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DynPL-SVO: A Robust Stereo Visual Odometry for
Dynamic Scenes

Baosheng Zhang, Xiaoguang Ma, Hong-Jun Ma and Chunbo Luo

Abstract—Most feature-based stereo visual odometry (SVO)
approaches estimate the motion of mobile robots by matching and
tracking point features along a sequence of stereo images. How-
ever, in dynamic scenes mainly comprising moving pedestrians,
vehicles, etc., there are insufficient robust static point features
to enable accurate motion estimation, causing failures when
reconstructing robotic motion. In this paper, we proposed DynPL-
SVO, a complete dynamic SVO method that integrated united
cost functions containing information between matched point
features and re-projection errors perpendicular and parallel to
the direction of the line features. Additionally, we introduced
a dynamic grid algorithm to enhance its performance in dy-
namic scenes. The stereo camera motion was estimated through
Levenberg-Marquard minimization of the re-projection errors of
both point and line features. Comprehensive experimental results
on KITTI and EuRoC MAV datasets showed that accuracy of the
DynPL-SVO was improved by over 20% on average compared to
other state-of-the-art SVO systems, especially in dynamic scenes.

Index Terms—Stereo visual odometry(SVO), dynamic scenes,
motion estimation, line features.

I. INTRODUCTION

V ISUAL odometry (VO) is a popular research topic in the
fields of robotics, autonomous driving, and augmented

reality. It uses various types of cameras to estimate its mobile
motion and reconstruct surrounding map [1] [2]. The stereo
visual odometry (SVO) has attracted more attention recently
due to its low cost, robustness, and wide applicability for both
indoor and outdoor scenes [3] [4].

Most VO systems rely solely on point features for motion
estimation, as they are easy to detect, track, and handle [5]
[6]. However, point features have poor anti-interference ability
and are sensitive to lighting variations, occlusion, and rapid
motion, limiting the performance of point-feature-based SVO.
Introducing line features can effectively address these issue
by providing more constraints, improving the accuracy and
stability of camera pose estimation. Moreover, in dynamic
scenes, it is difficult to extract sufficient static point features
to estimate pose of robots, and line features extracted from
static regions in the scene can complement the deficiencies of
point features in dynamic scenes.
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Fig. 1. Overview of the DynPL-SVO.

Dealing with dynamic scenes is a significant challenge for
traditional VO methods, as they often fail to achieve accurate
inter-frame matching, causing low motion estimation accuracy.
This was commonly solved by accurately removing dynamic
outliers in images before pose optimization, meaning that
the system must remove features introduced by the dynamic
objects and rely solely on trusted static features for the motion
estimation. Therefore, accurately extracting and removing the
dynamic features is critical for improving the performance of
VO systems in the dynamic scenes.

The robust constraints and random sample consensus
(RANSAC) had been applied to remove outliers (dynamic
points) [7], and Mask R-CNN is an excellent semantic seg-
mentation network in detecting dynamic objects in scenes
[8]. However, the above methods have serious efficiency
shortcomings, limiting their application in computer vision
problems that require real-time performance. As an online
camera pose estimation system, VO estimates the camera’s
current pose based on the previous frame motion models,
and geometric constraints can be used to identify dynamic
regions in the scene. In this paper, we proposed dynamic
grid approach which used spatial geometric constraints as a
prerequisite for mitigating the impact of dynamic scenes on
VO, and did not require additional depth information or an
explicit understanding of the scene.

In this paper, we proposed DynPL-SVO, a robust and
complete SVO system to fully use the structural and geometric
information of images to improve accuracy, especially for
dynamic scenes.

The main contributions of this paper were listed below:
• We proposed a complete SVO system, named DynPL-

SVO, which utilized both point and line features and was
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capable of effectively coping with dynamic scenes using
only stereo RGB images from stereo cameras.

• The re-projection errors of the point features and re-
projection errors perpendicular and parallel to line fea-
tures were jointly used to construct a unified cost function
for pose optimization, resulting in superior robustness
compared to conventional feature-based approaches.

• A dynamic grid approach was carefully designed to
identify dynamic regions and remove dynamic features,
and improvement of 13.6% and 2.3% on absolute pose
error (APE) and relative pose error (RPE), respectively,
were made on highly dynamic scenes, such as KITTI-01,
05, and 09.

