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Multi-scale attention-based instance segmentation
for measuring crystals with large size variation
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Abstract—Quantitative measurement of crystals in high-
resolution images allows for important insights into underlying
material characteristics. Deep learning has shown great progress
in vision-based automatic crystal size measurement, but current
instance segmentation methods reach their limits with images
that have large variation in crystal size or hard to detect crystal
boundaries. Even small image segmentation errors, such as
incorrectly fused or separated segments, can significantly lower
the accuracy of the measured results. Instead of improving the
existing pixel-wise boundary segmentation methods, we propose
to use an instance-based segmentation method, which gives more
robust segmentation results to improve measurement accuracy.
Our novel method enhances flow maps with a size-aware multi-
scale attention module. The attention module adaptively fuses
information from multiple scales and focuses on the most relevant
scale for each segmented image area. We demonstrate that our
proposed attention fusion strategy outperforms state-of-the-art
instance and boundary segmentation methods, as well as simple
average fusion of multi-scale predictions. We evaluate our method
on a refractory raw material dataset of high-resolution images
with large variation in crystal size and show that our model can
be used to calculate the crystal size more accurately than existing
methods.

Index Terms—Crystal size measurement, grain size, micro-
scopic high-resolution images, refractory raw material dataset,
attention model, deep learning.

I. INTRODUCTION

MEASURING the size of crystals or grains in minerals
on high-resolution microscopic images is an important

task for various fields such as mineralogy, material science,
and geoscience. The average crystal size is a key metric
in the quantitative analysis and provides information about
underlying material properties. In recent years, image analysis
applications have increasingly been used to support this analy-
sis in numerous domains such as material science, medicine or
biology [3], [4]. The automation of vision-based measurement
has the major advantages of providing more accurate results,
faster measurement time, reduction of manual preparation
steps, and improved reproducibility [5]. Depending on the type
of material, the appearance of the crystals and their boundaries
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Fig. 1. Comparison of different segmentation methods and their impact
on size measurement accuracy. (1a) Grain with multiple crystals of different
sizes. (1b) Ground truth crystal instance segmentation. (2) Boundary predic-
tion and resulting instance segmentation from Yu et al. [1]. The boundary
model mispredicts tiny crystals (P1) when the crystal boundary is difficult to
identify. Also scratched surfaces (P2) are falsely recognized as boundary. Gaps
(P3) between grain and background need to be closed by post-processing.
(3) Intermediate flow map output and final instance segmentation from the
instance model (Cellpose) of Stringer et al. [2]. The model cannot correctly
identify the center of the large crystal (P4), and it also fails to detect thin
boundaries (P5), resulting in missing instance segments. (4) Our proposed
multi-scale attention model overcomes these problems and correctly segments
crystals of varying sizes and thus enhances the accuracy of the measured sizes.

varies. In general, a crystal is an area with a uniform color
and a contrasting boundary line separating it from adjacent
crystals. One way to measure crystal sizes is through classic
image processing methods like intensity value thresholding
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or edge detection [6] to detect the borders of crystals and
measure the properties of resulting enclosed regions. However,
in practice, these methods quickly reach their limits when
the data becomes more complex. Challenges include barely
visible boundary lines between adjacent crystals, scratches
caused by polishing that are misidentified as boundary lines,
broken crystal regions that do not allow a clear delimitation
due to high-contrast areas, or the existence of impurities, pores
or noise in the image (see Figure 1). The most common
problem with classical image processing methods is the over-
segmentation of boundary lines, where too many edges in the
image are recognized as boundaries. Another challenge is that
very fine boundaries may not be detected or may result in
fragmented segmentation lines. Both of these detection errors
result in incorrectly separated or fused segments, which can
severely degrade the accuracy of size and count measurements.
In recent studies [3], deep learning-based segmentation meth-
ods are getting more popular as they are able to learn the
context-dependent appearance of complex data. In the case
of material science on high resolution microscopic images
of polycrystalline samples, also known as micrographs, deep
learning is ideally suited to handle the varying appearance
of crystals and boundaries and has been shown to improve
segmentation results.

The state-of-the-art (SOTA) approach to measure crystal
size is to use instance segmentation [2] first and then cal-
culate statistics on size distribution of the resulting segments.
However, as we show, instance segmentation faces difficulties
when images have (1) large variations in crystal sizes, and (2)
a lot of crystals that are packed together, separated by very
thin boundary lines. In this paper we address these challenges
of instance and boundary segmentation by proposing a novel
method that combines instance segmentation with size-aware
multi-scale attention (SiMA).

We adapt a SOTA instance segmentation model for mi-
croscopic images called Cellpose [2], and enhance it with a
size-aware attention model, inspired by crowd size estimation
methods on natural images [39]. Our framework can overcome
the large size variation issue of instance segmentation by
adaptively fusing information from multiple scales and focus
on the most relevant regions for segmentation at each scale,
as shown in Figure 2 in Section III.

Our aim is to calculate the crystal sizes more accurately by
improving the crystal segmentation performance. We focus on
difficult images, containing adjacent crystals of varying sizes,
which can neither be solved by simple resizing nor by tiling
strategies. We evaluate our method on a dataset of refractory
raw material samples, which have a polycrystalline structure
and large variations in crystal size.

We summarize our main contributions:
• We introduce SiMA, a novel module that enables dense

instance segmentation on high-resolution images to im-
prove crystal size measurement with large size variation.

• SiMA is an attention module that improves the fusion
of multi-scale instance predictions. We combine flow
maps from multi-scale inputs with a size-aware attention
module. For the multi-scale fusion process, SiMA em-
phasizes results at the optimal image resolution for the

area to be segmented, while properly handling conflicting
information from other scales.

• Our resource-efficient method improves crystal segmen-
tation over the state-of-the-art on a very challenging
dataset, while having much less parameters than state-of-
the-art transformer-based instance segmentation models.
We demonstrate that especially on difficult cases our
method is capable of improving the crystal size measure-
ment accuracy on images with instances of varying sizes.
We significantly outperform the state-of-the-art methods
in single-scale and boundary-based crystal segmentation.

II. RELATED WORK

From the literature on grain and crystal size measurement,
we investigate three main approaches for the initial image
segmentation method: boundary segmentation (II-A), super-
pixel segmentation (II-B), and instance segmentation (II-C,
II-D). We also review multi-scale segmentation methods and
attention models for segmentation tasks (II-E).

