ones show the orientation errors of different algorithms.
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the optical system. The alignment is done by an optimization-
based method shown in [40]. Four experiments are conducted
to cover the situations with or without magnetic disturbance
and straight walking or walking with turns.

Fig. 9. Experimental setup for the walking test. The low-cost IMU is attached
to a shoe. The external acceleration is generated by the moving of the leg
while the magnetic disturbance is generated by the iron plate.

We summarize the RMSEs and MEs of different algorithms
under different tests in Table III. One can see that the perfor-
mances of the correntropy-based algorithms again significantly
outperform their traditional counterparts, especially in terms of
of MEs.

We visualize the norm of sensor readings and the error
performance of different algorithms under Test 4 in Figs. 10
and 11. The magnetic disturbance area is shown in the blue
regions. One can see that obvious yaw errors are caused by
the ESKF, GD, and DOE in this region, but are avoided by
the MKMC, CGD, and CDOE.
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Fig. 10. The norm of sensor readings in Test 4.

C. Algorithm Complexity

Due to the need of matrix inversion in the ESKF and both
matrix inversion and Cholesky decomposition in the MKMC,
the algorithm complexity of the ESKF and MKMC is heavier
than O(n3) where n = 12 (one can refer to [24] for the
detailed algorithm of the MKMC). These time-consuming
calculations can be avoided by the CGD and CDOE. To
explicitly analyze the time consumption of different algorithms
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Fig. 11. The orientation errors of different algorithms in Test 4.

in an embedded low-cost microprocessor, we execute them
on a low-cost IMU (computation chip: STM32F405RGT6).
The average time consumption in one iteration is obtained by
averaging the time cost of 10000 execution iterations and the
corresponding results are summarized in Table V. One can see
that the complexity of the CGD and CDOE are slightly heavier
than the GD and DOE, but are significantly lighter than the
MKMC and ESKF. The time costs are as large as 2.515 ms
and 3.536 ms for the ESKF and MKMK, but merely 0.059
ms and 0.080 ms for the CGD and CDOE.

D. Discussion

From Tables II and III, we observe that the correntropy-
based algorithms (i.e., the CGD, CDOE, and MKMC) are
significantly better than their counterparts (i.e., the GD, DOE,
and ESKF). The effectiveness of the proposed algorithms im-
plies that many existing orientation algorithms can be further
improved by re-modeling the objective functions so that the
cost-induced distribution much more matches the underlying
noise distribution. “Optimizing” the objective function is pow-
erful but is not fully explored in the literature, especially in
the field of sensor fusions where the LS criterion is widely
used. Our work demonstrates that the MKCL is a suitable
candidate when the underlying noise is heavy-tailed. It is worth
mentioning that the Gaussian kernel is not the only kernel
function for the formulation of the MKCL, but also some other
kernels (e.g., generalized Gaussian kernels, Cauchy kernels).
Compared with the loss functions utilized in robust statistics,
e.g., the Huber loss, least absolute loss, and elastic net, the
MKCL is much more flexible (by varying kernel bandwidths)
and possesses a redescending influence function. Other types
of non-convex penalties should also be useful as long as they
can induce suitable heavy-tailed distributions, which gives
great freedom to the designers.

We observe that the performance of the CDOE is slightly
better than the CGD in our experiments. One reason may be
that the modeling of the gyroscope bias is considered in the
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TABLE III
RMSES AND MES OF DIFFERENT ALGORITHMS IN THE WALKING TEST.

Test Axis RMSE (deg) ME (deg)
GD CGD DOE CDOE ESKF MKMC GD CGD DOE CDOE ESKF MKMC

1
yaw 1.00 0.95 1.02 0.46 1.20 0.70 4.06 2.98 6.06 1.80 7.64 2.78
roll 1.83 0.60 4.34 0.84 2.31 0.95 5.03 1.76 16.95 2.42 7.98 2.54

pitch 0.75 0.87 0.98 0.74 1.02 0.91 2.59 3.30 5.48 2.56 5.23 3.24

2
yaw 4.78 1.28 7.90 0.69 1.84 0.64 16.08 3.08 13.23 2.10 13.38 2.49
roll 3.15 0.33 4.24 0.47 2.69 0.34 10.35 1.14 14.34 1.47 10.45 1.23

pitch 3.12 1.01 1.50 0.73 1.78 0.81 10.54 2.97 8.92 2.42 11.37 2.62

3
yaw 6.35 2.05 2.86 1.30 2.82 1.69 17.78 9.01 8.29 3.81 16.35 5.30
roll 1.30 0.64 3.67 0.63 2.09 0.74 4.68 2.52 14.94 2.71 10.29 2.47

pitch 1.42 1.29 1.92 1.07 2.79 1.61 5.43 5.85 9.24 4.57 13.74 7.06

4
yaw 6.52 2.40 6.32 1.88 6.31 2.48 14.18 7.36 13.28 4.16 22.41 5.69
roll 1.35 0.84 3.59 0.73 1.78 0.78 4.85 2.45 16.36 2.28 7.68 3.11

pitch 1.26 1.10 1.47 0.91 2.81 1.26 7.45 4.48 11.31 3.98 20.06 6.00

TABLE IV
EXPERIMENTAL DESCRIPTION.