• Extensive comparative experiments were conducted on
both the KITTI and the EuRoC MAV dataset to validate
performance of the DynPL-SVO. The results showed that,
the translation RMSE drifts of the DynPL-SVO were
improved by 13.8%, 30.0%, and 24.8% as compared to
those of PL SLAM front end, ORB SLAM2 front end,
and ORB Line SLAM front end, respectively.

II. RELATED WORK

VO methods could be divided into direct-based [9] [10]
and feature-based [5] according to how visual measurements
were processed. Direct-based methods used intensity of each
pixel to compute camera’s motion by minimizing photomet-
ric errors, without detecting and matching specific features.
However, most VO systems used feature-based methods due
to their high robustness and estimation accuracy, wherein
feature descriptors were used to detect and track point features
and estimate motion by minimizing the re-projection errors
between detected features and their corresponding projected
features from frames. To ensure real-time performance and
reliability of the VO system, many researchers used ORB [5]
[11], which provides robust and accurate motion estimation in
rich-texture scenes even with only point features. However, the
accuracy of motion estimation with insufficient point features
can greatly degrade in poor-texture scenes. As a result, many
researchers introduced line features to improve robustness and
accuracy [11] [12] [13], and several methods have achieved
satisfactory results in detecting straight-line features, such as
FLD [14], EDLine [15], and LSD [16].

One common and concise way to represent line features
is to use two endpoints to model a 3D line [17]. To avoid
optimization constraints brought by the over-parameterized
representation of line features, researchers [11] [18] applied
orthogonal representation [19] and Plücker coordinate [13]
to transform and optimize line features, respectively.

Optimization of line features required various represen-
tations with corresponding cost functions. Koletschka [17]
used the Euclidean distance sum of equally spaced sampling
points on the line segments as cost functions for the line
features. In most methods [11, 13, 18, 20], the line re-
projection errors were defined as the Euclidean distance from
the endpoints of the detected line features in a current frame to
their projections in a previous frame. All these cost functions
could be easily computed using Plücker coordinates and the
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Fig. 2. The feature matching process between the left and right images in
a stereo frame. We assumed that the point pl detected in the left image in
the grid(ap, bp) (red square), followed the epipolar constraint and imaging
principle of the stereo camera. The point (such as pr) to be matched in
the right image should be located at the range from grid(a′p − c, b′p) to
grid(a′p, b

′
p) in the right image, i.e., the green rectangular area. Similar to

point matching, if the endpoints of the line lr detected in the right image met
the matching rule, it would be a candidate line of ll.

distance formula between points and lines. However, previous
studies only considered structural information perpendicular to
the direction of line features, and implementing a cost function
that integrated re-projection errors perpendicular and parallel
to line features could substantially enhance SVO performance.

Estimating motion in dynamic scenes poses a significant
challenge to VO systems. Several works [21, 22] have ad-
dressed this issue by leveraging vision information to fuse
other sensors, such as IMU and wheel odometry. Additionally,
numerous methods [23] used RGB-D information to identify
dynamic areas where unstable point features were removed,
allowing only stable static point features to be retained during
optimization. More recently, deep learning-based solutions
were combined with VO systems to provide feasible solutions
to handle dynamic scenes [24]. However, all these methods
impose strict requirements on scenario conditions and com-
puter resources, and a novel SVO approach that could achieve
accurate motion estimation in dynamic scenes without relying
on image depth information or assistance from other sensors
would be highly desirable.

III. DETECTION AND PRE-PROCESSING

A. Feature detection and matching

1) Point features: After detecting an ORB point feature
pl(ul, vl) in the left image and its corresponding feature
pr(ur, vr) in the right image of a stereo frame, as illustrated
in Figure 2, the next step was to match these features between
the two images. To achieve this, we evenly divided each image
into 64×48 grids and stored the point features according to
their grid positions within the images. It is essential to note that
the feature matching must follow the epipolar constraint, i.e.,
vl = vr, and comply with the imaging principle, i.e., ul > ur.
The point features required for matching in the right image
were limited to horizontal grids, ranging from grid(a′p−c, b′p)
to grid(a′p, b

′
p). Additionally, a mutual consistency check was

performed, meaning that only matches with corresponding
best-left and best-right matches were deemed valid.