A. Boundary segmentation method

The most popular method for grain/crystal segmentation is
boundary segmentation, where a binary semantic segmentation
task is performed. The boundary pixels are segmented as
foreground and non-boundary pixels are segmented as back-
ground. In a post-processing step, all pixels located within
the same boundary are assigned to the same label, resulting
in an enumeration of separated instances, an instance label
map. To perform the boundary segmentation task, the works
in this field are using neural networks with U-Net inspired
architectures, e.g., [1], [7]–[9]. The boundary method has
a significant drawback, since neighboring crystals are fused
together if the segmented boundary mistakenly has gaps. This,
in turn, leads to incorrect measurement of the number and
size of crystals. Therefore, post-processing strategies have
been proposed to close fragmented segmentation boundaries,
e.g., rule-based morphological operations like dilation and
erosion [10], [11], applying the watershed algorithm to com-
plete partially segmented crystal boundaries [7], boundary
skeletonization to automatically delete or extend discontinued
boundaries [12] or GAN-based approaches to automatically
close gaps in areas where the boundary is occluded by im-
purities [8]. However, these post-processing strategies are not
capable of closing all boundary gaps and may also incorrectly
connect boundary lines. Some deep learning papers are thus
focusing on topology-preserving models to avoid predictions
with fragmented boundary lines in the first place. Yu et al.
[1] train a model with centerline dice loss [13] as part of
their loss function. Bachmann et al. [7] propose a weighted
cross-entropy and Jaccard loss to tackle the imbalanced fore-
ground/background classes. Liu et al. [14] predict an adaptive
boundary-weighted map based on the original U-Net distance
transform [15]. While these proposed methods encourage deep
learning models to focus on topology preservation during
training, there is no guarantee that these models will ac-
tually predicting topology correctly. In difficult cases, such
as occluded borders or vanishing boundaries, there could be
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multiple correct solutions to draw the segmentation boundary,
but only one (random) solution is given in the annotation mask
in the training process.

B. Superpixel segmentation

To overcome the boundary segmentation issues, another ap-
proach is to segment the crystal regions instead of the bound-
aries [16]–[18], utilizing super-pixel segmentation to cluster
pixels of the same color. These pixel clusters represent the
final instance segmentation map. The superpixel segmentation
overcomes the problem with vanishing boundaries as long as
the adjacent crystals have different colors, but would fuse
adjacent crystals with the same color. Moreover, it falsely
divides the crystal into different clusters when the crystal has
different color areas. Another disadvantage is that background
areas or impurities are also segmented as individual instances.

C. Instance segmentation – Proposal-based

The third approach for instance segmentation is proposal-
based instance segmentation, also known as ‘detect-and-
segment’ approach. It is a two-stage method, where first
potential candidate regions are extracted and in a next step
the binary segmentation of the proposed regions is predicted.
The most prominent representative of this group is Mask
R-CNN [19]. By now, several variants of Mask R-CNN
have been developed, including RTMDet-Ins [46], which is
designed to segment instances in real-time. In mineralogy and
metallography, Mask R-CNN or variants [20], [21] have been
applied to perform instance segmentation of grains. However,
the grains in the demonstration datasets usually have large
distances to each other and touch each other only in rare cases.
Studies [2], [22] with datasets of densely packed instances
with no gaps between the instances, often report that Mask
R-CNN has lower evaluation scores compared to their own
methods. Brebandere et al. [23] state that proposal-based
instance segmentation methods have difficulties to extract the
segmentation mask if the proposed region contains more than
one instance.

Bhukarev et al. [24] propose a different concept for instance
segmentation of densely packed mineral grains of sandstone.
In the first step, region proposals are predicted using a Fully
Convolutional Network (FCN) [25] to extract the grain centers
from the image. The image is then split into regions around
the grain centers. For each image crop, a segmentation mask is
predicted using a segmentation model. The segmented masks
are then merged into the final instance segmentation map. This
approach is capable of segmenting densely packed regions,
but has the drawback that these small image crops may lack
the global context to perform accurate segmentation. Also, the
task of cropping and predicting each instance reduces time
performance when there are many small instances in an image.

D. Instance segmentation – Proposal-free

Previous papers [23], [26], [27] on proposal-free approaches
present models that learn pixel embeddings, such that pixels
belonging to the same instance have similar embeddings and

pixels from different instances have dissimilar embeddings.
The resulting pixel feature vectors are then post-processed
with a clustering algorithm to create instance segmentations.
While effective, the proposed clustering methods are slow
and also the number of clusters is not known in advance.
Recent transformer-based architectures, such as MaskFormer
[45] and OneFormer [44], speed up the instance segmentation
task by using the pixel decoder embeddings and an additional
transformer decoder to generate binary masks for each object
query. However, the downside is that they are heavy on
parameters and computation, and are limited by the maximum
number of instances per sample.

Another approach known as center-regression is to train
a deep learning model where each pixel is assigned a 2D-
vector pointing towards the instance center [28]–[31]. The
two-channel output map consists of the horizontal and vertical
pixel offsets (distance) to its centers. In a post-processing step,
each pixel is shifted by the predicted offset and assigned to the
closest center. This results in the final instance segmentation
map, whereby pixels with the same assigned center have the
same label. With the exception of [32], which uses the center-
regression approach in material science, these approaches were
mainly applied to natural images.

Cellpose: Cellpose [2], a proposal-free instance segmenta-
tion method, was originally developed for cell segmentation,
but Stringer et al. [2] show that Cellpose generalizes well to
other types of densely packed objects. The network archi-
tecture is a U-Net variant which creates a center-regression
flow map, consisting of a horizontal and a vertical gradient
map. Instead of a simple coordinate offset, the flow map is
a vector field of normalized gradients produced by a heat
diffusion from the median center. An additional output is the
pixel probability map of the foreground. In a post-processing
step, Euler integration is used to construct the flow from each
pixel to the center to finally produce the instance segmentation.
Due to the large size of the micrograph, usually, the model
is applied to each patch and the results are stitched, since
strong downsampling of the image is not possible due to fine
structures and small objects that would no longer be visible.
Previous stitching approaches deal with binary segmentation
masks leading to mistakenly fused objects or open boundaries.
Cellpose overcomes these problems: due to the characteristics
of the flow field and the mask assignment with the Euler
integration, flow patches can be easily stitched or combined.