Test Route Disturbance
1 A→B Ad, without iron plate
2 A→B Ad, Md, with iron plate
3 A→B→C→D→A Ad, without iron plate
4 A→B→C→D→A Ad, Md, with iron plate

TABLE V
EXECUTION TIME OF DIFFERENT METHODS ON A LOW-COST IMU.

Algorithm GD CGD DOE CDOE ESKF MKMC
Time (ms) 0.053 0.059 0.075 0.080 2.515 3.536

CDOE but ignored in the CGD. Another reason may be that
although the proposed methods are very effective in rejecting
big disturbances, they are less effective in handling small but
lasting disturbances. In many indoor applications, the magnetic
field is not strictly homogeneous and may vary with position
(one can see the norm of the magnetometer readings in Fig.
10). In this case, the CDOE outperforms the CGD since it
constrains that the magnetic readings only affect the heading,
but the small lasting magnetic disturbance may deteriorate
both the pitch and roll in the CDOE. Conceptually, it is hard
to distinguish the small disturbance from the nominal noise
since they share similar regions in the density functions. One
possible solution may be extending the zero-mean Gaussian
kernel to the variable center Gaussian kernel so that the small
disturbance can be mitigated by the shifted centers, which may
be our future work.

V. CONCLUSION

In this paper, we build a connection between the MKCL
and its induced noise distribution and demonstrate that this
distribution becomes Gaussian with infinite kernel bandwidth.
Some important properties of the MKCL as a cost function
are given. Moreover, two MKCL-based algorithms (i.e., the
CGD and CDOE) are derived for the orientation estimation of
IMUs. The proposed approaches exhibit robustness to external

disturbances, and their performances are verified under exten-
sive experiments. Our proposed two methods bear significantly
less complexity compared with the ESKF and MKMC, which
should be beneficial when the microprocessor computation
resource is limited and can save power consumption in a
practical implementation. To avoid the complicated kernel
bandwidth procedure, in the future, we will focus on the
adaptive kernel bandwidth tuning strategies. Additionally, we
plan to extend the Gaussian kernel to the variable center
Gaussian kernel to reject the small but lasting disturbances.

VI. APPENDIX

A. Proof of Theorem 1

Proof. Taking Taylor series expansion of Gσi

(
ei,k

)
gives

Gσi

(
ei,k

)
=

∞∑
n=0

(−1)n

2nσ2n
i n!

e2ni,k

By setting σi → ∞, it follows

lim
σi→∞

σ2
i

(
1−Gσi

(
ei,k

))
= e2i,k/2 (75)

Substituting this result into (4), one obtains

lim
σi→∞

JGL =
1

N

N∑
k=1

l∑
i=1

e2i,k/2 = JLS . (76)

This completes the proof. ■

B. Proof of Theorem 2

Proof. If ẽk ∼ N (0, I), one has p(ẽi,k) =
1√
2π

exp
(
− ẽ2i,k

2

)
.

Then, the likelihood of x given the set {yk, uk}Nk=1 follows

L
(
x; {yk, uk}Nk=1

)
=

N∏
k=1

p
(
ẽk
)

=

N∏
k=1

l∏
i=1

1√
2π

exp
(
−

ẽ2i,k
2

)
.
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Based on MLE, it follows that

x = argmax
x

L
(
x; {yk, uk}Nk=1

)
which is equivalent to minimizing its negative logarithm
function (ignoring the normalization constants) with

x = argmin
x

1

2

N∑
k=1

l∑
i=1

ẽ2i,k.

Multiplying a constant 1/N on the right side of the above
equation, we obtain (33a). This reveals that LS is an optimal
metric when the noise is Gaussian under the MLE. On the
contrary, if ẽi,k is heavy-tailed and its density function p(ẽi,k)
follows (34), one has

x = argmax
x

N∑
k=1

l∑
i=1

ci exp
(
− σ2

i (1− exp
(
−

ẽ2i,k
2σ2

i

)
))

= argmin
x

N∑
k=1

l∑
i=1

σ2
i

(
1−Gσi(ẽi,k)

)
= argmin

x

1

N

N∑
k=1

l∑
i=1

σ2
i

(
1−Gσi(ẽi,k)

)
= argmin

x
JCL(ẽk).

(77)

This indicates that MKCL is an optimal metric when ẽi,k
follows (34) and hence completes the proof. ■
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