3

pprev_f

Tp2c

curr_f

prev_f

Tp2p

P
P’

pp

pc

lp

p’c

L’ L

pm
p’m

Fig. 3. The feature tracking process between adjacent frames. Tp2p denoted
pose transformation between the previous frame prev f and its preceding
frame pprev f . Tp2c denoted the pose transformation between prev f and
the current frame curr f . The dynamic spatial point P and spatial line L
moved to P ′ and L′ during sampling time, respectively. For line features L,
we defined their re-projection errors in a similar way with point features by
utilizing the Euclidean distance between midpoints p′m and pm of matched
and estimated line features. Based on this, we classify a feature as dynamic
or not.

Figure 3 illustrated the feature tracking process between
adjacent frames. To mitigate the impact of dynamic object
features on our estimation results, we utilized a motion model
to estimate the locations of the matched point features in the
current frame curr f . Specifically, we employed a uniform
motion model represented by a pose transformation matrix
Tp2p between the previous frame prev f and its preceding
frame pprev f as the initial state of the motion model. Given
that dynamic objects exhibited abnormal motion relative to
static scenes, the dynamic spatial point P moved to P ′ during
sampling time, resulting in larger re-projection errors for dy-
namic features p′c compared to estimated features pc predicted
by the motion model. To identify dynamic grids, we computed
and averaged the sum of squared Euclidean distances between
matched point features and estimated features in all relevant
grids. If this value exceeded a threshold, we classified the grid
and its surrounding eight grids in green as dynamic grids, and
the point features within these grids were identified as dynamic
point features. This enabled us to accurately track and estimate
feature locations in complex and dynamic scenes.

Algorithm 1 showed detailed process of proposed dynamic
region marking based on dynamic grid algorithm.

2) Line features: In this work, line features were extracted
from images using LSD and represented using LBD. Similar
to the point feature matching process between the left and
right images as shown in Figure 2, we grouped the line
features in the right image that passed through the same grids.
We assumed that the endpoints of the line feature ll in the
left image were located in (as, bs) and (ae, be). In the right
image, only lines within corresponding grids were considered
as candidate matches. To ensure the accuracy of the matches,
we applied a line matching rule and performed a mutual
consistency check, as illustrated in Figure 2. Only matches that
satisfy these requirements were selected for further processing.

Algorithm 1 : Dynamic region marking using the dynamic
grid.
Input: Uniform motion model Tp2p of the previous frame

prev f , the matched point feature set between the current
frame curr f and prev f ;

Output: The location of the dynamic grid.
1: Divide curr f evenly into 64×48 grids and only keep

n(n <= 8) point features pj in each grid gi;
2: for each gi ∈ curr f do
3: for each pj ∈ gi do
4: egi += PointErr(pj , Tp2p)/n
5: end for
6: if egi > ρ then
7: GRIDS LOCATION += {(xgi − 1, ygi − 1) ∼

(xgi + 1, ygi + 1)}
8: end if
9: end for

10: return GRIDS LOCATION

In Figure 3, we showed the use of re-projection errors
between the estimated line midpoint pm and matched line
midpoint p′m as the criterion for dynamic line feature tracking
between adjacent frames. Once the errors exceed a pre-
set threshold, the line features were identified as dynamic
ones and removed. Furthermore, effective dynamic grids were
obtained in the scene, as mentioned above.

B. Representation of the Line Features

We assumed that the homogeneous coordinates of
line endpoints were represented by X̄s(x1, y1, z1, w1) and
X̄e(x2, y2, z2, w2), with their inhomogeneous counterparts de-
noted as Xs and Xe. The Plücker coordinates of the line L
could then be constructed using the following formula:

L =

[
Xs ×Xe

w2Xs − w1Xe

]
=

[
n
d

]
∈ R6 (1)

, where d represented the direction vectors of the line, and
n denoted the normal vectors of the plane determined by
the lines and the origin. Specifically, nT × d = 0. The
Plücker coordinates for L could also be extracted from the
dual Plücker matrix T ∗, which was defined as follows:

T ∗ =

[
d∧ n
−nT 0

]
(2)

, where ∧ denoted transformation between vectors and anti-
symmetric matrices. The representation of the Plücker co-
ordinates was chosen due to its convenience for line feature
projection, transformation, and Jacobian usage.