Our approach utilizes Cellpose’s strategy of combining
patches of flow maps and extends it to fuse multiple predic-
tions from different image scales.

E. Multi-scale segmentation models and Attention models

In semantic segmentation with FCNs, the issue of scale
variations is approached by utilizing multi-scale features
[33], [34]. In the context of instance segmentation, only
some works are focusing on multi-scale approaches, e.g., on
natural images [35] or remote sensing images [36].Chen et al.
[33] propose an attention map to combine image features at
different scales. For each scale, the attention model produces
a pixel-wise weight map that has the largest weights for
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objects that belong to that particular scale. One use-case
involving severe scale variations of objects is crowd size
estimation of people, where intermediate density maps are
used to distinguish between different levels of crowdedness
to improve the count estimation [37]–[39]. Jiang et al. [39]
propose a density attention network that produces a binary
segmentation map for each predefined density level. Their
crowd size estimation framework includes an attention model
called Density Attention Network (DANet) that produces
for each density level a binary segmentation map. To obtain
these density level maps, they blur the annotation of heads
of people with a Gaussian kernel and use a threshold set to
divide the calculated density map into multiple density levels.

Inspired by the work of Chen et al. [33] and Jiang et
al. [39] on scale-aware attention maps, we develop SiMA, a
model for size-aware attention maps. We combine SiMA with
Cellpose [2], a SOTA method in instance segmentation, to
obtain improved prediction results, benefitting from different
scale levels. Tiling strategies used in previous works may
result in a lack of global context and may negatively impact
the model’s segmentation performance. To avoid tiling the
image, the image size can also be scaled to the input size
of the model. On one hand, downsizing the image before
patch creation retains a portion of the overall context. On the
other hand, heavy downsampling may result in the omission
of small crystals. However, using a predefined input resolution
can lead to poor segmentation results, as some crystals are too
small or too large to be segmented correctly. To our knowledge
we are the first to suggest attention-based fusion as a way to
counter this problem and improve crystal/grain segmentation
over the SOTA in instance segmentation as well as boundary
segmentation.

III. METHOD

As shown in Figure 2, our proposed architecture consists of
two major components: (1) a model for size-aware attention
(SiMA) and (2) an instance segmentation model (CP) based on
the Cellpose architecture [2]. To effectively segment crystals
of different crystal sizes within one image, our architecture
aims to distribute the attention on different crystal sizes into
different output layers. A size-aware architecture addresses
scale issues in micrographs, since crystals usually exhibit large
size differences, where some regions contain densely packed
crystals while other regions contain only a single large crystal.

A. Cellpose

We base our instance segmentation model on the architecture
of Cellpose [2], which is a U-Net variant that creates a
flow map and a foreground probability map. We change the
input layer of the Cellpose architecture from grayscale to
RGB input. For the training procedure, we use manually
segmented ground truth instance labels to create flow maps
and foreground maps.
The original Cellpose paper tries to solve the problem of large
size differences between objects by using image scaling as a
preprocessing step. Images with large objects in the ground

truth masks are scaled down and images with small objects are
scaled up until the average object size in each image matches
a target size d. This way, the model can learn to predict images
within a specific size range. Further image augmentation also
includes additional random scaling, translation, and rotation.
After augmentation, a random patch of size sCP is cropped
from the image and the corresponding foreground mask P
and flow map F and used for training. At inference time, the
average object size of an image is not known, so Cellpose uses
a built-in SizeModel to estimate this quantity. The SizeModel
is a regression model that takes as input the extracted feature
maps of the Cellpose encoder that were generated from an
image patch. To resize the image to an ideal input resolution,
the scale factor is computed by matching the estimated size to
the predefined target size d. The resized image is then tiled in
overlapping patches of size sCP . Cellpose is applied to each
patch and the resulting flow patches and foreground patches
are stitched together. To create a smooth transition between
patches, the average of the overlapping regions is calculated
using a sigmoidal taper mask at the patch borders to mitigate
the impact of border predictions. The reconstructed image is
then resized to the original image resolution.

B. Cellpose+SiMA

The described scale preprocessing of Cellpose does not solve
the crystal size variation problem. Since crystals with large
size differences can be found next to each other, there is
usually no single ideal input resolution per image. To address
this problem, we enhance a Cellpose model by our size-aware
attention module SiMA. We first define N resize factors ri,
i ∈ {1, ..., N}, by which the original input image I is resized,
resulting in N different input image resolutions in ascending
order, (r1, ..., rN ). Here, the first resize factor r1 resizes the
image to the input resolution of the neural network of Cellpose
and the last resize factor rN is 1.0 and maintains the original
resolution of the image, while r2 to rN−1 are intermediate
resolutions between those two.

For each ri, the resized image is passed through the instance
segmentation model CP. From CP we obtain a flow map
Fi pointing pixels to the crystal center and a foreground
probability map Pi, which are then resized by factor 1

ri
to the

original image resolution. If the scaled image is larger than
the input size sCP of CP, the image is tiled in overlapping
patches of size sCP and the predictions are stitched using the
method given in [2], illustrated in Figure 2(c).

A simple approach to combine predictions from multiple
input resolution flow maps is to calculate the average or max-
imum of all predictions. However, we argue that the impact of
the different multi-scale predictions should be adjusted region-
wise according to the crystal size through an advanced region-
wise merging procedure, inspired by [39]. Image regions
with small crystals should receive increased attention on the
prediction with the highest input resolution, medium crystals
should be predicted at medium input resolution, and large
crystals at low resolution, i.e., they should be downsampled
to benefit from increased context.
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Fig. 2. (a) Proposed pipeline Cellpose+SiMA, visualized for N = 3. At training time, the CP module is trained with different scaling augmentations. At
inference time, the input image is rescaled and passed through Cellpose N times. At different input resolutions, the flow emphasizes different details. The
combination of flows via attention maps helps to produce predictions adapted to different parts of the image with varying characteristics. (b) The magnified
image region illustrates the effect of different image resolutions, from low to high. Flow F1 shows that important details are lost when the image resolution is
too low. Flow F2 has an ideal image resolution to detect the left big crystal, but has problems with tiny crystals. The center of the big crystal is not detected
correctly in flow F3, indicating that the image resolution is too high to fit the big crystal on one patch as model input. The combined flow F c shows the
correct region-wise fusion of the flow maps using the weights from the attention maps of SiMA. (c) At test time, the rescaled image is tiled into patches,
which are then processed by Cellpose. An advanced stitching algorithm merges the output patches together. (d) Network architecture of the SiMA model.