IV. MOTION ESTIMATION

A. Problem Statement

The primary objective of VO systems is to find an opti-
mal transformation that can satisfy the projection constraints
for the corresponding features with high accuracy. This can
be achieved by solving a non-linear least-squares equation
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formed by the projection constraints of corresponding features
between the adjacent frames.

Compared to other VO systems that rely solely on the
re-projection errors of point features and the re-projection
errors perpendicular to the direction of line features. In this
paper, we proposed DynPL-SVO, a complete dynamic SVO
that integrated cost functions containing information between
matched point features and re-projection errors perpendicular
and parallel to the direction of the line features, effectively
leveraging the rich structural information contained in the end-
points of line features detected by LSD, leading to increased
robustness and accuracy. The non-linear least-squares equation
for the proposed method was shown in following:

ξ∗ = arg min
ξ

[
m∑
i=1

epi (ξ)
T
Σ−1

epi
epi (ξ)+

n∑
j=1

e
lpe
j (ξ)

T
Σ−1

e
lpe
j

e
lpe
j (ξ) +

q∑
k=1

elhk (ξ)
T
Σ−1

e
lpa
k

e
lpa
k (ξ)

] (3)

, where m, n, and q respectively denoted the numbers of
points, lines, and the numbers of complete line features
extracted within the image. The equation included point re-
projection errors (epi ), re-projection errors perpendicular to
the line direction (elpek ), and re-projection errors parallel the
direction of line features (elpaj ). The Σ−1 matrices in (3)
represented the inverse covariance matrices related to the
uncertainty of each re-projection error term.

The re-projection errors of point features were defined as
the distance between projected point features from the previous
frames and the corresponding ones in the current frames:

epi = pi − p′i(ξ) (4)

, where pi represented points detected in the current frames
and p′i(ξ) represented points projected from the previous
frames into the current frames.

In previous SVO systems [13] [18], only the perpendicular
re-projection errors of line features were employed in the mo-
tion estimation process. This involved calculating the distance
from the endpoints of detected line features to the projected
infinite line features, expressed as:

e
lpe
j =

[
d(lj , p

′
j,s(ξ))

d(lj , p
′
j,e(ξ))

]
(5)

, where p′s and p′e represented the endpoints of line features,
and d(.) was the distance function from endpoints to lines.

For translational differences between two lines, we em-
ployed their midpoints’ re-projection residue in the most
concise form. Additionally, using midpoints to represent re-
projection residuals could facilitate the reuse of point feature
code and improve code readability, ultimately saving system
running time. Thus, this work introduced re-projection errors
parallel to line features for optimization purposes, using the
midpoints of line features, i.e.,

e
lpa
k = pi,m − p′i,m(ξ) (6)

, where pi,m represented the midpoints of the lines detected
in the current frames, while p′i,m(ξ) represented the midpoints

of the lines projected from the previous frames into the
current frames. By utilizing these two constraint conditions,
the re-projection errors between lines could be effectively
aligned with their actual pose relationships. This was important
as relying on one single constraint for line features might
sometimes hinder the ability to ensure consistency between re-
projection errors and the true pose relationship between lines.

The optimization problem in equation (3) could be solved
iteratively using the Levenberg-Marquardt algorithm.

B. Jacobian Matrix of the Re-Projection Errors of Points and
Lines

1) Jacobian of the point re-projection errors: We used
six-dimensional vectors ξ ∈ se(3) to represent the pose
transformation matrix T ∈ SE(3), and the Jacobian of point
features was expressed as follows:

Jp =
∂epi
∂δξ

=
∂epi
∂P ′

∂P ′

∂δξ
(7)

, where P ′ represented the 3D point of matched point feature
from the previous frame to the current camera frame. The
Jacobian could be divided into two parts using the chain rule.
The first part could be expressed by the camera projection
principle as follows:

∂epi
∂P ′ = −

[
∂u
∂X′

∂u
∂Y ′

∂u
∂Z′

∂v
∂X′

∂v
∂Y ′

∂v
∂Z′

]
= −

[
fx
Z′ 0 − fxX

′

Z′2

0
fy
Z′ − fyY

′

Z′2

]
(8)

and the second part could be obtained through the Lie algebra
perturbation model:

∂P ′

∂δξ
=

∂TP

∂δξ
⇒

[
I −P ′∧] (9)

, where [.]∧ denoted skew-symmetric matrix of a vector. The
Jacobian of point re-projection errors could be rewritten as:

Jp =
∂epi
∂δξ

=
∂epi
∂P ′

∂P ′

∂δξ

= −

[
fx
Z′ 0 − fxX′

Z′2 − fxX′Y ′

Z′2 fx + fxX′2

Z′2 − fxY ′

Z′

0
fy
Z′ − fyY

′

Z′2 −fy − fyY
′2

Z′2
fyX

′Y ′

Z′2
fyX

′

Z′

] (10)

Detailed mathematical derivation could be found in [11] [18]
.

2) Jacobian of the re-projection errors perpendicular to
line features: The re-projection errors perpendicular to line
features were similar to the expression presented in [20] [25],
and were defined in equation (5). Firstly, we converted the 3D
line Lw from the world frame to the current camera frame
using the following procedure:

Lc =

[
nc

dc

]
= TcwLw =

[
Rcw (tcw)

∧Rcw

0 Rcw

]
Lw (11)

, where Rcw and tcw represented the rotation matrix and
translation vector, respectively. Next, the 3D line Lc was
projected onto normalized image planes and represented as
l′, using known intrinsic parameter matrix of cameras, i.e.,

l′ = KLc =

 fy 0 0
0 fx 0

−fycx −fxcy fxfy

nc =

l1l2
l3

 (12)
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, where K represented the projection matrix of the line. Since
we projected the line features onto the image plane as an
infinite line, only the normal component nc in the Plücker
coordinates Lc provided meaningful information during pro-
jection. As mentioned in Section IV-A, the re-projection errors
perpendicular to line features could be expressed as follows:

e
lpe
j =

[
ds
de

]
=

 pT
s l′√
l21+l22
pT
e l′√
l21+l22

 (13)

We assumed l =
√

l21 + l22 and d = pTl′

l , and the Jacobian of
perpendicular line re-projection errors could be expressed as:

∂d

∂δξ
=

∂ pTl′

l

∂δξ
=

∂(u l1 + v l2 + l3)

∂δξ

1

l

=
[
l1 l2

] ∂
[
u
v

]
∂δξ

1

l

(14)

Equation below could be obtained using the chain rule:

∂

[
u
v

]
∂δξ

=

∂

[
u
v

]
∂P ′

∂P ′

∂δξ
(15)

Referring to equation (10), the Jacobian of perpendicular
line re-projection errors could be expressed as follows:

∂d

∂δξ
= −

[
l1 l2

]
[

fx
Z′ 0 − fxX′

Z′2 − fxX′Y ′

Z′2 fx + fxX′2

Z′2 − fxY ′

Z′

0
fy
Z′ − fyY

′

Z′2 −fy − fyY
′2

Z′2
fyX

′Y ′

Z′2
fyX

′

Z′

]
1

l
(16)

Jlpe = ds
∂ds
∂δξ

+ de
∂de
∂δξ

(17)

In comparison to methods of directly deriving the Lie
algebra of the transformation, as presented in [11] [18],
obtaining the Jacobian of re-projection errors perpendicular
to line features was more efficient and convenient over ones
using derivation results from line endpoints.

3) Jacobian of the re-projection errors parallel to line
features: Similar to previous section, we defined the re-
projection errors of matched and projected line midpoints as
the cost function for the re-projection errors parallel to line
features, i.e.,

∂e
lpa
k

∂δξ
=

∂e
lpa
k

∂P ′
m

∂P ′
m

∂δξ
(18)

, where P ′
m represented the 3D midpoint of the matched line

feature from the previous frame to the current frame. Referring
to (10), we could obtain Jacobian of the re-projection errors
parallel to line features as follows:

Jlpa =
∂e

lpa
k

∂δξ

= −

[
fx
Z′

m
0 − fxX′

m
Z′2

m
− fxX′

mY ′
m

Z′2
m

fx +
fxX′2

m
Z′2

m
− fxY ′

m
Z′

m

0
fy
Z′

m
− fyY

′
m

Z′2
m

−fy − fyY
′2
m

Z′2
m

fyX
′
mY ′

m
Z′2

m

fyX
′
m

Z′
m

]
(19)

Thus far, we have obtained the Jacobians for the re-
projection errors of all three types of features. The pose
transformation between adjacent frames could be achieved
by solving the non-linear least-square equation (3) using the
Levenberg-Marquardt algorithm.