1) SiMA: We adopt the idea of binary attention segmen-
tation maps for crowd size estimation from [39] and propose
our new size-aware attention model called SiMA. SiMA is
a multi-class segmentation model, based on a U-Net variant,
where each output layer represents an attention map, which
is a binary segmentation mask. To this end, SiMA aims
to represent regions of different crystal sizes by providing
N + 1 input image-sized weight maps called attention maps

A = (A1, ..., AN+1) (see Figure 3 for an example attention
map). AN+1 is the background mask, where pixels are set
to 1 if no crystal is present. To preserve the global context
of the image, the image is resized to the model’s input size
sSiMA. The predicted attention maps are then resized back with
resize factor 1

r1
to the original image resolution. In contrast to

DANet from Jiang et al. [40], where segmentation masks for
different density levels by blurring center pixels were obtained,
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Fig. 3. (a) Crystal instance label with (b) the corresponding attention maps
for N = 3 and t = (100%, 50%, 25%). Each attention map is a binary
segmentation of all crystal instances belonging to a certain length range of t.

the ground truth for our attention maps Ai is directly created
from the instance label map by applying a crystal length
threshold ti for each size level. For this purpose, the crystal
length is calculated by using the maximum of height and
width from an axis-aligned bounding box around the crystal’s
segmentation label. The threshold values t = (t1, ..., tN ) are
given as a percentage of the image size in decreasing order.
The first attention map represents all crystals with lengths
between the threshold values t1 and t2. We continue with
this thresholding procedure until the remaining crystals with
lengths between tN and 0 are assigned to the last attention map
AN . Finally, pixels belonging to crystals of the same size level,
given by ti and ti+1, form the binary segmentation mask of
attention map Ai. The background pixels are collected in an
additional attention map AN+1. The final output is produced
by performing sigmoid operation across all attention maps.

2) Multi-scale attention fusion with Cellpose+SiMA: To
calculate the combined flow map F c, we compute the pixel-
wise weighted average of the flow maps F1 to FN using the
weights Ai for each Fi. For the combined foreground mask
P c we also calculate the weighted average of P1 to PN using
the corresponding weights Ai for each Pi. To calculate the
final instance segmentation, we map the flow field F c to an
instance segmentation using the gradient flow tracking method
from [2]. Only pixels of F c where the pixel value of P c is
above a threshold h are considered. For each pixel, the gradient
flow tracking method iteratively follows the spatial derivatives
until they converge to the crystal center by Euler integration.
Pixels with the same assigned center receive the same instance
label, resulting in the final instance segmentation map.

IV. EXPERIMENTAL EVALUATION

A. Dataset

Our dataset consists of high-resolution micrographs of pol-
ished and acid-treated refractory raw material samples taken
with an optical microscope. Refractory raw material forms
clusters of crystallites. These clusters (grains) can be either
single crystals or polycrystals (see Figure 1 for an example
grain). Crystals of polycrystals normally have random crys-
tallographic orientations and the transitions from one crystal
to the next, called boundary, can be seen as dark line or
color changes on micrographs. As part of the microstruc-
ture assessment, mineralogy experts first polish and etch the
material sample to make its crystalline properties observable
under the microscope. The dataset consists of 313 image
cutouts of micrographs captured at different image resolutions
(ranging from 170 to 270 pixels per millimeter), with each
cutout cropped to one grain. The image cutouts have varying
heights and widths spanning from 150 to 1800 pixels. A
grain consists of one single crystal or multiple crystals of
different sizes ranging from 8 to 1750 pixels. The labeling
of the data was done by mineralogy experts. Each crystal was
manually segmented, with a boundary line of about 5 pixels
between adjacent segments. These labels were then converted
to instance segmentation labels.

Dataset split: We use stratified random sampling to ensure
a balanced split of grains with different characteristics and
crystal size variability. Therefore, each grain is assigned to one
of three classes, representing different levels of challenges.
To this end, we define a crystal size homogeneity score as
the ratio between the largest and the smallest crystal for
all crystals within a grain. The value ranges from 0 to 1,
with values close to 1 indicating a uniform distribution of
crystal sizes and values close to 0 indicating high variability
of crystal sizes. Class 1 is the class of easy examples, where
the maximum crystal size is smaller than the input size sCP

of the model and therefore the image can be predicted patch-
based at the original input resolution with Cellpose. The
rest of the images are divided into class 2, consisting of
images with homogeneity score smaller than 0.1 and class 3
of homogeneity score greater than 0.1. Class 2 represents the
images where large crystals are at least 10 times larger than
the smallest crystals. This means that rescaling the image such
that the largest crystal is fully contained in the input size of the
model would potentially harm the detection of smaller crystals,
as they may not be detectable in case of a too large resizing
factor. Class 3 represents images with smaller variations in
crystal size than in class 2, where the ideal resize factor should
not cause small crystals to disappear. The 313 samples are split
into a training, a validation and a test set (60%, 20%, 20%)
using the defined three classes for stratification.

B. Experimental setup

We perform a grid search over selected hyperparameters to
find the best configuration for each model (including SOTA
models). Model selection is performed on the validation set of
our dataset according to best PQ score (cf. Section IV-C). The
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searched hyperparameters and their value ranges are given at
the end of each model section.
Our framework Cellpose+SiMA: CP model and SiMA
have the same input size sCP = sSiMA = 224 pix-
els. We use N = 4 resize factors ri with r1 =
sSiMA/max(image height , image width), i.e., we scale the
image to the input resolution of the neural network, r2 = 0.5,
r3 = 0.75, and r4 = 1.0. If input images are already at the
CP input size sCP , we set r1 = 0.25 to ensure a proper size
hierarchy from smallest to largest. All models are trained using
the PyTorch framework. For training, we utilize the Adam
optimizer and implement a cosine learning rate decay with a
10-epoch warmup learning rate that linearly increases from
zero to the initial learning rate. If other adjacent grains are
visible in the image, they are masked in the model training.
Hyperparameter space: r1 ∈ {0.1, 0.25}, r2 ∈ {0.25, 0.5},
r3 ∈ {0.5, 0.75}, r4 ∈ {1.0}, N ∈ {2, 3, 4}.

Cellpose: We follow the implementation of the original
Cellpose approach [2] and make the following adaptions in
addition to the ones described above: (1) The number of
input channels is changed from 1 to 3 to use RGB images
as input, resulting in an input model size of 224 × 224 × 3.
(2) The initial learning rate is set to 0.1. (3) The minibatch
size is set to 30, due to hardware limitations. (4) The threshold
value h of the foreground mask P c is changed to 0 to also
include foreground regions with higher uncertainty. (5) We
use the suggested scaling preprocessing from Cellpose for
model training, but change the target average crystal size d
from 30 pixels to 50 pixels. The subsequent random scaling
uses a factor from 0.75 to 1.25. (6) We use additional training
augmentation by adding random brightness and contrast from
the albumentations library [41] to the image. We keep all other
parameters from the original implementation.
Hyperparameter space: h ∈ {0.0, 0.25, 0.5}, d ∈ {30, 50,
100}, learning rate ∈ {0.05, 0.1, 0.2, 0.4}

SiMA: The network architecture of SiMA is a U-Net variant
with an input size of 224 × 224 × 3 and an output size of
224×224×4. We use the segmentation models framework [42]
to implement the network architecture. The encoder backbone
is the Mix Vision Transformer B0 from SegFormer [43],
with pre-trained ImageNet weights. SiMA is trained through
a pixel-wise weighted average of the cross-entropy loss for
each layer. The loss weights for each channel are (2, 4, 6, 8, 1),
with the largest weight assigned to the attention map with
the smallest crystal size to account for the unbalanced seg-
mentation task. We train the model for 500 epochs and use
an initial learning rate of 0.01 and a minibatch size of 30.
For training augmentation, the image resizing is composed of
scaling the image size to the input patch size sSiMA followed
by random scaling factor between 0.5 and 1.5. We also
add the same random contrast and brightness augmentation.
From the original CP model implementation, we use random
translations, rotations, and cropping. After augmentation, we
use the ground truth label to create four attention maps via
the threshold set t = (100%, 50%, 25%, 12.5%).
Hyperparameter space: learning rate ∈ {0.01, 0.05, 0.1},
loss weights ∈ {(2, 4, 6, 8, 1), (2, 3, 4, 5, 1), (1, 1, 1, 1)},
t = {(100%, 50%, 25%, 12.5%), (100%, 25%, 12.5%, 6.25%),

(100%, 40%, 20%, 10%)}, segmentation models backbone ∈
{Mix Vision Transformer B0, MobileNet v2, ResNext50}.

Comparison with SOTA instance segmentation methods:
We compare our model with four SOTA instance segmentation
methods: the boundary model of Yu et al. [1], OneFormer [44],
MaskFormer [45], and RTMDet-Ins [46]. Yu et al.’s [1]
boundary model is the only recent work on dense instance
segmentation on a material science dataset with public code
that allows reproducibility. OneFormer and MaskFormer are
among the top performing methods for instance segmentation
on several benchmarks. We also compare our model with
RTMDet-Ins [46], a lightweight model that has a similar
number of parameters to ours and currently the best real-time
instance segmentation method on the MSCOCO benchmark
dataset. OneFormer and MaskFormer, on the other hand,
are very large models, each with more than 100 million
parameters.

Boundary model: We refer to Yu et al.’s [1] model as
boundary model. Their dataset is not publicly available, so
we train their model on our dataset using their public code for
training and inference. The model input size is 512 × 512
pixels. For training and evaluation, we have ground truth
boundary labels with a line width of 5 pixels. We train
the model for 300 epochs with a minibatch size of 16 and
a learning rate of 0.0075. For training augmentation, we
change the brightness/contrast settings to match the other
model settings and use random image crops instead of center
crops. At inference time, the boundary prediction is converted
to a binary label using a threshold operation. A boundary
width of five pixels is obtained by skeletonization and dilation
operations to match the ground truth data. We find an optimal
boundary threshold value of 0.2 for this process by evaluating
it against the validation set and selecting the threshold value
with the highest centerline dice (clDice) score [13]. The binary
boundary label is transformed to an instance label map by
assigning all pixels within the same boundary to the same
instance. For this procedure, we restrict the label map to
the foreground of the grain to prevent boundary gaps at the
grain border from falsely merging crystal instances with the
background. All other parameters and strategies for training
and inference are kept to their default values. We use the
clDice score to measure the performance of the topology of
the boundary line.
Hyperparameter space: learning rate ∈ {0.001, 0.0025, 0.005,
0.0075, 0.01}, boundary threshold ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

MaskFormer: We finetune the MaskFormer [45] with
Swin-B backbone [47], trained on ADE20K [48], on our
dataset with random 512 × 512 crops as input and the same
augmentations as for the other models. We trained the model
for 500 epochs and used an initial learning rate of 5e−5 and
batch size 32. For the post-processing, we set the probability
score threshold to keep predicted instance masks to 0.25.
Hyperparameter space: learning rate ∈ {1e−6, 5e−6, 1e−5,
5e−5, 1e−4}, probability score threshold ∈ {0.0, 0.25,
0.5, 0.75}.

OneFormer: We finetune the OneFormer [44] with Swin-T
backbone (shi-labs/oneformer-ade20k-swin-tiny from the Hug-
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TABLE I
COMPARISON OF MULTI-SCALE FUSION METHODS

Resize factors
(r1,..., rN) Multi-scale fusion method PQ (%) ↑ MRE

ACS (%) ↓

(r1, 1) Average 68.2 ± 18 25.2 ± 22
Attention; t=(100%, 25%) 74.0 ± 15 21.5 ± 33

(r1, 2 ∗ r1, 1) Average 71.3 ± 17 20.4 ±21
Attention; t=(100%, 50%, 25%) 75.8 ± 14 13.0 ± 20

(r1, 0.5, 0.75, 1) Average 70.4 ± 19 17.8 ± 20
Attention; t=(100%, 50%, 25%, 12.5%) 77.1 ± 15 11.8 ± 19

gingFace hub [49]), trained on ADE20K, on our dataset with
random 512×512 crops as input and the same augmentations
as for the other models. We trained the model for 150 epochs
and used an initial learning rate of 1e−4 and batch size 16.
For the post-processing, we set the probability score threshold
to keep predicted instance masks to 0.75.
Hyperparameter space: learning rate ∈ {1e−6, 5e−6,
1e−5, 5e−5, 1e−4}, probability score threshold
∈ {0.0, 0.25, 0.5, 0.75}.