V. EXPERIMENTAL RESULTS AND ANALYSIS

For fair comparison, we used only the front end of
PL SLAM, ORB SLAM2, and ORB Line SLAM to form VO
systems to avoid possible influences caused by loop closure
detection in these systems. All experiments were conducted
on an Intel Core i5-4210U CPU @ 1.70GHz × 4 and 16GB
RAM without GPU acceleration.

A. Performance on KITTI

We tested the DynPL-SVO on the KITTI dataset, which
provided ground truth trajectories based on a 64-channel Velo-
dyne LiDAR sensor and GPS localization. Additionally, the
presence of dynamic scenes containing moving objects such
as cars and pedestrians in some sequences had a significant
impact on the performance of VO/vSLAM systems.

We presented the absolute pose error (APE) in Table I along
with three other benchmark systems, wherein we listed the
root-mean-square error (RMSE) of absolute translation and
rotation errors for all methods. It showed that the DynPL-SVO
outperformed other methods in 9 sequences, demonstrating its
superior accuracy in motion estimation across most sequences,
especially those that were highly dynamic, such as sequences
01, 05, and 09. The translation RMSE drifts of the DynPL-
SVO were improved by 13.8%, 30.0%, and 24.8% averagely
compared to those of PL SLAM front end, ORB SLAM2
front end, and ORB Line SLAM front end, respectively,
indicating its superior efficiency.

Table II presented the relative pose error (RPE) compar-
isons, where the DynPL-SVO achieved better translation and
rotation accuracy over other comparative systems in most
scenes, with an average improvement of 14.8% and 2.1%, re-
spectively, further confirming its superior performance. Figure
4 depicted the reconstructed paths of the four SVO systems on
several sequences of the KITTI dataset, wherein the ones from
benchmark methods had larger deviations over the DynPL-
SVO in all three sequences, particularly around corners with
large viewpoint changes. This further confirmed that the
DynPL-SVO outperformed other SVO systems, specifically in
dealing with dynamic environments.

In addition, we conducted an ablation study of the DynPL-
SVO. Table III showed that the DynPL-SVO with only re-
projection errors parallel to line features achieved better ac-
curacy in 10 sequences compared to the system without line
re-projection, and improved accuracy by 30.9% as compared
to those using only the re-projection errors perpendicular to
line features in terms of RPE on the KITTI dataset, illustrating
importance of considering them in SVO systems.

B. Performance on EuRoC MAV

We compared the DynPL-SVO and PL SLAM front end
and performed an ablation study on the EuRoC MAV dataset
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TABLE I
MEAN ABSOLUTE RMSE IN THE KITTI DATASET, WITH THE DASH INDICATING FAILED EXPERIMENT.

Seq. DynPL-SVO PL SLAM front end ORB SLAM2 front end ORB Line SLAM front end
tm Rdeg tm Rdeg tm Rdeg tm Rdeg

00 6.691 1.788 7.426 2.105 14.076 3.461 7.551 1.519
01 172.502 8.910 371.245 12.212 - - - -
02 21.653 4.423 8.167 1.505 14.187 2.615 11.276 2.550
03 6.077 4.308 6.030 3.310 2.317 1.511 3.018 1.466
04 2.100 29.944 2.216 34.067 2.655 49.025 2.550 38.861
05 4.097 1.598 6.506 2.695 11.755 4.217 8.750 3.641
06 4.113 2.927 5.564 6.305 4.219 1.518 4.120 2.364
07 5.216 1.957 3.028 2.165 14.155 5.698 15.512 6.957
08 7.202 3.019 10.054 3.254 24.796 6.134 17.134 3.302
09 4.729 1.065 12.205 2.454 18.387 3.718 24.154 4.288
10 2.064 1.831 2.649 1.155 3.823 2.081 4.992 1.823

tm:average translational RMSE drift(meter).
Rdeg:average rotational RMSE drift (◦).