RTMDet-Ins: We finetune the RTMDet-Ins [46] with the
RTMDet-Ins-tiny backbone from the mmdetection frame-
work [50], trained on COCO, on our dataset with random
640×640 crops as input and adapted our augmentation setting
to their pipeline. We trained the model for 200 epochs and
used an initial learning rate of 1e−5 and batch size 16. Due
to memory limitations during training, we set the maximum
number of instances per image to 200. For the post-processing,
we set the IOU threshold of the non-maximum suppression to
0.2, the binary segmentation mask threshold to 0.5, and the
score threshold to 0.3.
Hyperparameter space: learning rate ∈ {1e−5, 5e−5, 1e−4,
5e−4, 1e−3}, IOU threshold ∈ {0.0, 0.1, 0.2}, mask threshold
∈ {0.1, 0.25, 0.5}, score threshold ∈ {0.1, 0.2, 0.3}.

C. Evaluation metrics

To evaluate the instance segmentation results, we report
Panoptic Quality (PQ) [51] and Aggregated Jaccard Index
(AJI) as defined in [52]. PQ is computed by matching each
predicted instance p with the ground truth instance q that has
the highest intersection over union (IoU) score, where an IoU
value greater than 0.5 is required for a match. The matching
creates three sets: matched pairs (TP), unmatched predicted
segments (FP), and unmatched ground truth segments (FN).
PQ calculates the average IoU of matched segments and
applies a penalty for unmatched segments:

PQ =

∑
(p,q)∈TP IoU(p, q)

|TP |+ 0.5 ∗ |FP |+ 0.5 ∗ |FN |

To evaluate the performance of the calculated crystal
sizes, we compute the average crystal size (ACS) for each
grain/cluster. The crystal size is the crystal’s diameter in pixels,
which is derived from the crystal area |A| (number of pixels in
the segmentation) under the assumption that the crystal shape
is a circle. The crystal size is calculated as 2 ·

√
|A|/π. ACSGT

is the average crystal size of all crystals in the grain of the
ground truth label, and ACSpred for the predicted label.

To report the test scores, we calculate their mean and
standard deviation across all test samples for PQ, AJI, and
ACS. Additionally, we compute the mean absolute crystal size
error (MAE ACS) and the mean relative crystal size error
(MRE ACS) between ACSGT and ACSpred.

D. Benchmark settings

We report the average latency (i.e. network inference and post-
processing time) for all models on the test set. The inference
speed is tested on an NVIDIA TITAN RTX GPU (40GB) with
batch size 1. For model training, MaskFormer and OneFormer
required significantly more hardware resources and training
time than the other models, and were therefore trained on an
NVIDIA A100 GPU (80GB).

V. RESULTS

In this section, we present the experiment results on our
refractory raw material dataset. To prove the effectiveness of
our model, we perform an ablation study with multi-scale
fusion methods and our size-aware attention model SiMA.
We compare our attention fusion approach with the original
Cellpose instance segmentation method [2], a SOTA boundary
segmentation method for grains [1], as well as current SOTA
instance segmentation methods. Moreover, we evaluate the
performance of multi-scale fusion on image samples with
different crystal size distributions.

To test the statistical significance of our results, we use
10-fold cross validation with 10 independent test sets. We
perform Wilcoxon signed-rank test with Bonferroni correction
to evaluate significant rank differences with a significance level
of α = 0.05.

A. Multi-scale fusion methods

We conduct experiments on two fronts to evaluate the impact
of our size-aware attention model SiMA: (1) multi-scale inputs
and (2) multi-scale fusion methods. Table I summarizes our
findings. We test different numbers of resize factors (r1, ...rN )
with N = 2, N = 3, and N = 4. The smallest resize factor r1
(resizing the image to the input size of the model) and also the
largest resize factor rN (using the original image resolution)
are the same for each N . For N = 3 and N = 4 we add
intermediate resize factors r2 to rN−1. To combine the multi-
scale outputs, we use our attention fusion method and compare
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TABLE II
COMPARISON OF OUR PROPOSED METHOD WITH SOTA METHODS

Model settings Metrics Model parameters & latency

Models image
rescaling

multi-
scale

fusion
type PQ (%) ↑ AJI (%) ↑ MAE

ACS ↓
MRE

ACS (%) ↓ # Params Input
size (px)

Latency
(s) ↓

Cellpose+SiMA (Ours) ✓ ✓ attention 77.1 ± 15 84.0 ± 17 24.3 11.8 ± 19 12.1M 2242 3.94
Cellpose original [2] ✓ 72.1 ± 19 78.8 ± 24 56.6 19.4 ± 35 6.6M 2242 4.96
Cellpose multi-scale ✓ ✓ average 70.4 ± 19 71.6 ± 28 52.4 17.8 ± 20 6.6M 2242 3.61
Cellpose no resizing 55.8 ± 29 50.4 ± 37 110.4 33.5 ± 36 6.6M 2242 1.86
Boundary model [1] 66.6 ± 18 83.0 ± 12 39.7 16.0 ± 17 9.7M 5122 0.49
RTMDet-Ins (tiny) [46] 65.5 ± 19 77.0 ± 19 31.5 12.4 ± 14 5.2M 6402 0.08
MaskFormer [45] 51.7 ± 18 66.4 ± 23 61.2 21.1 ± 23 101.8M 5122 0.21
OneFormer [44] 70.8 ± 13 82.3 ± 11 18.3 10.1 ± 10 507.4M 5122 0.12

it with pixel-wise averaging. In our experiment, we train SiMA
with 2, 3, and 4 attention maps (excluding the background
map) using different crystal length thresholds t to divide the
crystals into attention maps. We show that our attention fusion
method outperforms the pixel-wise averaging method for each
N . For our attention fusion method, we can also see from
Table I that the PQ score and the relative size error (MRE
ACS) improving with a higher N . The best PQ score of
77.1±15% and a very low relative size error of 11.8±19% are
obtained for the model with N = 4 resize factors and attention
fusion. We denote the attention fusion model with N = 4 as
Cellpose+SiMA and the average fusion model with N = 4 as
Cellpose multi-scale for further comparison.

B. Comparison with State-of-the-Art

In Table II, we compare our multi-scale attention fusion
approach (Cellpose+SiMA) with the original Cellpose archi-
tecture and SOTA instance segmentation methods.

1) Cellpose architecture ablation: In the original Cellpose
paper, a regression model is used to determine the best
image resolution for each input image and they are resized
individually before using Cellpose. As a baseline, we evaluate
the Cellpose model without the prior resizing step and achieve
a PQ score of 55.8%, which is a drastic drop in performance
compared to a PQ score of 72.1% from the Cellpose original.
The mean relative error of the crystal size improves from
33.5% to 19.4% if using the prior resizing step. We examine
whether a single resizing step or the fusion of multi-scale
outputs would lead to better performance. Both, the attention
and the average fusion boost the performance substantially
compared to the baseline. However, the average fusion yields
a PQ score of 70.4%, which is inferior to 72.1% from the
Cellpose original. This suggests that one individually adapted
resizing factor is preferable to average fusion of three prede-
fined rescaling steps. The attention fusion beats the average
fusion and all the other models in metric PQ and AJI. It has
a high PQ score of 77.1% and a low MRE ACS of 11.8%
demonstrating high segmentation quality and measurement
accuracy. We find statistically significant differences in PQ
between the attention fusion mechanism (Cellpose+SiMA)
compared to the average fusion (Cellpose multi-scale) and to
the single resizing (Cellpose original).

2) Boundary model: We also evaluated the boundary model
from Yu et al. against our instance segmentation models. The

boundary model achieves a relatively high clDice sore of 79.99
± 9%, which indicates a high overlap of crystal boundaries.
The PQ score of 66.6% for evaluating the crystal instances
is above the baseline, but it is relatively low in relation
to the other models. We qualitatively assess the model’s
segmentation results and observe many boundary gaps in cases
where the crystal boundary is either very thin or obscured by
black scratches (see Figures 5 and 6). Although the boundary
overlap is high, small boundary gaps lead to fused crystal
instances and therefore the accuracy of the size measurement
is harmed with a mean absolute crystal size error of 39.7 and
a mean relative error of 16%.

3) SOTA instance segmentation methods: OneFormer,
MaskFormer, and RTMDet-Ins belong to the best perform-
ing instance segmentation methods on natural images. We
showed that they also perform well on our dataset, with
proper training and tuning. Of these models, only OneFormer
performs slightly better than our model in the size error
scores (MAE ACS and MRE ACS). However, our light-weight
Cellpose+SiMA method has a better overlap of predicted and
ground truth instances, achieving the highest PQ and AJI
scores of all models.

4) Computational complexity: In Table II, we compare
model performance with model complexity and show that
our Cellpose+SiMA has the best performance metrics while
belonging to the group of parameter-efficient models. Our
pipeline Cellpose+SiMA consists of two light-weight net-
works, SiMA with 5.5M and Cellpose with 6.6M parame-
ters, providing greater efficiency than, e.g., MaskFormer with
101.8M parameters. Cellpose+SiMA also achieves a faster
inference time than the original Cellpose, which requires a
pre-processing step for size estimation that takes 1.9 seconds.
On our hardware, our model’s inference time is 3.95 seconds,
which includes 0.04 seconds for the SiMA network, 0.4
seconds for N = 4 times the Cellpose network, and 3.3
seconds for the post-processing of the flow maps. In terms
of low computational cost and high performance metrics, our
proposed Cellpose+SiMA provides a good trade-off between
inference time and model performance. It also offers a good
trade-off between inference time and model performance, with
low computational cost and high performance metrics.
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TABLE III
PQ SCORE AND AVERAGE CRYSTAL SIZE RESULTS PER DATA CLASS

PQ (%) ↑ ACS MAE ACS ↓ MRE ACS (%) ↓

Class Cellpose
original

Cellpose+SiMA
(Ours) ACSGT Cellpose

original
Cellpose+SiMA

(Ours)
Cellpose
original

Cellpose+SiMA
(Ours)

Cellpose
original

Cellpose+SiMA
(Ours)

1 80.9 ± 8 80.6 ± 9 72.8 ± 29 74.3 ± 29 75.8 ± 29 2.2 3.3 3.4 ± 3 5.0 ± 4
2 69.4 ± 15 71.7 ± 15 141.9 ± 81 186.2 ± 197 171.2 ± 142 70.2 45.7 32.1 ± 50 22.3 ± 29
3 66.0 ± 26 78.9 ± 18 339.6 ± 192 313.0 ± 217 333.3 ± 194 97.5 23.9 22.8 ± 28 8.2 ± 10

C. Instance segmentation with large size variations

Our refractory raw material dataset consists of crystals with
huge size differences. We compare the impact of the two
approaches (1) single image resizing (Cellpose original) and
(2) multi-scale attention fusion (Cellpose+SiMA) on the het-
erogeneous crystal size dataset. In Table III we evaluate the
PQ and the crystal size measurement scores for each data class
separately. Class 1 contains data samples with a maximum
crystal size that is smaller than the model input size. We
assume that a multi-scale fusion could be redundant in this
case. This assumption is supported by the slightly higher
PQ score and the lower absolute/relative error scores of the
Cellpose original in comparison to the Cellpose+SiMA.

Images with the largest size variation are in class 2. In this
case, Cellpose+SiMA outperforms Cellpose original in PQ and
MAE/MRE ACS scores. Our multi-scale fusion approach is
capable of overcoming the challenge of crystal size variability
within a single image sample and performs better than the
single rescaling step of Cellpose original.

The most significant difference between the two methods is
evident in class 3, where Cellpose+SiMA has more accurate
size measurements and tops Cellpose original with a higher
PQ score of 78.9% over 66.0% and a lower relative size error
of 8.2% over 23.9%. Class 3 contains crystals that are larger
than the input size, but have a smaller size variation than class
2. The weak performance of the Cellpose original on this class
indicates that the single rescaling step struggles to find an ideal
resizing factor, since it has difficulties estimating the crystal
size of images with many large crystals.