TABLE II
MEAN RELATIVE POSE ERRORS ON THE KITTI DATASET, WITH THE DASH INDICATING FAILED EXPERIMENT.

Seq. DynPL-SVO PL SLAM front end ORB SLAM2 front end ORB Line SLAM front end
t% Rdeg/100m t% Rdeg/100m t% Rdeg/100m t% Rdeg/100m

00 1.569 0.443 1.607 0.405 1.424 0.590 1.137 0.366
01 21.339 1.402 43.723 1.939 - - - -
02 1.733 0.517 1.738 0.344 1.621 0.508 1.581 0.433
03 3.604 1.637 3.467 1.260 1.964 0.712 2.140 0.639
04 1.907 0.424 2.023 0.282 2.447 0.498 3.398 0.511
05 1.007 0.375 1.412 0.493 2.649 0.754 2.405 0.609
06 1.898 0.582 2.372 0.506 1.974 0.524 1.761 0.567
07 2.051 0.879 1.725 1.047 4.658 2.138 5.067 2.542
08 1.279 0.453 1.670 0.468 3.121 0.959 2.642 0.608
09 1.486 0.353 2.129 0.465 3.422 1.044 4.388 0.933
10 1.204 0.572 1.032 0.337 1.693 0.716 1.903 0.566

t%:average translational RMSE drift(%).
Rdeg/100m:average rotational RMSE drift (◦/100m).

[26] to validate the effects of various line re-projection errors
on estimation accuracy. In Table IV, we showed that re-
projection errors parallel to line features were more important
over re-projection errors perpendicular to line features in most
sequences, with an 8.6% improvement overall. The DynPL-
SVO outperformed PL SLAM front end in several sequences,
including MH 01 easy and MH 04 different, due to the
presence of many short but complete line features in these
sequences, wherein the introduction of the re-projection errors
parallel to line features in the DynPL-SVO helped improve its
performance. It is worth noting that the introduction of re-
projection errors perpendicular to line features had a negative
impact on three sequences. This could be attributed to irregular
drone motions and numerous short line features in the scenes,
leading to misalignment and mismatches.

C. Evaluating the capability of dynamic grids in dealing with
dynamic scenes

We conducted a comparative analysis in order to evaluate
the effectiveness of the dynamic grids. As shown in Figure
5(a) and 5(b), dynamic grids could identify vehicles traveling
at high speeds in different directions in the KITTI dataset,
with or without rich structural information. Additionally, for
slow-moving objects such as cyclists and pedestrians, dynamic
grids could eliminate dynamic features, as demonstrated in
Figure 5(c) and 5(d), indicating that the dynamic grids could
accurately identify dynamic regions, reducing the influence of
dynamic features on accuracy, and making the DynPL-SVO
more robust when operating in dynamic scenes.

Table V presented a quantitative analysis of the dynamic
grid approaches in the KITTI dataset. Results illustrated that
the DynPL-SVO with the dynamic grid method provided
more accurate estimation in 8 sequences, improving APE and
RPE by about 13.6% and 2.3%, respectively, compared to
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(a) Top view of sequence 00
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(b) Top view of sequence 05
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(c) Top view of sequence 08
Fig. 4. Reconstruction of the path from DynPL-SVO, PL SLAM front end, ORB SLAM2 front end, and ORB Line SLAM front end. The blue lines
represented the ground truth trajectory, the green lines corresponded to the estimation of DynPL-SVO, while the red lines represented the estimation of
PL SLAM front end. The paths provided by ORB SLAM2 and ORB Line SLAM were plotted with purple and brown lines, respectively.

TABLE III
MEAN ABSOLUTE AND RELATIVE RMSE ERRORS OF THE DYNPL-SVO ON THE KITTI DATASET.