This confirms our assumption that region-wise multi-scale
fusion is well suited for images that have crystals with large

Fig. 4. The relationship between the PQ/clDice score and the relative error
of the crystal size on the test set. A higher PQ score results in a lower
measurement error, while a higher clDice score does not indicate more
accurate size measurements.

size variations. We find statistically significant differences in
PQ between Cellpose+SiMA and Cellpose original on class 2
and 3.

D. Discussion
We showed that each of our multi-scale attention models from
Table I outperforms the Cellpose original approach. The best
PQ and measurement scores are achieved with 4 different
scales, referred to as Cellpose+SiMA in the result section.
We also demonstrated that the fusion strategy of multi-scale
predictions is crucial, as simple average fusion is consistently
outperformed by our attention fusion method and Cellpose
original. For images with small crystals, Cellpose original can
handle them sufficiently, through only a single resizing step.
However, when the crystals are larger than the input size of
the model or vary greatly in size, our multi-scale attention
approach outperforms the single resizing step of Cellpose
original.

We use the PQ score to measure the predicted segmenta-
tion quality, which is related to the accuracy in crystal size
measurement (cf. Figure 4). Unlike the PQ score, which takes
into account the accuracy of the instance region, the clDice
score only measures the accuracy of the boundary, which
can be misleading if the region accuracy is low. Therefore,
we recommend using the PQ score as a metric for instance
segmentation, especially when the goal is to measure the sizes
of the segmented objects.

In visually assessing Yu et al.’s boundary model, we observe
that the model has difficulties segmenting the boundary in
image regions where the crystal boundary is not clearly
visible, such as vanishing boundaries, boundaries distorted by
scratches, or other occlusions that obscure the boundary. This
can either lead to gaps in the boundary predictions, resulting
in merged instance segments. This can also lead to multiple
(incomplete) boundary solutions being predicted, resulting in
additional small instance segments.

Instead of using boundary segmentations, our method seg-
ments objects by focusing on crystal regions. This allows
us to handle the uncertainties at the boundaries better and
avoid incorrect segments that are split or merged due to
poor boundary predictions. This way, we can handle the
uncertainties at the boundaries better and mostly classify them
as background pixels, as shown in Figure 6. Therefore, our
instance-based segmentation method is more robust to small
segmentation errors and results in fewer incorrectly merged or
split segments than boundary-based methods.

Since the boundary model is applied to the image at the
original resolution, the downscaling problem mentioned above
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Fig. 5. Visual comparison of different model results. The image shows two crystals with a large difference in size. Our Cellpose+SiMA method can accurately
segment both crystals, which is enabled by our multi-scale prediction approach. Due to the strong downsampling of Cellpose original, the model is not able
to recognize the thin boundary between the two crystals and the whole area is detected as one crystal. The boundary prediction from Yu et al.’s model (visible
as a black line in the instance segmentation) produces a boundary gap (P1) where the boundary is difficult to detect, resulting in merged crystal segments.
MaskFormer, OneFormer, and RTMDet-Ins struggle to segment instances that occupy a larger area than the model’s input size.

Fig. 6. Visual comparison of different model results. The grain consists of several crystals with similar colors, separated in some cases by thin and barely
visible boundaries. Thick black scratches additionally complicate the segmentation task. Yu et al.’s boundary model has difficulty in segmenting the boundary,
resulting in merged crystals (P1, P3), e.g., the red and blue instance results. It also mistakenly produces two tiny crystals (P2) at the boundary junctions. In
the zoomed region, the boundary model is confused by the black spot (P4) located directly at the boundary. The instance segmentation methods perform better
in this region, but only our Cellpose+SiMA approach can correctly detect the thin boundary (P5) between the two tiny crystals. A drawback of MaskFormer,
OneFormer, and RTMDet-Ins is that they omit areas where the model is uncertain. OneFormer also has the issue of adding thin segments at the borders of
other instances (P6).

does not occur here. On the downside, however, this may
cause the boundary model to lack global context for large
crystals. Their approach does not include image resizing or
multi-scale fusion. We assume that our average multi-scale
fusion approach is inappropriate for a boundary segmentation
model, because boundaries with different widths from different
scales could either miss small crystals or mistakenly add small
crystals, if the boundaries do not overlap perfectly.

We showed that our multi-scale fusion approach works
on our refractory raw material dataset, but we believe that

attention fusion of multi-scale predictions is also beneficial
for other datasets with high-resolution images that require
multiple image resolutions to detect object instances with large
differences in size.

Limitations: From the experiments, we learned that Cell-
pose has a major limitation; it can only detect the center of
the object if the object is fully visible in the input patch.
Otherwise, resulting flow maps will be distorted when patches
are stitched together. Therefore, appropriate image resizing
is key for good segmentation results. However, this resizing
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can also cause problems if it is too aggressive and loses
important details such as thin boundaries. For images with
thin boundaries and extremely large crystals, Cellpose is not
capable of producing correct flow maps. This type of data is
also challenging for our size-aware attention model SiMA. A
possible solution would be to increase the input size of both
models, Cellpose and SiMA, to reduce the amount of resizing,
but this comes with the price of larger models resulting in
higher resource requirements and computational costs. This
implies, that the image size has an upper limit in our use case
- it is a trade-off between how much downsampling is needed
and how much downsampling can be done. The downsampling
capability is affected by the crystal size, crystal and grain
appearance, boundary thickness, or important small details that
have to be preserved.

VI. CONCLUSION

We presented Cellpose+SiMA, an instance segmentation
model for high-resolution images with instance objects of
large size variation. We evaluated our method on a challeng-
ing dataset of high-resolution micrographs of refractory raw
material crystals, which have a polycrystalline structure and
large variations in crystal size. We showed that image resizing
and multi-scale fusion are crucial for instance segmentation,
when objects with different size levels are densely packed
together. We demonstrated superior performance of our novel
size-aware attention model over SOTA boundary and instance
segmentation methods. Our method can effectively fuse in-
stance segmentations from multiple image resolutions resulting
in more accurate crystal size measurement.
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