Seq. wo/line error
w/re-projection errors

perpendicular to line features
w/re-projection errors

parallel to line features
APE RPE APE RPE APE RPE

00 7.3728 0.0323 11.9514 0.0391 6.6818 0.0322
01 52.5071 0.7188 166.6740 1.0059 89.8455 0.7788
02 20.6018 0.0348 23.6016 0.0559 19.5024 0.0346
03 6.2301 0.0317 6.0842 0.0322 6.2207 0.0317
04 2.7768 0.0374 2.2843 0.0554 2.7410 0.0365
05 3.9010 0.0182 4.3099 0.0196 3.8735 0.0181
06 5.0703 0.0326 4.6390 0.0448 4.9705 0.0322
07 1.5365 0.0178 5.4844 0.0634 1.8679 0.0174
08 5.4780 0.0390 7.3161 0.0441 4.8398 0.0389
09 4.5855 0.0248 4.4380 0.0674 4.5637 0.0245
10 2.0184 0.0198 2.2578 0.0342 2.0173 0.0197

TABLE IV
MEAN RELATIVE RMSE OF THE DYNPL-SVO ON THE EUROC MAV DATASET.

Seq.
PL SLAM
front end

DynPL-SVO w/only re-projection errors
perpendicular to line features

DynPL-SVO w/only re-projection errors
parallel to line features

MH 01 easy 0.033349 0.033294 0.033358
MH 02 easy 0.032896 0.032501 0.032016
MH 03 med 0.073692 0.071908 0.071196
MH 04 dif 0.103936 0.103346 0.103473
MH 05 dif 0.095603 0.094640 0.094608
V1 01 easy 0.048642 0.049011 0.049427
V1 02 med 0.102017 0.102260 0.101900
V1 03 dif 0.098576 0.101670 0.097804

V2 01 easy 0.037155 0.032655 0.032629
V2 02 med 0.074001 0.073592 0.071348

The sequence V2 03 difficult contained an unequal number of left and right images, rendering it unsuitable for
evaluating stereo systems, and therefore, it was not included in the table presented above.

those without the dynamic grids. It was noteworthy that the dynamic grid method worked well, particularly in sequences
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(a) (b)

(c) (d)
Fig. 5. Dynamic scenes in the KITTI dataset and the impact of dynamic grids on dynamic regions. In each subfigure, cyan boxes represented the dynamic
grids. Figure 5(a) and 5(b) showed moving cars in KITTI-01 and KITTI-06, respectively. Figure 5(c) showcased a person riding bike in KITTI-06, while Figure
5(d) depicted a pedestrian in KITTI-09.

TABLE V
MEAN ABSOLUTE AND RELATIVE RMSE ERRORS OF THE DYNPL-SVO

IN KITTI DATASET.

Seq.
DynPL-SVO

w/dynamic grid
DynPL-SVO

wo/dynamic grid
APE RPE APE RPE

00 11.221715 0.040752 13.236462 0.038351
01 182.531449 1.019784 319.707988 1.306922
02 21.654051 0.064572 10.960957 0.055898
03 6.094158 0.032278 5.946504 0.031802
04 2.207623 0.054315 2.015523 0.052209
05 4.403628 0.019534 7.060361 0.019145
06 4.428359 0.044869 4.440736 0.056673
07 5.216922 0.062928 4.725139 0.064078
08 7.443639 0.043877 12.509229 0.042731
09 4.823906 0.066494 13.612393 0.070549
10 2.282632 0.032286 2.786268 0.033558

with highly dynamic scenes such as KITTI-01, 05, and 09,
wherein SVO accuracy was improved by over 30%.

VI. CONCLUSIONS

In this paper, we proposed a robust SVO method, i.e.,
DynPL-SVO, that utilized both point and line features to
improve motion estimation accuracy in dynamic scenes. The
method introduced the re-projection errors parallel to line
features into cost functions to make full use of the structural
information of line features. The dynamic grid method was
also introduced to address the reduction of robustness and
accuracy of SVO systems caused by moving objects, wherein
dynamic regions could be efficiently marked and point features
on dynamic objects could be removed without using depth
information and other sensors. The performance of the DynPL-
SVO was compared with three SOTA SVO systems on two
datasets. Comprehensive experimental results showed that the

DynPL-SVO achieved more robust and accurate results in most
scenes, particularly on highly dynamic scenes.

Future research will focus on introducing features with
greater geometric information such as planes and cubes into
VO systems to further improve estimation accuracy of SVO
systems.
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